Symmetries of the nuclear shell model

The nuclear shell model
Racah's pairing model and seniority
Wigner's supermultiplet model
Elliott's SU(3) model and extensions

École Joliot Curie, September 2010

The nuclear shell model

Many-body quantum mechanical problem:

$$
\begin{aligned}
\hat{H} & =\sum_{k=1}^{A} \frac{p_{k}^{2}}{2 m_{k}}+\sum_{k<l}^{A} \hat{V}_{2}\left(\boldsymbol{r}_{k}, \boldsymbol{r}_{l}\right) \\
& =\underbrace{\sum_{k=1}^{A}\left[\frac{p_{k}^{2}}{2 m_{k}}+\hat{V}\left(\boldsymbol{r}_{k}\right)\right]}_{\text {mean fiedd }}+\underbrace{\left.\sum_{k<l}^{A} \hat{V}_{2}\left(\boldsymbol{r}_{k}, \boldsymbol{r}_{\boldsymbol{l}}\right)-\sum_{k=1}^{A} V\left(\boldsymbol{r}_{k}\right)\right]}_{\text {residuali.ineraction, }}
\end{aligned}
$$

Independent-particle assumption. Choose V and neglect residual interaction:

$$
\hat{H} \approx \hat{H}_{\mathrm{IP}}=\sum_{k=1}^{A}\left[\frac{p_{k}^{2}}{2 m_{k}}+\hat{V}\left(\boldsymbol{r}_{k}\right)\right]
$$

École Joliot Curie, September 2010

Independent-particle shell model

Solution for one particle:

$$
\left[\frac{p^{2}}{2 m}+\hat{V}(\boldsymbol{r})\right] \phi_{i}(\boldsymbol{r})=E_{i} \phi_{i}(\boldsymbol{r})
$$

Solution for many particles:

$$
\begin{aligned}
& \Phi_{i i_{2} \ldots i_{A}}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{A}\right)=\prod_{k=1}^{A} \phi_{i_{k}}\left(\boldsymbol{r}_{k}\right) \\
& \hat{H}_{\mathrm{IP}} \Phi_{i_{1}, \ldots, i_{A}}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{A}\right)=\left(\sum_{k=1}^{A} E_{i_{k}}\right) \Phi_{i_{1}, \ldots i_{A}}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{A}\right)
\end{aligned}
$$

École Joliot Curie, September 2010

Independent-particle shell model

Anti-symmetric solution for many particles (Slater determinant):

$$
\Psi_{i_{i}, \ldots, i_{i}}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{A}\right)=\frac{1}{\sqrt{A!}}\left|\begin{array}{cccc}
\phi_{i_{i}}\left(\boldsymbol{r}_{1}\right) & \phi_{i_{i}}\left(\boldsymbol{r}_{2}\right) & \ldots & \phi_{i_{i}}\left(\boldsymbol{r}_{A}\right) \\
\phi_{i_{i}}\left(\boldsymbol{r}_{1}\right) & \phi_{i_{1}}\left(\boldsymbol{r}_{2}\right) & \ldots & \phi_{i_{2}}\left(\boldsymbol{r}_{A}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{i_{A}}\left(\boldsymbol{r}_{1}\right) & \phi_{i_{i}}\left(\boldsymbol{r}_{2}\right) & \ldots & \phi_{i_{1}}\left(\boldsymbol{r}_{A}\right)
\end{array}\right|
$$

Example for $A=2$ particles:

$$
\Psi_{i_{i} i_{1}}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\frac{1}{\sqrt{2}}\left[\phi_{i_{1}}\left(\boldsymbol{r}_{1}\right) \phi_{i_{2}}\left(\boldsymbol{r}_{2}\right)-\phi_{i_{1}}\left(\boldsymbol{r}_{2}\right) \phi_{i_{2}}\left(\boldsymbol{r}_{1}\right)\right]
$$

École Joliot Curie, September 2010

Hartree-Fock approximation

Vary ϕ_{i} (i.e. V) to minimize the expectation value of H in a Slater determinant:

Application requires choice of H. Many global parametrizations (Skyrme, Gogny,...) have been developed.

École Joliot Curie, September 2010

Poor man's Hartree-Fock

Choose a simple, analytically solvable V that approximates the microscopic HF potential:

$$
\hat{H}_{\mathrm{IP}}=\sum_{k=1}^{A}\left[\frac{p_{k}^{2}}{2 m}+\frac{m \omega^{2}}{2} r_{k}^{2}-\zeta \boldsymbol{l}_{k} \cdot s_{k}-\boldsymbol{\kappa} l_{k}^{2}\right]
$$

Contains
Harmonic oscillator potential with constant ω.
Spin-orbit term with strength ζ.
Orbit-orbit term with strength κ.
Adjust ω, ζ and κ to best reproduce HF .

École Joliot Curie, September 2010

Single-particle energy levels

Typical parameter values:

$$
\begin{aligned}
& \hbar \omega \approx 41 A^{-1 / 3} \mathrm{MeV} \\
& \zeta \hbar^{2} \approx 20 A^{-2 / 3} \mathrm{MeV} \\
& \kappa \hbar^{2} \approx 0.1 \mathrm{MeV} \\
& \therefore b \approx 1.0 A^{1 / 6} \mathrm{fm}
\end{aligned}
$$

'Magic' numbers at 2, 8, 20, 28, 50, 82, 126, 184,...
"Ecole Joliot Curicien , September 2010

The nuclear shell model

Hamiltonian with one-body term (mean field) and two-body (residual) interactions:

$$
\hat{H}_{\mathrm{SM}}=\sum_{k=1}^{A} \hat{U}\left(\xi_{k}\right)+\sum_{1 \leq k<l}^{A} \hat{W}_{2}\left(\xi_{k}, \xi_{l}\right)
$$

Entirely equivalent form of the same hamiltonian in second quantization:

$$
\hat{H}_{\mathrm{SM}}=\sum_{i} \varepsilon_{i} a_{i}^{+} a_{i}+\frac{1}{4} \sum_{i j k l} v_{i j k} a_{i}^{+} a_{j}^{+} a_{k} a_{l}
$$

ε, v : single-particle energies \& interactions
ijkl: single-particle quantum numbers

École Joliot Curie, September 2010

Symmetries of the shell model

Three bench-mark solutions:
No residual interaction $\Rightarrow I P$ shell model.
Pairing (in jj coupling) \Rightarrow Racah's SU(2).
Quadrupole (in LS coupling) \Rightarrow Elliott's SU(3).
Symmetry triangle:

$$
\begin{aligned}
& \hat{H}=\sum_{k=1}^{A}\left[\frac{p_{k}^{2}}{2 m}+\frac{1}{2} m \omega^{2} r_{k}^{2}-\zeta_{l s} \hat{\boldsymbol{l}}_{k} \cdot \hat{\boldsymbol{s}}_{k}-\zeta_{l l} \hat{l}_{k}^{2}\right]_{1 \leq k<l}^{\text {independent-particle }} \\
&+\sum_{2}^{A} \hat{W}_{2}\left(\xi_{k}, \xi_{l}\right) \quad \text { shell morlel } \\
& \text { SU(2) pairing } \\
& \text { in } j j \text { Coupling } \text { SU(3) rotation } \\
& \text { in } L S \text { coupling }
\end{aligned}
$$

École Joliot Curie, September 2010

Racah's SU(2) pairing model

Assume pairing interaction in a single- j shell:

$$
\left\langle j^{2} J M_{J}\right| \hat{V}_{\text {pariring }}\left|j^{2} J M_{J}\right\rangle=\left\{\begin{array}{cc}
-\frac{1}{2}(2 j+1) g_{0}, & J=0 \\
0, & J \neq 0
\end{array}\right.
$$

Spectrum ${ }^{210} \mathrm{~Pb}$:

Pairing $\operatorname{SU}(2)$ dynamical symmetry

The pairing hamiltonian,

$$
\hat{H}=-g_{0} \hat{S}_{+} \cdot \hat{S}_{-}, \quad \hat{S}_{+}=\frac{1}{2} \sum_{m} a_{j m}^{+} a_{j m}^{+}, \quad \hat{S}_{-}=\left(\hat{S}_{+}\right)^{+}
$$

...has a quasi-spin $\operatorname{SU}(2)$ algebraic structure:

$$
\left[\hat{S}_{+}, \hat{S}_{-}\right]=\frac{1}{2}(2 \hat{n}-2 j-1) \equiv-2 \hat{S}_{z}, \quad\left[\hat{S}_{z}, \hat{S}_{ \pm}\right]= \pm \hat{S}_{ \pm}
$$

H has $\mathrm{SU}(2) \supset \mathrm{SO}(2)$ dynamical symmetry:

$$
-g_{0} \hat{S}_{+}+\hat{S}_{-}=-g_{0}\left(\hat{S}^{2}-\hat{S}_{z}^{2}+\hat{S}_{z}\right)
$$

Eigensolutions of pairing hamiltonian:

$$
\left.-g_{0} \hat{S}_{+} \cdot \hat{S}_{-}\left|S M_{S}\right\rangle=-g_{0}\left(S(S+1)-M_{S}\left(M_{S}-1\right)\right) S M_{S}\right\rangle
$$

École Joliot Curie, September 2010

Interpretation of pairing solution

Quasi-spin labels S and M_{S} are related to nucleon number n and seniority v :

$$
S=\frac{1}{4}(2 j-v+1), \quad M_{S}=\frac{1}{4}(2 n-2 j-1)
$$

Energy eigenvalues in terms of n, j and v :

$$
\left\langle j^{n} v J M_{J}\right|-g_{0} \hat{S}_{+} \cdot \hat{S}_{-}\left|j^{n} v J M_{J}\right\rangle=-g_{0} \frac{1}{4}(n-v)(2 j-n+v+3)
$$

Eigenstates have an S-pair character:

$$
\left|j^{n} v J M_{J}\right\rangle \propto\left(\hat{S}_{+}\right)^{(n-v) / 2}\left|j^{v} v J M_{J}\right\rangle
$$

Seniority v is the number of nucleons not in S pairs (pairs coupled to $J=0$).

École Joliot Curie, September 2010

Pairing between identical nucleons

Analytic solution of the pairing hamiltonian based on SU(2) symmetry. E.g. energies:

$$
\left\langle j^{n} v J\right| \sum_{1 \leq k<l}^{n} \hat{V}_{\text {pairing }}(k, l)\left|j^{n} v J\right\rangle=-g_{0} \frac{1}{4}(n-v)(2 j-n-v+3)
$$

Seniority v (number of nucleons not in pairs coupled to $J=0$) is a good quantum number.
Correlated ground-state solution (cf. BCS).

École Joliot Curie, September 2010

Nuclear superfluidity

Ground states of pairing hamiltonian have the following correlated character:
Even-even nucleus (v=0): $\left(\hat{S}_{+}\right)^{n / 2}|o\rangle, \hat{S}_{+}=\sum_{m} a_{m \downarrow}^{+} a_{\bar{m} \uparrow}^{+}$ Odd-mass nucleus (v=1): $a_{m \mathfrak{t}}^{+}\left(\hat{S}_{+}\right)^{n / 2}|0\rangle$
Nuclear superfluidity leads to
Constant energy of first 2^{+}in even-even nuclei.
Odd-even staggering in masses.
Smooth variation of two-nucleon separation energies with nucleon number.
Two-particle (2n or 2p) transfer enhancement.

École Joliot Curie, September 2010

Two-nucleon separation energies

Two-nucleon separation

 energies $S_{2 n}$:(a) Shell splitting dominates over interaction.
(b) Interaction dominates over shell splitting.
(c) $S_{2 n}$ in tin isotopes.

École Joliot Curie, September 2010

Pairing gap in semi-magic nuclei

Even-even nuclei:
Ground state: $v=0$.
First-excited state: v=2.
Pairing produces constant excitation energy:

$$
E_{\mathrm{x}}\left(2_{1}^{+}\right)=\frac{1}{2}(2 j+1) g_{0}
$$

Example of Sn isotopes:

École Joliot Curie, September 2010

Generalized seniority models

Trivial generalization from a single-j shell to several degenerate j shells.
Pairing with neutrons and protons (isospin):
SO(5) T=1 pairing (Racah, Flowers, Hecht).
SO(8) $T=0$ \& $T=1$ pairing (Flowers and Szpikowski).
Non-degenerate shells:
Generalized seniority (Talmi).
Integrable pairing models (Richardson, Gaudin, Dukelsky).

École Joliot Curie, September 2010

Pairing with neutrons and protons

For neutrons and protons two pairs and hence two pairing interactions are possible:
${ }^{1} S_{0}$ isovector or spin singlet ($S=0, T=1$): $\hat{S}_{+}=\sum_{m \times 0} a_{m}^{+}\left(a_{m \uparrow}^{+}\right.$

${ }^{3} S_{1}$ isoscalar or spin triplet $(S=1, T=0): \quad \hat{P}_{+}=\sum_{m>0} a_{m \uparrow}^{+} a_{m \uparrow}^{+}$

École Joliot Curie, September 2010

Neutron-proton pairing hamiltonian

The nuclear hamiltonian has two pairing interactions

Integrable and solvable for $g_{0}=0, g_{1}=0$ and $g_{0}=g_{1}$.

École Joliot Curie, September 2010

Quartetting in $N=Z$ nuclei

Pairing ground state of an $N=Z$ nucleus:
$\left(\cos \theta \hat{S}_{+} \cdot \hat{S}_{+}-\sin \theta \hat{P}_{+} \cdot \hat{P}_{+}\right)^{n / 4}|0\rangle$
\Rightarrow Condensate of " α-like" objects.
Observations:
Isoscalar component in condensate survives only in $N \approx Z$ nuclei, if anywhere at all.
Spin-orbit term reduces isoscalar component.

École Joliot Curie, September 2010

Wigner's SU(4) symmetry

Assume the nuclear hamiltonian is invariant under spin and isospin rotations:

$$
\begin{aligned}
& {\left[\hat{H}_{\text {nuc }}, \hat{S}_{\mu}\right]=\left[\hat{H}_{\text {nuc }}, \hat{T}_{v}\right]=\left[\hat{H}_{\text {nuc }}, \hat{Y}_{\mu \nu}\right]=0} \\
& \hat{S}_{\mu}=\sum_{k=1}^{A} \hat{s}_{\mu}(k), \quad \hat{T}_{v}=\sum_{k=1}^{A} \hat{t}_{v}(k), \quad \hat{Y}_{\mu \nu}=\sum_{k=1}^{A} \hat{s}_{\mu}(k) \hat{t}_{v}(k)
\end{aligned}
$$

Since $\left\{{ }_{\hat{S}}^{\mu}{ }_{\mu}, T_{v}, Y_{\mu v}\right\}$ form ${ }^{k=1}$ an $\operatorname{SU}(4)$ algebra:
$H_{\text {nucl }}$ has $S U(4)$ symmetry.
Total spin S, total orbital angular momentum L, total isospin T and $S U(4)$ labels (λ, μ, v) are conserved quantum numbers.

École Joliot Curie, September 2010

Physical origin of $\operatorname{SU}(4)$ symmetry

SU(4) labels specify the separate spatial and spinisospin symmetry of the wave function.
Nuclear interaction is short-range attractive and hence favours maximal spatial symmetry.

particle number	spatial symmetry	L	spin-isospin symmetry	$(\lambda \mu \nu)$	(S, T)
1		0,2		(100)	$\left(\frac{1}{2}, \frac{1}{2}\right)$
2	(S)	$0^{2}, 2^{2}, 4$	(A)	(010)	$(0,1)(1,0)$
	(A)	$1,2,3$	(S)	(200)	$(0,0)(1,1)$

École Joliot Curie, September 2010

Elliott's SU(3) model of rotation

Harmonic oscillator mean field (no spin-orbit) with residual interaction of quadrupole type:

$$
\begin{aligned}
& \left.\hat{H}=\sum_{k=1}^{A} \frac{p_{k}^{2}}{2 m}+\frac{1}{2} m \omega^{2} r_{k}^{2}\right]-g_{2} \hat{Q} \cdot \hat{Q}, \\
& \hat{Q}_{\mu} \propto \sum_{k=1}^{A} r_{k}^{2} Y_{2 \mu}\left(\hat{r}_{k}\right) \\
& +\sum_{k=1}^{A} p_{k}^{2} Y_{2 \mu}\left(\hat{\boldsymbol{p}}_{k}\right)
\end{aligned}
$$

J.P. Elliott, Proc. Roy. Soc. A 245 (1958) 128; 562

École Joliot Curie, September 2010

Importance \& limitations of $\operatorname{SU}(3)$

Historical importance:

Bridge between the spherical shell model and the liquiddrop model through mixing of orbits.
Spectrum generating algebra of Wigner's SU(4) model.
Limitations:
LS (Russell-Saunders) coupling, not jj coupling (no spinorbit splitting) \Rightarrow (beginning of) sd shell.
Q is the algebraic quadrupole operator \Rightarrow no major-shell mixing.

École Joliot Curie, September 2010

Breaking of SU(4) symmetry

$\mathrm{SU}(4)$ symmetry breaking as a consequence of Spin-orbit term in nuclear mean field.
Coulomb interaction.
Spin-dependence of the nuclear interaction.
Evidence for SU(4) symmetry breaking from masses and from Gamow-Teller β decay.

École Joliot Curie, September 2010

SU(4) breaking from masses

Double binding energy difference δV_{np}

$$
\delta V_{\mathrm{np}}(N, Z)=\frac{1}{4}[B(N, Z)-B(N-2, Z)-B(N, Z-2)+B(N-2, Z-2)]
$$

$\delta V_{\text {np }}$ in $s d$-shell nuclei:

École Joliot Curie, September 2010

$\mathrm{SU}(4)$ breaking from β decay

Gamow-Teller decay into odd-odd or even-even $N=Z$ nuclei.

École Joliot Curie, September 2010

Pseudo-spin symmetry

Apply a helicity transformation to the spin-orbit + orbit-orbit nuclear mean field:

$$
\hat{\boldsymbol{u}}_{k}^{-1}\left(\zeta \hat{l}_{k} \cdot \hat{\boldsymbol{s}}_{k}+\kappa \hat{\boldsymbol{l}}_{k} \cdot \hat{\boldsymbol{l}}_{k}\right) \hat{\boldsymbol{h}}_{k}=(4 \zeta-\kappa) \hat{\boldsymbol{l}}_{k} \cdot \hat{\boldsymbol{s}}_{k}+\kappa \hat{\boldsymbol{l}}_{k} \cdot \hat{\boldsymbol{l}}_{k}+\mathrm{c}^{\mathrm{te}}
$$

$$
\hat{u}_{k}=2 i \frac{\hat{\boldsymbol{s}}_{k} \cdot \boldsymbol{p}_{k}}{p_{k}}
$$

Degeneracies

for $4 \zeta=\kappa$.

$\mathrm{SU}(3)$	pseudo SU(3)
- $3 s_{1 / 2}$	$=\frac{3 s_{1 / 2}}{2 d_{3 / 2}} \Rightarrow=\frac{\tilde{2}^{2} \tilde{p}_{1 / 2}}{2 \tilde{p}_{3 / 2}}$
$-\begin{array}{r} 2 d_{3 / 2} \\ 2 d_{5 / 2} \end{array}$	$=\begin{aligned} & 2 d_{5 / 2} \\ & 1 g_{7 / 2} \end{aligned} \Rightarrow=\frac{\tilde{\tilde{1}}}{\tilde{1} \tilde{f}_{5 / 2}} \tilde{f}_{7 / 2}$
$=\begin{aligned} & 1 g_{7 / 2} \\ & 1 g_{9 / 2} \end{aligned}$	
	-_ $1 g_{9 / 2} \quad$---- $1 g_{9 / 2}$

Ecole Joliot Curie, September 2010

Pseudo-SU(4) symmetry

Assume the nuclear hamiltonian is invariant under pseudo-spin and isospin rotations:
$\left[\hat{H}_{\text {nuc }}, \hat{\tilde{S}}_{\mu}\right]=\left[\hat{H}_{\text {nucl }}, \hat{T}_{v}\right]=\left[\hat{H}_{\text {nucl }}, \hat{\tilde{Y}}_{\mu \nu}\right]=0$
$\hat{\tilde{S}}_{\mu}=\sum_{k=1}^{A} \hat{\tilde{S}}_{\mu}(k), \quad \hat{T}_{v}=\sum_{k=1}^{A} \hat{t}_{v}(k), \quad \hat{\tilde{Y}}_{\mu \nu}=\sum_{k=1}^{A} \hat{\tilde{S}}_{\mu}(k) \hat{t}_{v}(k)$
Consequances:
Hamiltonian has pseudo-SU(4) symmetry.
Total pseudo-spin, total pseudo-orbital angular momentum, total isospin and pseudo-SU(4) labels are conserved quantum numbers.

École Joliot Curie, September 2010

Test of pseudo-SU(4) symmetry

Shell-model test of pseudo-SU(4).
Realistic interaction in $p f_{5 / 2} g_{9 / 2}$ space. Example: ${ }^{58} \mathrm{Cu}$.

École Joliot Curie, September 2010

Pseudo-SU(4) and β decay

Pseudo-spin transformed Gamow-Teller operator is deformation dependent:

$$
\hat{\tilde{s}}_{\mu} \hat{t}_{v} \equiv \hat{u}^{-1} \hat{s}_{\mu} \hat{t}_{v} \hat{u}=-\frac{1}{3} \hat{s}_{\mu} \hat{t}_{v}+\sqrt{\frac{20}{3}} \frac{1}{r^{2}}\left[(r \times \boldsymbol{r})^{(2)} \times \hat{s}\right]_{\mu}^{(1)} \hat{t}_{v}
$$

Test: β decay of 58 Zn .

Ecole Joliot Curie, September 2010

Symmetries in nuclei

Quantum many-body (bosons and/or fermions) systems can be analyzed with algebraic methods.
Two nuclear examples:
Pairing vs. quadrupole interaction in the nuclear shell model.
Spherical, deformed and γ-unstable nuclei with s,d-boson IBM.

École Joliot Curie, September 2010

Three faces of the shell model

École Joliot Curie, September 2010

Boson and fermion statistics

Fermions have half-integer spin and obey FermiDirac statistics:

$$
\left\{a_{i}, a_{j}^{+}\right\} \equiv a_{i} a_{j}^{+}+a_{j}^{+} a_{i}=\delta_{i j}, \quad\left\{a_{i}, a_{j}\right\}=\left\{a_{i}^{+}, a_{j}^{+}\right\}=0
$$

Bosons have integer spin and obey Bose-Einstein statistics:

$$
\left[b_{i}, b_{j}^{+}\right] \equiv b_{i} b_{j}^{+}-b_{j}^{+} b_{i}=\delta_{i j}, \quad\left[b_{i}, b_{j}\right]=\left[b_{i}^{+}, b_{j}^{+}\right]=0
$$

Matter is carried by fermions. Interactions are carried by bosons. Composite matter particles can be fermions or bosons.

École Joliot Curie, September 2010

Bosons and fermions

École Joliot Curie, September 2010

($\mathrm{d}, \mathrm{\alpha}$) and ($\mathrm{p},{ }^{3} \mathrm{He}$) transfer

SU(4) superfluidity

Exact
Broken

École Joliot Curie, September 2010

Wigner energy

Extra binding energy of $N=Z$ nuclei (cusp).
Wigner energy B_{w} is decomposed in two parts:

$$
B_{\mathrm{w}}=-W(A)|N-Z|
$$

$$
-d(A) \delta_{N, Z} \pi_{\mathrm{np}}
$$

$W(A)$ and $d(A)$ can be fixed empirically from
 binding energies.

École Joliot Curie, September 2010

Connection with $\operatorname{SU}(4)$ model

Wigner's explanation of the 'kinks in the mass defect curve' was based on $\mathrm{SU}(4)$ symmetry.
Symmetry contribution to the nuclear binding energy is
$-K(A) g(\lambda, \mu, v)=K(A)\left[(N-Z)^{2}+8|N-Z|+8 \delta_{N, Z} \pi_{\mathrm{np}}+6 \delta_{\text {pairing }}\right]$
$\mathrm{SU}(4)$ symmetry is broken by spin-orbit term. Effects of $\mathrm{SU}(4)$ mixing must be included.

École Joliot Curie, September 2010

Algebraic definition of seniority

For a system of n identical bosons with spin j

$$
\begin{array}{cccccc}
\mathrm{U}(2 j+1) & \supset & \mathrm{SO}(2 j+1) & \supset & \cdots & \supset \\
\downarrow & \downarrow & \mathrm{SO}(3) \\
{[n]} & v & & & & \downarrow \\
n & v & & & J
\end{array}
$$

For a system of n identical fermions with spin j

$$
\begin{array}{cccccc}
\mathrm{U}(2 j+1) & \supset \mathrm{Sp}(2 j+1) & \supset & \cdots & \supset & \mathrm{SO}(3) \\
\downarrow & \downarrow & & & \downarrow \\
{\left[1^{n}\right]} & v & & & & J
\end{array}
$$

Alternative definition with quasi-spin algebras.
XL-ELAF, México DF, August 2010

Conservation of seniority

Seniority v is the number of particles not in pairs coupled to $\mathrm{J}=0$ (Racah).
Conditions for the conservation of seniority by a given (two-body) interaction V can be derived from the analysis of a 3-particle system.
Any interaction between identical fermions with spin j conserves seniority if $j \leq 7 / 2$.
Any interaction between identical bosons with spin j conserves seniority if $j \leq 2$.

Conservation of seniority

Necessary and sufficient conditions for a two-body interaction ν_{λ} to conserve seniority:

$$
\begin{aligned}
& \sum_{\lambda} \sqrt{2 \lambda+1} a_{j i}^{\lambda} \nu_{\lambda}=0, \quad I=2,4, \ldots, 2\lfloor j\rfloor \\
& v_{\lambda} \equiv\left\langle j^{2} ; \lambda\right| \hat{V}\left|j^{2} ; \lambda\right\rangle \\
& a_{j I}^{\lambda}=\delta_{\lambda I}+2 \sqrt{(2 \lambda+1)(2 I+1)}\left\{\begin{array}{lll}
j & j & \lambda \\
j & j & I
\end{array}\right\}-\frac{4 \sqrt{(2 \lambda+1)(2 I+1)}}{(2 j+1)(2 j+1+2 \sigma)}
\end{aligned}
$$

For fermions $\sigma=-1$; for bosons $\sigma=+1$.

XL-ELAF, México DF, August 2010

Conservation of seniority

Bosons:

$$
\begin{aligned}
& j=3: 11 v_{2}-18 v_{4}+7 v_{6}=0, \\
& j=4: 65 v_{2}-30 v_{4}-91 v_{6}+56 v_{8}=0, \\
& j=5: 3230 v_{2}-2717 v_{6}-3978 v_{8}+3465 v_{10}=0,
\end{aligned}
$$

Fermions:

$$
\begin{aligned}
& j=9 / 2: 65 v_{2}-315 v_{4}+403 v_{6}-153 v_{8}=0, \\
& j=11 / 2: 1020 v_{2}-3519 v_{4}-637 v_{6}+4403 v_{8}-2541 v_{10}=0, \\
& j=13 / 2: 1615 v_{2}-4275 v_{4}-1456 v_{6}+3196 v_{8}-5145 v_{10} \\
& \quad-4225 v_{12}=0,
\end{aligned}
$$

XL-ELAF, México DF, August 2010

Is seniority conserved in nuclei?

The interaction between nucleons is "short range".
A δ interaction is therefore a reasonable approximation to the nucleon two-body force.
A pairing interaction is a further approximation.
Both δ and pairing interaction between identical nucleons conserve seniority.
\therefore In semi-magic nuclei seniority is conserved to a good approximation.

XL-ELAF, México DF, August 2010

Partial conservation of seniority

Question: Can we construct interactions for which some but not all of the eigenstates have good seniority?
A non-trivial solution occurs for four identical fermions with $j=9 / 2$ and $J=4$ and $J=6$. These states are solvable for any interaction in the $j=9 / 2$ shell. They have a wave function which is independent of the interactions v_{J}.
This finding has relevance for the existence of seniority isomers in nuclei.

XL-ELAF, México DF, August 2010

Energy matrix for $(9 / 2)^{4} J=4$

$$
\begin{aligned}
& \langle a| \hat{V}|a\rangle=\frac{3}{5} v_{0}+\frac{67}{99} v_{2}+\frac{746}{715} v_{4}+\frac{1186}{495} v_{6}+\frac{918}{715} v_{8}, \\
& \langle a| \hat{V}|b\rangle=\frac{\sqrt{14 \Delta}}{495 \sqrt{2119}},\langle a| \hat{V}|c\rangle=\frac{2 \sqrt{170 \Delta}}{429 \sqrt{489}}, \\
& \Delta=-65 v_{2}+315 v_{4}-403 v_{6}+153 v_{8} \\
& \langle b| \hat{V}|b\rangle=\frac{33161}{16137} v_{2}+\frac{1800}{1793} v_{4}+\frac{70382}{80685} v_{6}+\frac{18547}{8965} v_{8}, \\
& \langle b| \hat{V}|c\rangle=\frac{-10 \sqrt{595}\left(13 v_{2}-9 v_{4}-13 v_{6}+9 v_{8}\right)}{5379 \sqrt{39}} \\
& \langle c| \hat{V}|c\rangle=\frac{2584}{5379} v_{2}+\frac{48809}{23309} v_{4}+\frac{65809}{26895} v_{6}+\frac{114066}{116545} v_{8} . \\
& \text { XL-ELAF, México DF, August } 2010
\end{aligned}
$$

Energy matrix for $(9 / 2)^{4} J=6$

$$
\begin{aligned}
& \langle a| \hat{V}|a\rangle=\frac{3}{5} v_{0}+\frac{34}{99} v_{2}+\frac{1186}{715} v_{4}+\frac{658}{495} v_{6}+\frac{1479}{715} v_{8}, \\
& \langle a| \hat{V}|b\rangle=\frac{-\sqrt{5} \Delta}{1287 \sqrt{97}}, \quad\langle a| \hat{V}|c\rangle=\frac{2 \sqrt{2261 \Delta}}{2145 \sqrt{291}}, \\
& \Delta=-65 v_{2}+315 v_{4}-403 v_{6}+153 v_{8} \\
& \langle b| \hat{V}|b\rangle=\frac{33049}{19206} v_{2}+\frac{25733}{27742} v_{4}+\frac{19331}{19206} v_{6}+\frac{65059}{27742} v_{8}, \\
& \langle b| \hat{V}|c\rangle=\frac{5 \sqrt{11305}\left(13 v_{2}-9 v_{4}-13 v_{6}+9 v_{8}\right)}{41613 \sqrt{3}} \\
& \langle c| \hat{V}|c\rangle=\frac{1007}{3201} v_{2}+\frac{26370}{13871} v_{4}+\frac{7723}{3201} v_{6}+\frac{19026}{13871} v_{8} . \\
& \text { XL-ELAF, México DF, August } 2010
\end{aligned}
$$

Energies

Analytic energy expressions:

$$
\begin{aligned}
& E\left[(9 / 2)^{4}, v=4, J=4\right]=\frac{68}{33} v_{2}+v_{4}+\frac{13}{15} v_{6}+\frac{114}{55} v_{8}, \\
& E\left[(9 / 2)^{4}, v=4, J=6\right]=\frac{19}{11} v_{2}+\frac{12}{13} v_{4}+v_{6}+\frac{336}{143} v_{8}
\end{aligned}
$$

XL-ELAF, México DF, August 2010

E2 transition rates

Analytic E2 transition rate:

$$
\begin{aligned}
& B\left(\mathrm{E} 2 ;(9 / 2)^{4}, v=4, J=6 \rightarrow(9 / 2)^{4}, v=4, J=4\right) \\
& \quad=\frac{209475}{176468} B\left(\mathrm{E} 2 ;(9 / 2)^{2}, J=2 \rightarrow(9 / 2)^{2}, J=0\right)
\end{aligned}
$$

XL-ELAF, México DF, August 2010

$N=50$ isotones

$\text { = }=0$			二 ${ }_{6}$
-	-2+	- ${ }^{\left(2^{+}\right)}-^{-2^{+}}$	

XL-ELAF, México DF, August 2010

Nickel ($Z=28$) isotopes

XL-ELAF, México DF, August 2010

Seniority isomers in the $g_{9 / 2}$ shell

XL-ELAF, México DF, August 2010

