Symmetries in Nuclei

Piet Van Isacker
Grand Accélérateur National d'lons Lourds,
Caen, France

École Joliot Curie, September 2010

Symmetries in Nuclei

(Dynamical) symmetries in quantum mechanics Symmetries of the nuclear shell model (Symmetries of the interacting boson model)

École Joliot Curie, September 2010

(Dynamical) symmetries in quantum mechanics

Symmetry in quantum mechanics
The harmonic oscillator
Isospin symmetry in nuclei
Dynamical symmetry

École Joliot Curie, September 2010

Symmetry in quantum mechanics

Assume a hamiltonian H which commutes with operators g_{i} that form a Lie algebra G :

$$
\forall \hat{g}_{i} \in G:\left[\hat{H}, \hat{g}_{i}\right]=0
$$

$\therefore H$ has symmetry G or is invariant under G.
Lie algebra: a set of (infinitesimal) operators that closes under commutation.

École Joliot Curie, September 2010

Consequences of symmetry

Degeneracy structure: If $|\gamma\rangle$ is an eigenstate of H with energy E, so is $g_{i}|\gamma\rangle$:
$\hat{H}|\gamma\rangle=E|\gamma\rangle \Rightarrow \hat{H} \hat{g}_{i}|\gamma\rangle=\hat{g}_{i} \hat{H}|\gamma\rangle=E \hat{g}_{i}|\gamma\rangle$
Degeneracy structure and labels of eigenstates of H are determined by algebra G :

$$
\left.\left.\hat{H}|\Gamma \gamma\rangle=E(\Gamma)\left|\Gamma \gamma ; ; \quad \hat{g}_{i}\right| \Gamma \gamma\right\rangle=\sum_{\gamma} a_{\gamma \gamma}^{\Gamma}(i) \Gamma \gamma\right\rangle
$$

Casimir operators of G commute with all g_{i} :

$$
\hat{H}=\sum_{m} \mu_{m} \hat{C}_{m}[G]
$$

École Joliot Curie, September 2010

The (3D) harmonic oscillator

The hamiltonian of the harmonic oscillator is
$\hat{H}=\frac{p^{2}}{2 M}+\frac{1}{2} M \omega^{2} r^{2}$
Standard wave quantum mechanics gives
$\hat{H} \Psi_{n l m}(r, \theta, \varphi)=\left(2 n+l+\frac{3}{2}\right) \mathrm{h} \omega \Psi_{n l m}(r, \theta, \varphi)$
with $n=0,1, \mathrm{~K} ; l=0,1, \mathrm{~K} ; m=-l, \mathrm{~K},+l$
Degeneracy in m originates from rotational symmetry. Additional degeneracy for all ($n, 1$) combinations with $2 n+1=N$.
What is the origin of this degeneracy?
École Joliot Curie, September 2010

Degeneracies of the 3D HO

École Joliot Curie, September 2010

Raising and lowering operators

Introduce the raising and lowering operators

$$
\begin{aligned}
& b_{x}^{+}=\frac{1}{\sqrt{2}}\left(x^{\prime}-\frac{\partial}{\partial x^{\prime}}\right), \quad b_{y}^{+}=\frac{1}{\sqrt{2}}\left(y^{\prime}-\frac{\partial}{\partial y^{\prime}}\right), \quad b_{z}^{+}=\frac{1}{\sqrt{2}}\left(z^{\prime}-\frac{\partial}{\partial z^{\prime}}\right) \\
& b_{x}=\frac{1}{\sqrt{2}}\left(x^{\prime}+\frac{\partial}{\partial x^{\prime}}\right), \quad b_{y}=\frac{1}{\sqrt{2}}\left(y^{\prime}+\frac{\partial}{\partial y^{\prime}}\right), \quad b_{z}=\frac{1}{\sqrt{2}}\left(z^{\prime}+\frac{\partial}{\partial z^{\prime}}\right) \\
& \text { with } \quad x^{\prime}=x / l, y^{\prime}=y / l, z^{\prime}=z / l ; \quad l=\sqrt{\frac{\mathrm{h}}{M \omega}}
\end{aligned}
$$

The 3D HO hamiltonian becomes

$$
\hat{H}=\frac{p^{2}}{2 M}+\frac{1}{2} M \omega^{2} r^{2}=\sum_{i=x, y, z}\left(b_{i}^{+} b_{i}+\frac{1}{2}\right) \mathrm{h} \omega
$$

École Joliot Curie, September 2010

$\mathrm{U}(3)$ symmetry of the 3 D HO

The raising and lowering operators satisfy

$$
\left[b_{i}, b_{j}\right]=0, \quad\left[b_{i}^{+}, b_{j}^{+}\right]=0, \quad\left[b_{i}, b_{j}^{+}\right]=\delta_{i j}
$$

The bilinear combinations $u_{i j}$ commute with H :

$$
\hat{u}_{i j} \equiv b_{i}^{+} b_{j} \Rightarrow\left[\hat{u}_{i j}, \hat{H}\right]=0, \quad \forall i, j \in\{x, y, z\}
$$

The nine operators $u_{i j}$ generate the algebra $\cup(3)$:

$$
\left[\hat{u}_{i j}, \hat{u}_{k k}\right]=\hat{u}_{i j} \delta_{j k}-\hat{u}_{k j} \delta_{i l}
$$

\Rightarrow The symmetry of the harmonic oscillator in 3 dimensions is $U(3)$.

École Joliot Curie, September 2010

The $\mathrm{U}(3)=\mathrm{U}(1) \oplus \mathrm{SU}(3)$ algebra

The generators $u_{i j}$ of $\mathrm{U}(3)$ can be written as

$$
\begin{aligned}
& b_{x}^{+} b_{x}+b_{y}^{+} b_{y}+b_{z}^{+} b_{z}=\frac{\hat{H}}{\mathrm{~h} \omega}-\frac{3}{2} \\
& \hat{L}_{z}=-i \mathrm{~h}\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)=-i \mathrm{~h}\left(b_{x}^{+} b_{y}-b_{y}^{+} b_{x}\right)+\text { cyclic } \\
& \hat{Q}_{0}=\mathrm{h}\left(2 b_{z}^{+} b_{z}-b_{x}^{+} b_{x}-b_{y}^{+} b_{y}\right) \\
& \hat{Q}_{\mathrm{m} 1}=\mathrm{h} \sqrt{\frac{3}{2}}\left(\pm b_{z}^{+} b_{x} \pm b_{x}^{+} b_{z}-i b_{y}^{+} b_{z}-i b_{z}^{+} b_{y}\right) \\
& \hat{Q}_{\mathrm{m} 2}=\mathrm{h} \sqrt{\frac{3}{2}}\left(b_{x}^{+} b_{x}-b_{y}^{+} b_{y} \mathrm{~m} i b_{x}^{+} b_{y} \mathrm{~m} i b_{y}^{+} b_{x}\right)
\end{aligned}
$$

École Joliot Curie, September 2010

Many particles in the 3D HO

Define operators for each particle $k=1,2, \ldots, A$:

$$
\begin{array}{ll}
b_{x, k}^{+}=\frac{1}{\sqrt{2}}\left(x_{k}^{\prime}-\frac{\partial}{\partial x_{k}^{\prime}}\right), \quad b_{y, k}^{+}=\frac{1}{\sqrt{2}}\left(y_{k}^{\prime}-\frac{\partial}{\partial y_{k}^{\prime}}\right), \quad b_{z, k}^{+}=\frac{1}{\sqrt{2}}\left(z_{k}^{\prime}-\frac{\partial}{\partial z_{k}^{\prime}}\right) \\
b_{x, k}=\frac{1}{\sqrt{2}}\left(x_{k}^{\prime}+\frac{\partial}{\partial x_{k}^{\prime}}\right), \quad b_{y, k}=\frac{1}{\sqrt{2}}\left(y_{k}^{\prime}+\frac{\partial}{\partial y_{k}^{\prime}}\right), \quad b_{z, k}=\frac{1}{\sqrt{2}}\left(z_{k}^{\prime}+\frac{\partial}{\partial z_{k}^{\prime}}\right)
\end{array}
$$

The total $\mathrm{U}(3)$ algebra is generated by

$$
\sum_{k=1}^{A} b_{i, k}^{+} b_{j, k}, \quad i, j \in\{x, y, z\}
$$

École Joliot Curie, September 2010

Many particles in the 3D HO

Many-body hamiltonian with $\mathrm{U}(3)$ symmetry:

$$
\begin{aligned}
& \hat{H}=\mathrm{h} \omega\left(\sum_{k=1}^{A} b_{x, k}^{+} b_{x, k}+b_{y, k}^{+} b_{y, k}+b_{z, k}^{+} b_{z, k}\right)+\sum_{k<l=1}^{A} \hat{V}(k, l) \\
& {\left[\hat{H}, \sum_{k=1}^{A} b_{i, k}^{+} b_{j, k}\right], \forall i, j \in\{x, y, z\}}
\end{aligned}
$$

This property is valid if the interaction equals

$$
\hat{\boldsymbol{C}}_{2}[\mathrm{SU}(3)]=\frac{1}{2} \boldsymbol{L} \cdot \boldsymbol{L}+\frac{1}{6} \boldsymbol{Q} \cdot \boldsymbol{Q}=\sum_{k, l=1}^{A}\left(\frac{1}{2} \boldsymbol{L}(k) \cdot \boldsymbol{L}(l)+\frac{1}{6} \boldsymbol{Q}(k) \cdot \boldsymbol{Q}(l)\right)
$$

École Joliot Curie, September 2010

Dynamical symmetry

Two algebras $G_{1} \supset G_{2}$ and a hamiltonian

$$
\hat{H}=\sum_{m} \mu_{m} \hat{C}_{m}\left[G_{1}\right]+\sum_{n} v_{n} \hat{C}_{n}\left[G_{2}\right]
$$

$\therefore H$ has symmetry G_{2} but not G_{1} !
Eigenstates are independent of parameters μ_{m} and v_{n} in H.
Dynamical symmetry breaking "splits but does not admix eigenstates".

École Joliot Curie, September 2010

Isospin symmetry in nuclei

Empirical observations:
About equal masses of n(eutron) and p (roton).
n and p have spin $1 / 2$.
Equal (to about 1\%) nn, np, pp strong forces.
This suggests an isospin $S U(2)$ symmetry of the nuclear hamiltonian:

$$
\begin{array}{ll}
\mathrm{n}: & t=\frac{1}{2}, m_{t}=+\frac{1}{2} ; \quad \mathrm{p}: \quad t=\frac{1}{2}, m_{t}=-\frac{1}{2} \\
\Rightarrow \quad \hat{t}_{+} \mathrm{n}=0, \quad \hat{t}_{+} \mathrm{p}=\mathrm{n}, \quad \hat{t}_{-} \mathrm{n}=\mathrm{p}, \quad \hat{t}_{-} \mathrm{p}=0, \quad \hat{t}_{z} n=\frac{1}{2} \mathrm{n}, \quad \hat{t}_{z} p=-\frac{1}{2} \mathrm{p}
\end{array}
$$

École Joliot Curie, September 2010

Isospin SU(2) symmetry

Isospin operators form an SU(2) algebra:

$$
\left[\hat{t}_{z}, \hat{t}_{ \pm}\right]= \pm \hat{t}_{ \pm},\left[\hat{t}_{+}, \hat{t}_{-}\right]=2 \hat{t}_{z}
$$

Assume the nuclear hamiltonian satisfies

$$
\left[\hat{H}_{\text {nucl }}, \hat{T}_{v}\right]=0, \quad \hat{T}_{v}=\sum_{k=1}^{A} \hat{t}_{v}(k)
$$

$\therefore H_{\text {nucl }}$ has $\mathrm{SU}(2)$ symmetry with degenerate states belonging to isobaric multiplets:

$$
\left|\eta T M_{T}\right\rangle, \quad M_{T}=-T,-T+1, \mathrm{~K},+T
$$

École Joliot Curie, September 2010

Isospin symmetry breaking: $A=49$

Empirical evidence from isobaric multiplets.
Example: $T=1 / 2$ doublet of $A=49$ nuclei.

École Joliot Curie, September 2010

Isospin symmetry breaking: $A=51$

École Joliot Curie, September 2010

Isospin $\operatorname{SU}(2)$ dynamical symmetry

Coulomb interaction can be approximated as

$$
\hat{H}_{\text {coul }} \approx \kappa_{0}+\kappa_{1} \hat{T}_{2}+\kappa_{2} \hat{T}_{z}^{2} \Rightarrow\left[\hat{H}_{\text {coul }} \hat{T}_{2}\right]=0, \quad\left[\hat{H}_{\text {coul }} \hat{T}_{ \pm}\right] \neq 0
$$

$\therefore H_{\text {nucl }}+H_{\text {coul }}$ has $\mathrm{SU}(2)$ dynamical symmetry and SO(2) symmetry.
M_{T}-degeneracy is lifted according to

$$
\left.\hat{H}_{\text {Coul }}\left|\eta T M_{T}\right\rangle=\left(\kappa_{0}+\kappa_{1} M_{T}+\kappa_{2} M_{T}^{2}\right) \eta T M_{T}\right\rangle
$$

Summary of labelling: $\mathrm{SU}(2) \supset \mathrm{SO}(2)$

$$
\begin{array}{cc}
\downarrow & \downarrow \\
T & M_{T}
\end{array}
$$

École Joliot Curie, September 2010

Isobaric multiplet mass equation

Isobaric multiplet mass equation:

$$
E\left(\eta T M_{T}\right)=\kappa(\eta, T)+\kappa_{1} M_{T}+\kappa_{2} M_{T}^{2}
$$

Example: $T=3 / 2$ multiplet for $A=13$ nuclei.

Ecole Joliot Curie, September 2010

Isospin selection rules

Internal E1 transition operator is isovector:

$$
\hat{T}_{\mu}^{\mathrm{El}}=\sum_{k=1}^{A} e_{k} r_{\mu}(k)=\frac{e}{2} \underbrace{\left(\sum_{k=1}^{A} r_{\mu}(k)\right.}_{\text {CM moion }}+\underbrace{\left.\sum_{k=1}^{A} \hat{t}_{z}(k) r_{\mu}(k)\right)}_{\text {isorecor }}
$$

Selection rule for $N=Z\left(M_{T}=0\right)$ nuclei: No E1 transitions are allowed between states with the same isospin.

École Joliot Curie, September 2010

E1 transitions and isospin mixing

$B\left(\mathrm{E} 1 ; 5^{-} \rightarrow 4^{+}\right)$in ${ }^{64} \mathrm{Ge}$ from:
lifetime of 5 - level; $\delta(E 1 / M 2)$ mixing ratio of
$5 \rightarrow 4^{+}$transition;
relative intensities of transitions from 5 .
Estimate of minimum isospin mixing:

$$
\begin{aligned}
P\left(T=1,5^{-}\right) & \approx P\left(T=1,4^{+}\right) \\
& \approx 2.5 \%
\end{aligned}
$$

École Joliot Curie, September 2010

Dynamical algebra

Take a generic many-body hamiltonian:

$$
\hat{H}=\sum_{i} \varepsilon_{i} c_{i}^{+} c_{i}+\frac{1}{4} \sum_{i j k l} v_{i j k} c_{i}^{+} c_{j}^{+} c_{l} c_{k}+\cdots
$$

Rewrite H as (bosons: $q=0$; fermions: $q=1$)

$$
\hat{H}=\sum_{i l}\left(\varepsilon_{i} \delta_{i l}-(-)^{q} \frac{1}{4} \sum_{j} v_{i j k}\right) \hat{u}_{i l}+(-)^{q} \frac{1}{4} \sum_{i j k l} v_{i j k} \hat{u}_{i k} \hat{u}_{j l}+\cdots
$$

Operators $u_{i j}$ generate the dynamical algebra $\cup(n)$ for bosons and for fermions ($q=0,1$):

$$
\hat{u}_{i j} \equiv c_{i}^{+} c_{j} \Rightarrow\left[\hat{u}_{i j}, \hat{u}_{k j}\right]=\hat{u}_{i j} \delta_{j k}-\hat{u}_{k j} \delta_{i l}
$$

École Joliot Curie, September 2010

Dynamical symmetry (DS)

With each chain of nested algebras
$\mathrm{U}(n)=G_{\mathrm{dyn}}=G_{1} \supset G_{2} \supset \cdots \supset G_{\text {sym }}$
...is associated a particular class of many-body hamiltonian

$$
\hat{H}=\sum_{m} \mu_{m} \hat{C}_{m}\left[G_{1}\right]+\sum_{n} v_{n} \hat{C}_{n}\left[G_{2}\right]+\cdots
$$

Since H is a sum of commuting operators
$\forall m, n, a, b: \quad\left[\hat{C}_{m}\left[G_{a}\right], \hat{C}_{n}\left[G_{b}\right]\right]=0$
...it can be solved analytically!
École Joliot Curie, September 2010

DS in nuclear physics

Name	$G_{\text {dyn }}$	$G_{\text {break }}$	$G_{\text {sym }}$	Application	Reference
Isospin	$\mathrm{SU}(2)$	-	$\mathrm{SO}(2)$	Isobaric multiplets, IMME	Heisenberg [4] Wigner [5]
Quasi-spin	$\mathrm{SU}(2)$	-	$\mathrm{SO}(2)$	Seniority spectra	Racah [6] Kerman [7]
supermultiplet $\mathrm{SU}(3)$ model	$\mathrm{U}(4 \Omega)$	$\mathrm{SU}(3)$	$\mathrm{SO}(3)$	Wigner energy Rotational bands	Wigner [8] Elliott [9]
Interacting Boson Model	$\mathrm{U}(6)$	$\mathrm{U}(5)$ $\mathrm{SU}(3)$ $\mathrm{SO}(6)$	$\mathrm{SO}(3)$	Vibrational nuclei Rotational nuclei γ-unstable nuclei	Arima and Iachello [10]
F-spin	$\mathrm{SU(2)}$	-	$\mathrm{SO}(2)$	F-spin multiplets, FMME	Brentano et al. $[11]$

École Joliot Curie, September 2010

