## **Modern Theory of Nuclear Forces**

#### Lecture 1: Introduction & first look into ChPT

- Historical overview
- Conventional approach
  - General structure of the 2N force
  - Modern "high-precision" NN potentials
  - Beyond two nucleons
- Chiral Perturbation Theory
  - Introduction
  - Chiral symmetry of QCD
  - Effective Lagrangian

#### Lecture 2: EFTs for two nucleons

**Lecture 3: Nuclear forces from chiral EFT** 





## **Historical overview**

**1935** *Yukawa* suggests that nucleons interact via exchange of massive scalar particles



- **1936-42** Extension to pseudoscalar/pseudovector exchange particles by *Proca, Kemmer, Moller, Rosenfeld and Schwinger*
- **1946** Existence of an isovector pseudoscalar meson (pion) predicted by *Pauli*
- **1947** Experimental discovery of pions by *Lattes, Muirhead, Occhialini and Powell*

**1951** 



*Taketani, Nakamura, Sasaki* introduce new concept: long-range  $(1\pi)$ , medium-range  $(1\pi + 2\pi)$  and core (???)

| <b>1950s</b>    | $2\pi$ -exchange potential studied by Taketani et al., Brückner, Watson,                |
|-----------------|-----------------------------------------------------------------------------------------|
| <b>1960s</b>    | Discovery of heavy mesons, OBE models                                                   |
| <b>70s, 80s</b> | Dispersion and inverse scattering theory, BE and quark cluster models, phenomenology    |
| <b>80s, 90s</b> | High-precision potentials $(\chi^2_{data} \sim 1)$ : AV18, CD Bonn, Nijm I,II, Reid 93, |
| since 91        | Chiral effective field theory                                                           |

## **2N force: general structure**

Available vectors:  $\vec{r_1}$ ,  $\vec{r_2}$ ,  $\vec{p_1}$ ,  $\vec{p_2}$ ,  $\vec{\sigma_1}$ ,  $\vec{\sigma_2}$  and isovectors:  $\tau_1$ ,  $\tau_2$ 

Invariance under translations and Galilei transformations:  $V_{2N}(\vec{r_1}, \vec{r_2}, \vec{p_1}, \vec{p_2}) = V_{2N}(\vec{r}, \vec{p})$ 

where 
$$\vec{r} = \vec{r}_1 - \vec{r}_2$$
,  $\vec{p} = \frac{1}{2}(\vec{p}_1 - \vec{p}_2) = -i\vec{
abla}_r$ 

Invariance under rotations, space reflection, time reversal & isospin rotations

$$\Rightarrow \left\{ \underbrace{1, \quad \vec{\sigma}_1 \cdot \vec{\sigma}_2, \quad S_{12}(\vec{r}), \quad S_{12}(\vec{p}), \quad \vec{L} \cdot \vec{S}, \quad (\vec{L} \cdot \vec{S})^2}_{spin-space} \right\} \otimes \left\{ \underbrace{1, \quad \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2}_{isospin} \right\}$$

where:  $\vec{L} = \vec{r} \times \vec{p}$ ,  $\vec{S} = 1/2(\vec{\sigma}_1 + \vec{\sigma}_2)$ ,  $S_{12}(\vec{x}) = 3(\vec{\sigma}_1 \cdot \hat{x})(\vec{\sigma}_2 \cdot \hat{x}) - \vec{\sigma}_1 \cdot \vec{\sigma}_2$ 

All operators are to be multiplied with scalar functions of  $r^2$ ,  $p^2$ ,  $\vec{r} \cdot \vec{p}$  or, equivalently,  $r^2$ ,  $p^2$ ,  $L^2$  since  $(\vec{r} \cdot \vec{p})^2 = r^2 p^2 - L^2$  such that the resulting V is hermitian.

## $\begin{array}{l} \text{Momentum-space representation } \langle \vec{p}' | V | \vec{p} \rangle \\ \left\{ \underbrace{1, \ \vec{\sigma}_1 \cdot \vec{\sigma}_2, \ S_{12}(\vec{q}), \ S_{12}(\vec{k}), \ i \vec{S} \cdot \vec{q} \times \vec{k}, \ \vec{\sigma}_1 \cdot \vec{q} \times \vec{k} \, \vec{\sigma}_2 \cdot \vec{q} \times \vec{k} }_{spin-momentum} \right\} \otimes \left\{ \underbrace{1, \ \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2}_{isospin} \right\} \end{array}$

where  $\vec{q} = \vec{p}' - \vec{p}$ ,  $\vec{k} = \vec{p}' + \vec{p}$ .

The operators are to be multiplied with scalar functions of  $\vec{q}^{\,2}, \, \vec{k}^{\,2}, \, \vec{q} \cdot \vec{k}$ .



## 2N force: isospin structure

Class I (isospin invariant forces):  $[V_I^{2N}, T] = 0 \implies V_I^{2N} = \alpha + \beta(\tau_1 \cdot \tau_2)$ 

Class II (charge independence breaking):  $\begin{bmatrix} V_{II}^{2N}, \mathbf{T} \end{bmatrix} \neq 0, \quad \begin{bmatrix} V_{II}^{2N}, P_{cr} \end{bmatrix} = \begin{bmatrix} V_{II}^{2N}, (\mathbf{T})^2 \end{bmatrix} = 0 \implies V_{II}^{2N} = \alpha \tau_1^3 \tau_2^3$   $P_{cr} = \exp(i\pi T_2)$ Evidence:  $1/2(\delta_{nn}^{\alpha} + \delta_{pp, str}^{\alpha}) \neq \delta_{np}^{\alpha}$ In particular:  $a_{nn}^{1S0} \simeq -18.9 \text{ fm}, \quad a_{pp, str}^{1S0} \simeq -17.5 \text{ fm}, \quad a_{np}^{1S0} = -23.74(2) \text{ fm}$ 

Class III (charge symmetry breaking, no isospin mixing):  $[V_{III}^{2N}, \mathbf{T}] \neq 0, \quad [V_{III}^{2N}, P_{cr}] \neq 0, \quad [V_{III}^{2N}, (\mathbf{T})^2] = 0 \implies V_{III}^{2N} = \alpha \left(\tau_1^3 + \tau_2^3\right)$ <u>Evidence</u>:  $\delta_{nn}^{\alpha} \neq \delta_{pp, str}^{\alpha}$ , BE difference of mirror nuclei, ...

Class IV (charge symmetry breaking and isospin mixing):  $[V_{IV}^{2N}, \mathbf{T}] \neq 0, \quad [V_{IV}^{2N}, P_{cr}] \neq 0, \quad [V_{IV}^{2N}, (\mathbf{T})^2] \neq 0 \implies V_{IV}^{2N} = \alpha \left(\tau_1^3 - \tau_2^3\right) + \beta [\boldsymbol{\tau}_1 \times \boldsymbol{\tau}_2]^3$ <u>Evidence</u>: different neutron/proton analyzing powers in np scattering, ...

## From potential to phase shifts

Nonrelativistic Lippmann-Schwinger (LS) equation in partial waves (finite-range potential)

$$T_{l'l}^{sj}(p',p) = V_{l'l}^{sj}(p',p) + \sum_{\tilde{l}} \int_0^\infty \frac{d\tilde{p}\,\tilde{p}^2}{(2\pi)^3} \, V_{l'\tilde{l}}^{sj}(p',\tilde{p}) \frac{m}{p^2 - \tilde{p}^2 + i\eta} T_{\tilde{l}l}^{sj}(\tilde{p},p)$$

where  $V_{l'l}^{sj}(p',p) \equiv \langle p', l'sj | \hat{V} | p, lsj \rangle$  and  $T_{l'l}^{sj}(p',p) = \underbrace{T_{l'l}^{sj}(p',p,k)}_{half-off-shell T-matrix} \equiv \langle p', l'sj | \hat{T}(k) | p, lsj \rangle \Big|_{k=p}$ 

Uncoupled: *s* = 0, 1, *l* = *l'* = *j*, e. g. <sup>1</sup>S<sub>0</sub>, <sup>1</sup>P<sub>1</sub>, <sup>3</sup>P<sub>1</sub>, ..., and *s* = 1, *l* = *l'* = 1, *j* = 0 (<sup>3</sup>P<sub>0</sub>)

Soupled: *s* = 1, *l*, *l'* = *j* ± 1, e. g. <sup>3</sup>S<sub>1</sub>-<sup>3</sup>D<sub>1</sub> ⇒ LS equation is a 2 x 2 matrix equation

Once LS equation is solved using standard methods, phase shifts can be obtained as follows:

$$S_{l'l}^{sj}(k) = \delta_{l'l} - \frac{i}{8\pi^2} \, k \, m \, T_{l'l}^{sj}(k,k,k) \quad \Longrightarrow \quad \begin{cases} S_{ll}^{sj} = e^{2i\delta} & in \ the \ uncoupled \ case \\ \begin{pmatrix} S_{l--}^{1j} & S_{-+}^{1j} \\ S_{+-}^{1j} & S_{++}^{1j} \end{pmatrix} = \begin{pmatrix} e^{2i\delta_-} \cos 2\epsilon & ie^{i(\delta_-+\delta_+)} \sin 2\epsilon \\ ie^{i(\delta_-+\delta_+)} \sin 2\epsilon & e^{2i\delta_+} \cos 2\epsilon \end{pmatrix} \\ & (Stapp \ parametrization \ in \ the \ coupled \ case) \end{cases}$$

Once S-matrix is known, all NN scattering observables can be calculated straightforwardly. *Bystricky, Lehar, Winternitz, J. Phys. (Paris)* 39 (78) 1, *La France, Winternitz, J. Phys. (Paris)* 41 (80) 1391

## Long-range electromagnetic interactions

Electromagnetic interaction between point-like nucleons up to and including  $O(\alpha^2)$  - and  $O(1/m_N^2)$  -terms:

 $V_{\rm EM}(pp) = V_{\rm C}^{\rm improved} + V_{\rm VP} + V_{\rm MM}(pp), \qquad V_{\rm EM}(np) = V_{\rm MM}(np), \qquad V_{\rm EM}(nn) = V_{\rm MM}(nn)$ 

 $= Improved Coulomb potential (leading 1/m<sub>N</sub><sup>2</sup>-corrections to 1\gamma + 2\gamma$ -exchange) Austin, de Swart '83

#### Vacuum polarization

Ueling '35, Durand III '57  $V_{\rm VP} = \frac{2\alpha}{3\pi} \frac{\alpha'}{r} \int_1^\infty dx \, e^{-2m_e rx} \left(1 + \frac{1}{2x^2}\right) \frac{(x^2 - 1)^{1/2}}{x^2} \,,$ 

# $\begin{aligned} & \bigcirc \quad \text{Magnetic moment interaction} \\ & \text{Schwinger'48; Breit'55, '62; Stoks, de Swart, PRC 42 (1990) 1235} \\ & V_{\text{MM}}(pp) \quad = \quad -\frac{\alpha}{4m_p^2 r^3} \left[ \mu_p^2 S_{12} + (6 + 8\kappa_p) \vec{L} \cdot \vec{S} \right] , \\ & V_{\text{MM}}(np) \quad = \quad -\frac{\alpha \kappa_n}{2m_n r^3} \left[ \frac{\mu_p}{2m_p} S_{12} + \frac{1}{m} \left( \vec{L} \cdot \vec{S} + \frac{1}{2} \vec{L} \cdot (\vec{\sigma}_1 - \vec{\sigma}_2) \right) \right] , \\ & V_{\text{MM}}(nn) \quad = \quad -\frac{\alpha \mu_n^2}{4m_n^2 r^3} S_{12} \end{aligned}$



## NN force: a phenomenological approach

<u>Strategy</u>: take into account the known longest-range physics due to EM force and  $1\pi$ -exchange

$$V_{1\pi}(\vec{q}) \propto \frac{\vec{\sigma}_1 \cdot \vec{q} \ \vec{\sigma}_2 \cdot \vec{q}}{\vec{q}^2 + M_{\pi}^2} \ \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \quad \text{or in r-space:} \quad V_{1\pi}^{\text{long}}(\vec{r}) \propto \frac{e^{-M_{\pi}r}}{r} \left[ S_{12} \left( 1 + \frac{3}{M_{\pi}r} + \frac{3}{(M_{\pi}r)^2} \right) + \vec{\sigma}_1 \cdot \vec{\sigma}_2 \right] \ \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2$$

and parametrize the medium- and short-range contributions in a most general way.

#### Example: AV18 potential

Wiringa, Stoks, Schiavilla '94

- Local r-space potential
- EM contributions multiplied by short-range functions to account the finite size of the nucleons
- Regularized OPEP including isospin breaking due to  $M_{\pi^{\pm}} \neq M_{\pi^{0}}$
- Some additional phenomenological shorter range isospin-breaking terms
- Medium-range ( $r \sim (2M_{\pi})^{-1}$ ) contributions of Yukawa-type, short-range ones of the Woods-Saxon type
- 40 adjustable parameters fitted to 4301 pp and np scattering data,  $\chi^2_{datum} = 1.09$

## **Phenomenological NN potentials**

#### **Other phenomenological potentials**

- OBE motivated nonlocal (Nijm I, 41 parameters; CD Bonn, 43 parameters) and local (Nijm II, 47 parameters; Reid93, 50 parameters) potentials. All have  $\chi^2_{datum} \sim 1$  and are define in the partial wave basis.
- Set BE models (Nijm93, Bonn): less parameters but higher  $\chi^2_{\text{datum}}$
- INOY, CD Bonn +  $\Delta$ , inverse scattering, V<sub>low-k</sub>, ...



## **Three nucleons**



3N calculations based on phenomenological NN potentials show evidence for missing 3N forces (e.g. the underbinding of <sup>3</sup>H by about 1 MeV).

## **Three nucleons**

Most general parametrization of the 3NF seems not feasible:

- too many possible structures (> 100)
- too scarce data base available
- too involved calculations

➡ need guidance from theory

#### **Three-nucleon force models**

Fujita-Miyazawa, Brazil, Tucson-Melbourne, Urbana IX, Illinois, ...



#### The strategy:

Take various combinations of 2N and 3N potentials, adjust parameters of the 3NF model to reproduce e.g. <sup>3</sup>H BE and apply resulting  $V_{2N}$  +  $V_{3N}$  to scatt. observables.

#### pd and nd Elastic Scattering at 65-1000 MeV/A



## **Successes and failures**







Inclusion of the 3NF sometimes leads to improvements, sometimes — not. Situation, in part, chaotic.

Need a <u>theoretical</u> approach which would:

- be based on QCD,
- yield consistent many-body forces,
- be systematically improvable,
- allow for error estimation

chiral effective field theory

## **Further reading**

Some modern "high-precision" nucleon-nucleon potentials

- Stoks, Klomp, Terheggen, de Swart, Phys. Rev. C49 (1994) 2950 [Nijmegen 93, Nijm I,II, Reid 93]
- Wiringa, Stoks, Schiavilla, Phys. Rec. C51 (95) 38 [Argonne V18]
- Machleidt, Phys. Rev. C63 (01) 024001 [CD Bonn 2000]
- Machleidt, Slaus, J. Phys. G27 (01) R69 [review article]

Three-nucleon force models

- Fujita, Miyazawa, Prog. Theor. Phys. 17 (57) 360 [Fujita-Miyazawa 3NF model]
- Coon, Han, Few-Body Syst. 30 (01) 131 [Tucson-Melbourne 3NF model]
- Coelho, Das, Robilotta, Phys. Rev. C28 (83) 1812 [Brazilian 3NF model]
- Pudliner, Pandharipande, Carlson, Pieper, Wiringa, Phys. Rev. C56 (97) 1720 [Urbana IX 3NF model]
- Pieper, Wiringa, Ann. Rev. Nucl. Part. Sci. 51 (01) 53 [Illinois 3NF model]

Review articles on 3N scattering & 3N force effects

- Glöckle, Witala, Huber, Kamada, Golak, Phys. Rept. 274 (96) 107
- Kalantar-Nayestanaki, E.E., Nucl. Phys. News 17 (07) 22

## From QCD to nuclear forces



proton

QCD: nuclear force is due to residual color force



However...

- non-perturbative at low energy
- "wrong" degrees of freedom



#### Nonperturbative methods

- lattice QCD
   Nemura, Ishii, Aoki, Detmold, ...
- effective field theory Weinberg, ...
- large-N<sub>c</sub> expansion Kaplan, Savage, Cohen, ...

## **Effective field theories**

An effective (field) theory is an approximate theory whose scope is to describe phenomena which occur at a chosen length (or energy) range.

#### **Example: multipole expansion for electric potentials**

$$V \propto \int \frac{\rho(\vec{r})}{d} d^3r$$

$$= \int \frac{\rho(\vec{r})}{\sqrt{R^2 + 2rR\cos\theta + r^2}} d^3r$$

$$= \sum_{n=0}^{\infty} \frac{1}{R^{n+1}} \int r^n P_n(\cos\theta)\rho(\vec{r}) d^3r$$

$$= q \frac{1}{R} + P \frac{1}{R^2} + Q \frac{1}{R^3} + \dots$$
the sum converges rapidly for  $a \ll R$ 



## Weinberg's theorem

"if one writes down the most general possible Lagrangian, including all terms consistent with the assumed symmetry principles, and then calculates S-matrix elements with this Lagrangian to any order in perturbation theory, the result will simply be the most general possible S-matrix consistent with analyticity, perturbative unitarity, cluster decomposition and the assumed symmetry principles"

S.Weinberg, Physica A96 (79) 327



- identify the symmetries of the underlying theory,
- construct the most general  $\mathcal{L}_{eff}$  in terms of relevant d.o.f. and consistent with the symmetries,
- do standard quantum field theory with the effective Lagrangian.

## **Chiral symmetry of QCD Lagrangian**

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \bar{q}(i\not\!\!D - \mathcal{M})q = -\frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \bar{q}_Li\not\!\!D q_L + \bar{q}_Ri\not\!\!D q_R - \bar{q}_L\mathcal{M}q_R - \bar{q}_R\mathcal{M}q_L$$

 $SU(2)_L \ge SU(2)_R$  invariant

breaks chiral symmetry

Left- and right-handed quark fields:  $q_{L,R} = \frac{1}{2}(1 \pm \gamma_5)q$ .



Chiral group is a group of independent rotations of  $q_{L,R}$  in the flavor space.

For 2 flavors:  $G = SU(2)_L \times SU(2)_R$  and  $\begin{cases} q_L & \stackrel{G}{\longrightarrow} & q'_L = g_L q_L \\ q_R & \stackrel{G}{\longrightarrow} & q'_R = g_R q_R \end{cases}$  with  $g_{L,R} \in SU(2)_{L,R}$ 

Chiral SU(2) Lie algebra:

 $\begin{bmatrix} \Gamma_{i}^{L}, \ \Gamma_{j}^{L} \end{bmatrix} = i\epsilon_{ijk}\Gamma_{k}^{L} \qquad \begin{bmatrix} V_{i}, \ V_{j} \end{bmatrix} = i\epsilon_{ijk}V_{k} \\ \begin{bmatrix} \Gamma_{i}^{R}, \ \Gamma_{j}^{R} \end{bmatrix} = i\epsilon_{ijk}\Gamma_{k}^{R} \qquad \text{or} \qquad \begin{bmatrix} A_{i}, \ A_{j} \end{bmatrix} = i\epsilon_{ijk}V_{k} \\ \begin{bmatrix} \Gamma_{i}^{L}, \ \Gamma_{j}^{R} \end{bmatrix} = 0 \qquad \begin{bmatrix} V_{i}, \ A_{j} \end{bmatrix} = i\epsilon_{ijk}A_{k} \qquad \text{with} \qquad \underbrace{V_{i} = \Gamma_{i}^{R} + \Gamma_{i}^{L}}_{vector (isospin)}, \qquad \underbrace{A_{i} = \Gamma_{i}^{R} - \Gamma_{i}^{L}}_{axial generators} \end{bmatrix}$ 

 $m_{u,d}$  small  $\implies \mathcal{L}_{\rm QCD}$  is approximately  $(M_\pi^2/M_
ho^2 \sim 0.03)$  chiral invariant

## **Chiral symmetry of QCD**

There is a strong evidence that chiral symmetry of QCD is spontaneously broken down to the isospin group:

- Only isospin but not chiral multiplets are observed in the particle spectrum (axial charges would lead to parity doublets)
- Triplet of unnaturally light pseudoscalar mesons (pions) — natural candidates for Goldstone bosons

Scalar quark condensate:

 $\langle 0|\bar{q}q|0\rangle \Big|_{\overline{MS},\ 2\,GeV} = -(273\pm 12\,\,\mathrm{MeV})^3$ 

(Lattice QCDSF/UKQCD, Schierholz et al. '07)

Further theoretical arguments Vafa & Witten '84; 't Hooft '80; Coleman & Witten '80



## **Chiral Perturbation Theory**

Weinberg, Gasser, Leutwyler, Bernard, Kaiser, Meißner, ...

- asymptotically observed states as effective DOF → EFT
- spontaneously broken approximate χ-symmetry of QCD plays a crucial role
- light (M<sub>π</sub>) and heavy (M<sub>ρ</sub>) scales well separated



Cannot derive  $\mathcal{L}_{eff} \implies$  write most general expression consistent with  $\chi$ -symmetry, i.e.:

- $\square$  include all possible  $\chi$ -invariant terms,
- = include all terms that break  $\chi$ -symmetry in the same way as  $\bar{q}mq$  in  $\mathcal{L}_{QCD}$  does.

Consider the pure Goldstone boson sector in the chiral limit.

- How to write down most general  $\chi$ -invariant  $\mathcal{L}_{eff}$ ?
- How do  $\pi$ 's transform under *G*?
- Solution Subgroup *H* ∈ *G* realized linearly (π's build an isospin triplet).
- Chiral group necessarily realized nonlinearly  $(SU(2)_L \times SU(2)_R)$  isomorphic to SO(4)
  - > need at least 4 dimensions to construct a nontrivial linear realization)

## Chiral rotations & pion fields

Infinitesimal SO(4) rotation of the 4-vector  $(\pi_1, \pi_2, \pi_3, \sigma)$ :  $\begin{pmatrix} \vec{\pi} \\ \sigma \end{pmatrix} \rightarrow \begin{pmatrix} \vec{\pi}' \\ \sigma' \end{pmatrix} = \begin{bmatrix} 1 + \vec{\theta}^{\,V} \cdot \vec{V} + \vec{\theta}^{\,A} \cdot \vec{A} \end{bmatrix} \begin{pmatrix} \vec{\pi} \\ \sigma \end{pmatrix}$ 

where: 
$$\vec{\theta}^{V} \cdot \vec{V} = \begin{pmatrix} 0 & -\theta_{3}^{V} & \theta_{2}^{V} & 0 \\ \theta_{3}^{V} & 0 & -\theta_{1}^{V} & 0 \\ -\theta_{2}^{V} & \theta_{1}^{V} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 and  $\vec{\theta}^{A} \cdot \vec{A} = \begin{pmatrix} 0 & 0 & 0 & \theta_{1}^{A} \\ 0 & 0 & 0 & \theta_{2}^{A} \\ 0 & 0 & 0 & \theta_{3}^{A} \\ -\theta_{1}^{A} & -\theta_{2}^{A} & -\theta_{3}^{A} & 0 \end{pmatrix}$ 

One reads off:  $\vec{\pi}' = \vec{\pi} + \vec{\theta}^V \times \vec{\pi} + \vec{\theta}^A \sigma$  and  $\sigma' = \sigma - \vec{\theta}^A \cdot \vec{\pi}$ 

Switch to the nonlinear realization of SO(4): only 3 out of 4 components of the vector  $(\vec{\pi}, \sigma)$  are independent, i.e.  $\vec{\pi}^2 + \sigma^2 = F^2$ 

$$\sigma = \sqrt{F^2 - \vec{\pi}^2} \quad \Longrightarrow \quad \left[ \begin{array}{cc} \vec{\pi} \xrightarrow{\vec{\theta}^V} \vec{\pi}' = \vec{\pi} + \vec{\theta}^V \times \vec{\pi} & \longleftarrow \text{ linear under } \vec{\theta}^V \\ \vec{\pi} \xrightarrow{\vec{\theta}^A} \vec{\pi}' = \vec{\pi} + \vec{\theta}^A \sqrt{F^2 - \vec{\pi}^2} & \longleftarrow \text{ nonlinear under } \vec{\theta}^A \end{array} \right]$$

It is more convenient to use a 2 x 2 matrix notation:

$$U = \frac{1}{F} \left( \sigma I + i\vec{\pi} \cdot \vec{\tau} \right) \xrightarrow{\text{nonlinear}} U = \frac{1}{F} \left( I \sqrt{1 - \vec{\pi}^2} + i\vec{\pi} \cdot \vec{\tau} \right)$$

Chiral rotations:  $U \longrightarrow U' = LUR^{\dagger}$  with  $L = e^{-i/2(\vec{\theta}^{\,V} - \vec{\theta}^{\,A}) \cdot \vec{\tau}}$  and  $R = e^{-i/2(\vec{\theta}^{\,V} + \vec{\theta}^{\,A}) \cdot \vec{\tau}}$ 

## **Effective Lagrangian**

The above realization of *G* is not unique. How does this non-uniqueness affect S-matrix?

- All realizations of *G* are equivalent to each other by means of nonlinear field redefinitions  $\vec{\pi} \rightarrow \vec{\pi}' = \vec{\pi} F[\vec{\pi}], F[0] = 1$  (*Coleman, Callan, Wess & Zumino '69*)
- Such field redefinitions do not affect S-matrix (Haag '58)

Derivative expansion for the effective Lagrangian  $\mathcal{L}_{eff} = \mathcal{L}_{\pi}^{(2)} + \mathcal{L}_{\pi}^{(4)} + \dots$ 

- O derivatives:  $UU^{\dagger} = U^{\dagger}U = 1$  plays no role
- $\bigcirc 2 \text{ derivatives:} \quad \operatorname{Tr}(\partial_{\mu}U\partial^{\mu}U^{\dagger}) \xrightarrow{g \in G} \operatorname{Tr}(L\partial_{\mu}UR^{\dagger}R\,\partial^{\mu}U^{\dagger}L^{\dagger}) = \operatorname{Tr}(\partial_{\mu}U\partial^{\mu}U^{\dagger})$

$$\implies \mathcal{L}_{\pi}^{(2)} = \frac{F^2}{4} \operatorname{Tr}(\partial_{\mu} U \partial^{\mu} U^{\dagger})$$

• 4 derivatives:  $[\text{Tr}(\partial_{\mu}U\partial^{\mu}U^{\dagger})]^{2}$ ,  $\text{Tr}(\partial_{\mu}U\partial_{\nu}U^{\dagger})\text{Tr}(\partial^{\mu}U\partial^{\nu}U^{\dagger})$ ,  $\text{Tr}(\partial_{\mu}U\partial^{\mu}U^{\dagger}\partial_{\nu}U\partial^{\nu}U^{\dagger})$ (terms with  $\partial_{\nu}\partial_{\nu}U$ ,  $\partial_{\nu}\partial_{\nu}\partial_{\sigma}U$ ,  $\partial_{\nu}\partial_{\sigma}\partial_{\sigma}U$  can be eliminated via FOM/partial interval.

(terms with  $\partial_{\mu}\partial_{\nu}U$ ,  $\partial_{\mu}\partial_{\nu}\partial_{\rho}U$ ,  $\partial_{\mu}\partial_{\nu}\partial_{\rho}\partial_{\sigma}U$  can be eliminated via EOM/partial integration) ...

What is the meaning of 
$$F$$
?  
Axial current from  $\mathcal{L}_{\pi}^{(2)}$ :  $J_{A\mu}^{i} = i \operatorname{Tr}[\tau^{i}(U^{\dagger}\partial_{\mu}U - U\partial_{\mu}U^{\dagger})] = -F\partial_{\mu}\pi^{i} + \dots$  more pion fields  
 $\langle 0|J_{A\mu}^{i}|\pi^{j}(\vec{p})\rangle \equiv ip_{\mu}F_{\pi}\delta^{ij} \implies F = F_{\pi} = 92.4 \text{ MeV}$ 

## **Effective Lagrangian**

How to account for explicit  $\chi$ -symmetry breaking due to nonvanishing quark masses?

Trick (method of external sources): 
$$\delta \mathcal{L}_{QCD} = -\bar{q}\mathcal{M}q\Big|_{\mathcal{M}=m}$$

 $-\bar{q}\mathcal{M}q = -\bar{q}_L\mathcal{M}q_R - \bar{q}_R\mathcal{M}q_L$  is  $\chi$ -invariant if:  $\mathcal{M} \stackrel{G}{\longrightarrow} \mathcal{M}' = g_R\mathcal{M}g_L^{-1} = g_L\mathcal{M}g_R^{-1}$ 

write down all possible  $\chi$ -invariant terms with  $\mathcal{M}$  and then set  $\mathcal{M} = m$ 

The leading (i.e. no  $\partial_{\mu}$  and  $\propto \mathcal{M}$ ) SB term in  $\mathcal{L}_{eff}$ :

$$\mathcal{L}_{\rm SB} = \frac{BF^2}{2} \text{Tr}[(U+U^{\dagger})\mathcal{M}]\Big|_{\mathcal{M}=m} = 2BF^2 m_q - B m_q \,\vec{\pi}^{\,2} + \mathcal{O}(\vec{\pi}^{\,4}) \implies M_{\pi}^2 = 2m_q B + \mathcal{O}(m_q^2)$$

The LEC *B* is related to the scalar quark condensate via  $\langle 0|\bar{u}u|0\rangle = \langle 0|\bar{d}d|0\rangle = -BF^2 + \mathcal{O}(\mathcal{M})$ 

<u>Notice</u>: the generalized scenario (*Stern et al.* '91) in which  $2m_q B \ll M_{\pi}^2$  is ruled out by recent data on  $\pi\pi$  scatt. length.

#### Effective Lagrangian Gasser, Leutwyler, Nucl. Phys. B250 (1985) 465

$$\mathcal{L}_{\pi}^{(2)} = \frac{F^2}{4} \Big[ \operatorname{Tr}(\partial_{\mu}U\partial^{\mu}U^{\dagger}) + \operatorname{Tr}(U\chi + U^{\dagger}\chi) \Big], \qquad \text{low-energy constants}$$

$$\mathcal{L}_{\pi}^{(4)} = L_1 [\operatorname{Tr}(\partial_{\mu}U^{\dagger}\partial^{\mu}U)]^2 + L_2 \operatorname{Tr}(\partial_{\mu}U^{\dagger}\partial_{\nu}U) \operatorname{Tr}(\partial^{\mu}U^{\dagger}\partial^{\nu}U) + L_3 \operatorname{Tr}(\partial_{\mu}U^{\dagger}\partial^{\mu}U\partial_{\nu}U^{\dagger}\partial^{\nu}U)$$

- +  $L_4 \operatorname{Tr}(\partial_{\mu} U^{\dagger} \partial^{\mu} U) \operatorname{Tr}(U\chi + U^{\dagger}\chi) + L_5 \operatorname{Tr}(\partial_{\mu} U^{\dagger} \partial^{\mu} U(U\chi + U^{\dagger}\chi)) + L_6 [\operatorname{Tr}(U\chi + U^{\dagger}\chi)]^2$
- +  $L_7[\operatorname{Tr}(U\chi U^{\dagger}\chi)]^2$  +  $L_8\operatorname{Tr}(\chi U\chi U + \chi U^{\dagger}\chi U^{\dagger})$

where  $\chi = 2BM$ .

 $\langle \alpha \rangle$ 

- Only those terms are shown which do not involve external sources (there are 3 more) terms which describe the interaction of GBs with external fields).
- $\sim$  The Lagrangian is shown for the SU(3) x SU(3) case. Some terms are redundant in the case of  $SU(2) \times SU(2)$  chiral symmetry.
- How to calculate observables ??

 $\rightarrow$  see next lecture...