Parity-Violating Electron Scattering

Krishna Kumar, UMass Amherst Ecole Internationale Joliot-Curie Lacanau, France (26 Sep. – 2 Oct. 2010)

A unique probe of strange quarks in nucleons and the neutron skin of a heavy nucleus

Lecture 1

Outline of Lectures

Lecture 1

Symmetries and Conservation Laws

- Weak Interactions and the unified Electroweak Interactions
- Quantum Electrodynamics and Electron Scattering
- Parity-violating Electron Scattering

Lecture 2

- Strange Quark Form Factors
- Neutron skin of a heavy nucleus
- Future of parity-violating electron scattering

Introductory Remarks

Student background and preparation varies

- Most of you will have had nuclear and/or particle physics at an advanced level but I decided not to assume it.
- I have some slides on basic undergraduate and graduate subatomic physics
- As postdoctoral researchers, you will learn to cope with imperfect knowledge
 - Qualitative rather than quantitative understanding
 - I am an experimentalist! I will focus on measurements but theory is critical. Unfortunately, I wont have time to justice to it.

I will try to communicate the "big picture"

necessary general knowledge for students focused on other subfields

Parity-violating electron scattering

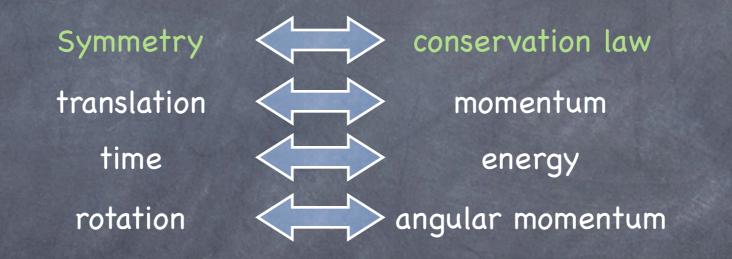
3

Parity Symmetry

Symmetries and Conservation Laws

Noether's Theorem:

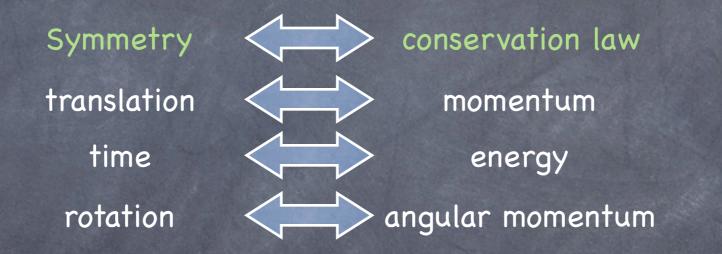
If Euler-Lagrange equation is invariant under any coordinate transformation, \exists an integral of motion



Symmetries and Conservation Laws

Noether's Theorem:

If Euler-Lagrange equation is invariant under any coordinate transformation, \exists an integral of motion



Not just space-time symmetries: Invariance of Lagrangian/Hamiltonian e.g. Charge Conservation [Q,H]=0 $\frac{d < Q >}{dt}=0$ $Q|\Psi>=q|\Psi>$

Conserved Quantities/Quantum Numbers

Parity-violating electron scattering

Symmetries and Groups

Symmetry operations:

Group of all operations: display closure & Associativity and have identity and inverse

Finite Group Infinite Group Continuous Symmetry

In Physics, group operations can be represented by matrices SO(n): n-D rotations SO(3) ←→ SU(2) Invariance under SU(2): Angular Momentum Conservation

Parity-violating electron scattering

Discrete Symmetries C, P & TParity P $x, y, z \rightarrow -x, -y, -z$ $P\psi(\vec{r}) = \psi(-\vec{r})$ $P^2 = I$ Group has 2 elements, P and I $[H, P] = 0 \longrightarrow H\psi = E\psi \& P\psi = \pi\psi \implies \pi = \pm 1$

If hamiltonian is invariant under parity transformations, then π is conserved and observable

Discrete Symmetries C, P & T $x, y, z \rightarrow -x, -y, -z$ $P\psi(\vec{r}) = \psi(-\vec{r})$ Parity P $P^2 = I$ Group has 2 elements, P and I $[H,P] = 0 \implies H\psi = E\psi \quad \& \quad P\psi = \pi\psi \implies \pi = \pm 1$ If hamiltonian is invariant under parity transformations, then π is conserved and observable All quantum numbers flip sign Charge Conjugation C $C|p>=|\bar{p}>$ except mass and spin particles that are its own anti-particles are eigenstates of C $C|\gamma > = -|\gamma > \Longrightarrow \pi^0 \to \gamma\gamma \Longrightarrow C|\pi^0 > = +|\pi^0 > \Longrightarrow \qquad \begin{array}{c} \pi^0 \to \gamma\gamma\gamma \\ \text{forbidden} \end{array}$

Discrete Symmetries C, P & T $x, y, z \rightarrow -x, -y, -z$ $P\psi(\vec{r}) = \psi(-\vec{r})$ Parity P $P^2 = I$ Group has 2 elements, P and I $[H,P] = 0 \implies H\psi = E\psi \quad \& \quad P\psi = \pi\psi \implies \pi = \pm 1$ If hamiltonian is invariant under parity transformations, then π is conserved and observable All quantum numbers flip sign Charge Conjugation C $C|p>=|\bar{p}>$ except mass and spin particles that are its own anti-particles are eigenstates of C $C|\gamma > = -|\gamma > \Longrightarrow \pi^0 \to \gamma\gamma \Longrightarrow C|\pi^0 > = +|\pi^0 > \Longrightarrow \qquad \begin{array}{c} \pi^0 \to \gamma\gamma\gamma \\ \text{forbidden} \end{array}$ reactions are reversible in Time Reversal T $T\psi(t) = \psi^*(-t)$ principle if T is conserved

Parity-violating electron scattering

7

A Guiding Principle for Experimentalists If a process is not explicitly forbidden, it must occur! Discovering a rare process that violates a known symmetry is a powerful way to probe the fundamental laws of nature Lepton Number Violation and Neutrinoless Double-Beta decay T-Violation and the Electric Dipole Moment of elementary particles Nuclear and Atomic Systems are fertile hunting grounds! Parity-violating electron scattering Krishna Kumar, J-C School Lecture 1, Sep 30 2010 8

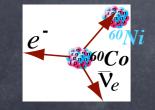
Discovery of Discovery of Parity Violation Particle Classification S^{π} e.g. pions: 0^{-} pseudoscalar mesons Tau-theta puzzle (1956) $\theta^{+} \rightarrow \pi^{+}\pi^{0}$ (P=+1) $\tau^{+} \rightarrow \pi^{+}\pi^{0}\pi^{0}$ (P=-1)

Discovery of Parity Violation Particle Classification S^{π} e.g. pions: 0^{-} pseudoscalar mesons Tau-theta puzzle (1956) $\theta^+ \rightarrow \pi^+ \pi^0$ (P=+1) $\tau^+ \rightarrow \pi^+ \pi^0 \pi^0$ (P=-1) same mass but different parities! Lee and Yang propose: The SAME particle is produced in strong interactions, but decays via weak interactions;

P conserved in strong interactions, but not in weak interactions

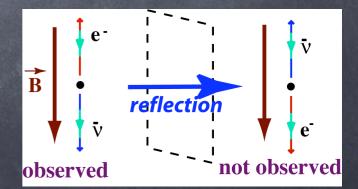
Discovery of Discovery of Parity Violation Particle Classification S^{π} e.g. pions: 0^{-} pseudoscalar mesons Tau-theta puzzle (1956) $\theta^{+} \rightarrow \pi^{+}\pi^{0}$ (P=+1) $\tau^{+} \rightarrow \pi^{+}\pi^{0}\pi^{0}$ (P=-1) same mass but different parities! Lee and Yang propose:

The SAME particle is produced in strong interactions, but decays via weak interactions; P conserved in strong interactions, but not in weak interactions



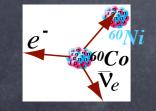
Weak decay of ⁶⁰Co Nucleus

C.S. Wu et al: Beta's in decays of ⁶⁰Co nuclei aligned in a magnetic field showed anisotropy



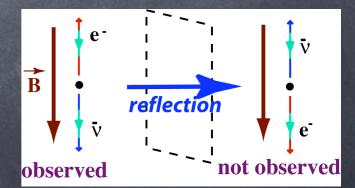
Discovery of Discovery of Parity Violation Particle Classification S^{π} e.g. pions: 0^{-} pseudoscalar mesons Tau-theta puzzle (1956) $\theta^{+} \rightarrow \pi^{+}\pi^{0}$ (P=+1) $\tau^{+} \rightarrow \pi^{+}\pi^{0}\pi^{0}$ (P=-1) same mass but different parities! Lee and Yang propose:

The SAME particle is produced in strong interactions, but decays via weak interactions; P conserved in strong interactions, but not in weak interactions



Weak decay of ⁶⁰Co Nucleus

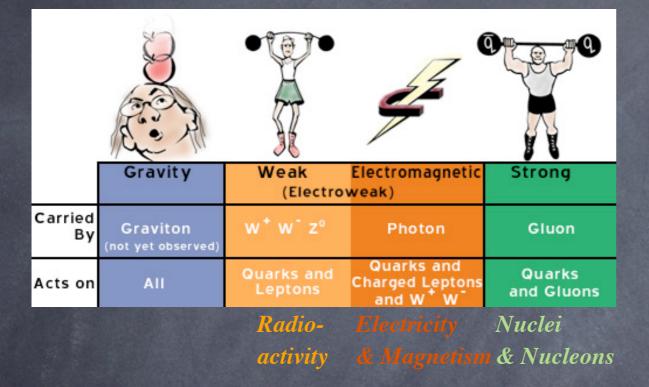
C.S. Wu et al: Beta's in decays of ⁶⁰Co nuclei aligned in a magnetic field showed anisotropy



Classic example: Puzzle in accelerator result; theorists propose a solution; test on a different process (table-top)

Parity-violating electron scattering

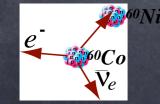
9



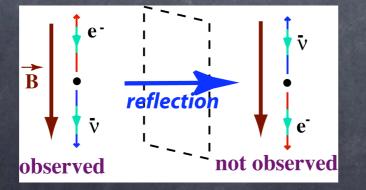
Gravity and Electromagnetic Infinite range

> Strong and Weak 10⁻¹⁵ meter

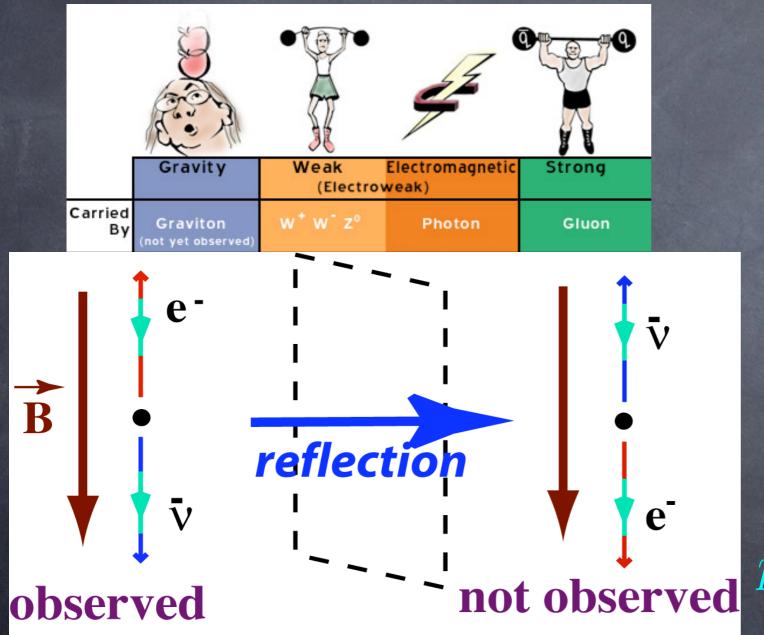
 $egin{aligned} & x,y,z
ightarrow -x,-y,-z \ & ec{p}
ightarrow -ec{p}, \ ec{L}
ightarrow ec{L}, \ ec{s}
ightarrow ec{s} \end{aligned}$



Weak decay of ⁶⁰Co Nucleus



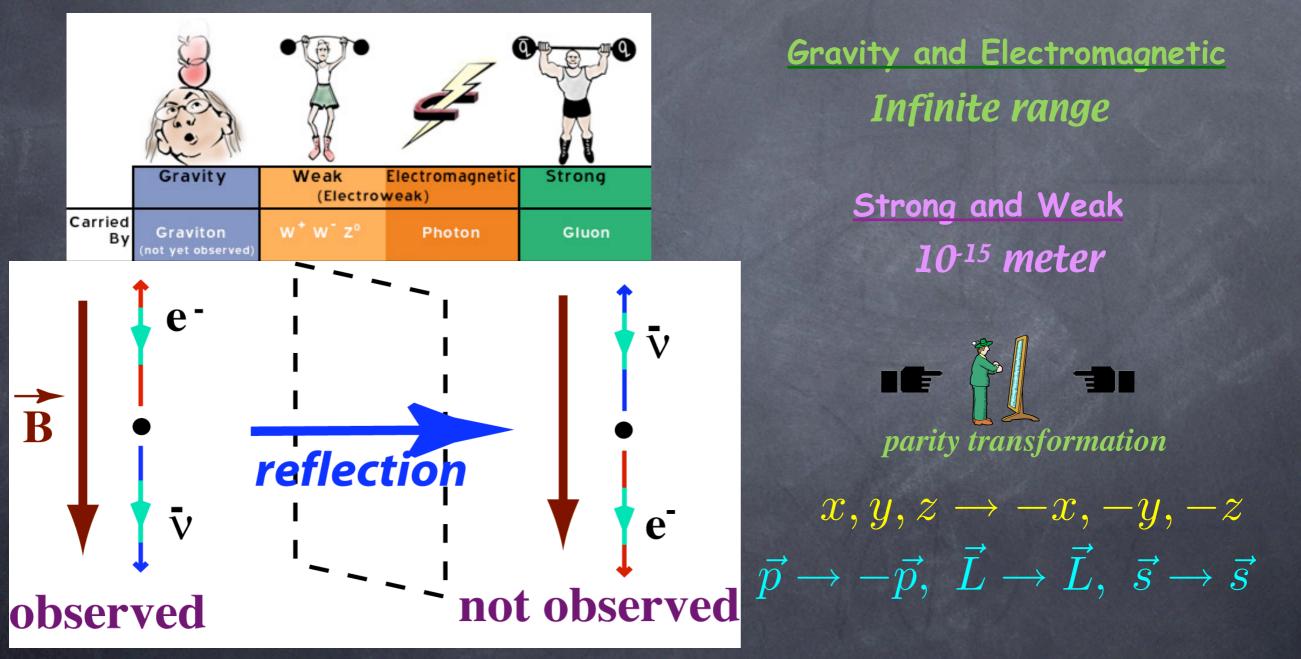
Parity-violating electron scattering



Gravity and Electromagnetic Infinite range

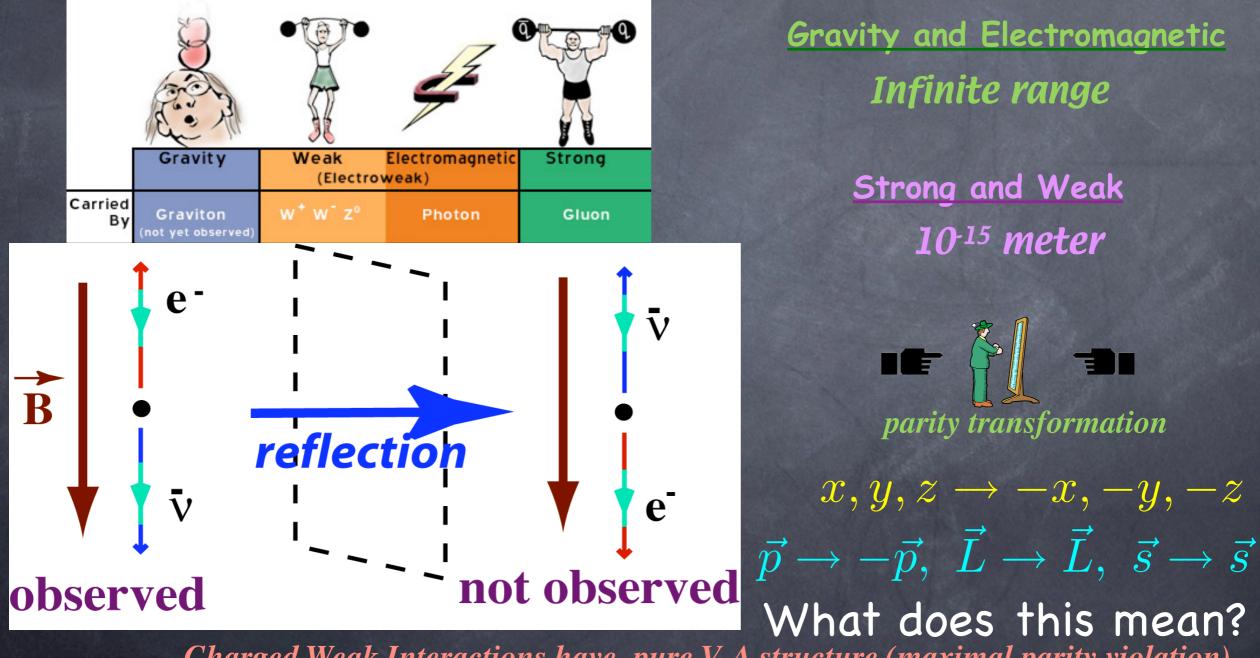
> Strong and Weak 10⁻¹⁵ meter

 $x, y, z \rightarrow -x, -y, -z$ $ec{p} \rightarrow -ec{p}, \ ec{L} \rightarrow ec{L}, \ ec{s} \rightarrow ec{s}$



Charged Weak Interactions have pure V-A structure (maximal parity violation)

Parity-violating electron scattering



Gravity and Electromagnetic Infinite range

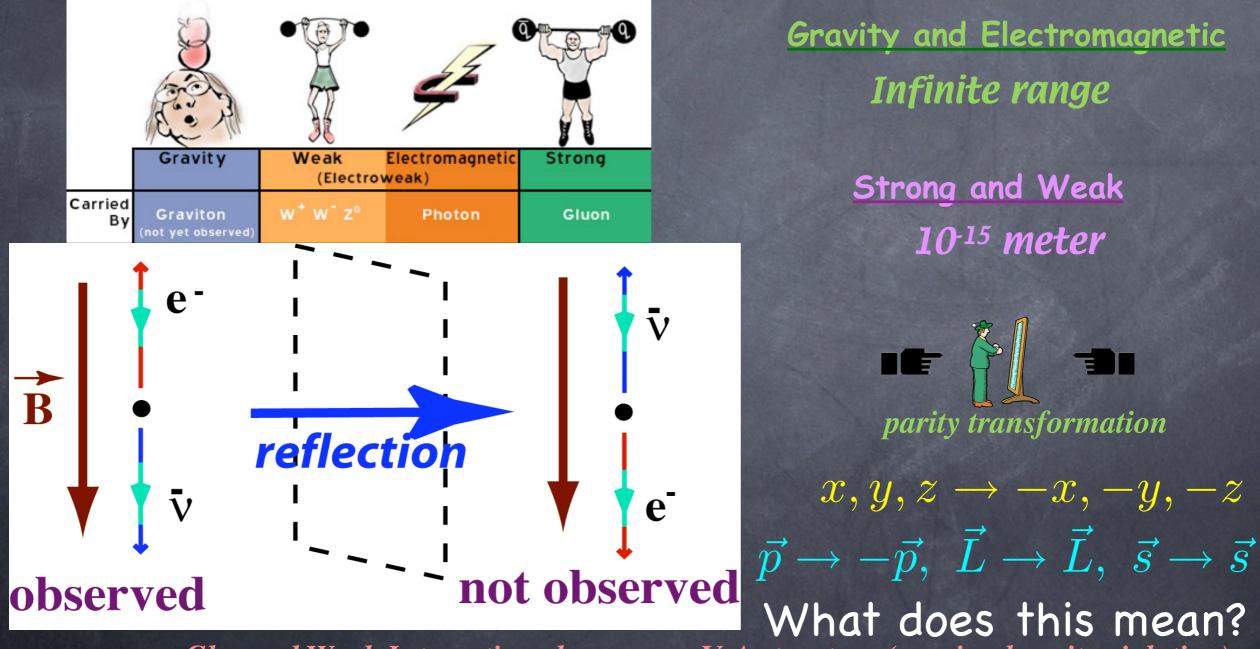
> Strong and Weak 10-15 meter

Charged Weak Interactions have pure V-A structure (maximal parity violation)

Parity-violating electron scattering

Why are weak interactions short range?

Fundamental Interactions



Gravity and Electromagnetic Infinite range

> Strong and Weak 10-15 meter

x, y, z
ightarrow -x, -y, -z

What does this mean?

Charged Weak Interactions have pure V-A structure (maximal parity violation)

Parity-violating electron scattering

Why are weak interactions short range?

Gravity

Graviton

e -

et observed

Carried

observed

B

By

Weak

(Electroweak)

reflection

Electromagnetic

Photon

Strong

Gluon

Fundamental Interactions

How are weak and EM interactions unified given P-Violation?

Gravity and Electromagnetic Infinite range

> Strong and Weak 10⁻¹⁵ meter

 $x, y, z \rightarrow -x, -y, -z$

What does this mean?

 $\vec{p} \rightarrow -\vec{p}, \vec{L} \rightarrow \vec{L}, \vec{s} \rightarrow \vec{s}$

Charged Weak Interactions have pure V-A structure (maximal parity violation)

Parity-violating electron scattering

e

not observed

Continuous SymmetriesDirac free particle $\mathcal{L} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi$ LagrangianU(1) Invariance: conserved current $\partial_{\mu}J^{\mu} = 0$

Local U(1) Invariance: $A_{\mu}J^{\mu}$ Electromagnetic Interactions

Continuous Symmetries $\mathcal{L} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi$ Dirac free particle Lagrangian U(1) Invariance: conserved current $\partial_{\mu}J^{\mu} = 0$

Local U(1) Invariance: $A_{\mu}J^{\mu}$ Electromagnetic Interactions

11

Rotation in $\begin{pmatrix} p \\ n \end{pmatrix}$ nucleon-nucleon interaction Hamiltonian invariant
under SU(2) transformations in Isospin Space"Isospin Space" $\begin{pmatrix} \nu_e \\ e^- \end{pmatrix}_L$ the "massless" left-handed electron and electron-
neutrino are part of a similar "weak isospin" doublet

SU(2) invariance yields 3 independent conserved currents

Parity-violating electron scattering

(there are 3 independent 2x2 Pauli spin matrices)

Symmetries of the Electroweak Lagrangian Accept the existance of u & d quarks, electrons, and electron-neutrinos $SU(2)_L \times U(1)_Y$ Local gauge invariance yields 4 bosons: W⁺, W⁻, W⁰, B⁰

Symmetries of the Electroweak Lagrangian Accept the existance of u & d quarks, electrons, and electron-neutrinos 4 conserved currents $SU(2)_L \times U(1)_Y$ local gauge invariance yields 4 bosons: W⁺, W⁻, W⁰, B⁰ After spontaneous symmetry breaking via Higgs Mechanism: $SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$ two weak charged currents electromagnetic current weak neutral current

Parity-violating electron scattering

 Z^0

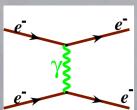
Symmetries of the Electroweak Lagrangian Accept the existance of u & d quarks, electrons, and electron-neutrinos 4 conserved currents $SU(2)_L \times U(1)_Y$ local gauge invariance yields 4 bosons: W⁺, W⁻, W⁰, B⁰ After spontaneous symmetry breaking via Higgs Mechanism: $SU(2)_L \times U(1)_Y \to U(1)_{EM}$ two weak charged currents electromagnetic current weak neutral current W^{\pm} Z^0 $SU(3)_c$ and gluons \iff Quantum Chromodynamics Exact symmetries of nature: fully manifest in the early universe Unbroken exact symmetries: massless mediator & infinite range force Parity-violating electron scattering Krishna Kumar, J-C School Lecture 1, Sep 30 2010 12

Electroweak Interactions

Parity-violating electron scattering

Electric charge determines strength of electric force

Electrons and protons have same charge magnitude: same strength

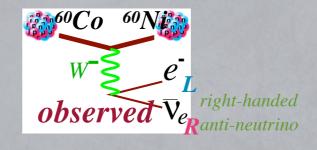


Neutrinos are "charge neutral": do not feel the electric force not observed

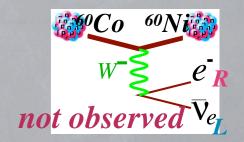
observed

Weak charge determines strength of weak force

Left-handed particles (Right-handed antiparticles) have weak charge



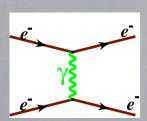
Right-handed particles (left-handed antiparticles) are "weak charge neutral"



left-handed anti-neutrino

Electric charge determines strength of electric force

Electrons and protons have same charge magnitude: same strength



Neutrinos are "charge neutral": do not feel the electric force not observed

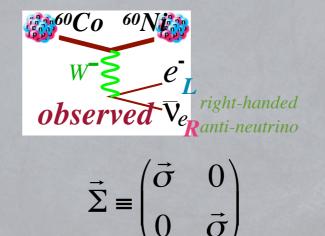
observed

For massless particles: $\gamma^5 u$

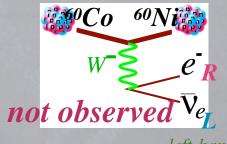
$$\gamma^5 \mu = (\vec{n} \bullet \vec{\Sigma}) \mu$$

Weak charge determines strength of weak force

Left-handed particles (Right-handed antiparticles) have weak charge



Right-handed particles (left-handed antiparticles) are "weak charge neutral"



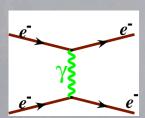
 $\vec{p} \bullet \vec{\Sigma} \equiv h$ left-handed anti-neutrino

helicity operator

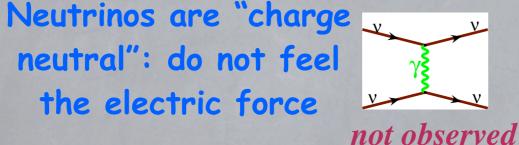
Parity-violating electron scattering

Electric charge determines strength of electric force

Electrons and protons have same charge magnitude: same strength

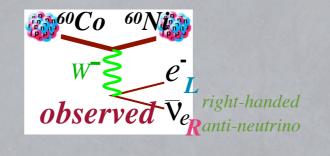


observed



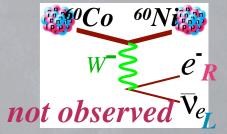
Weak charge determines strength of weak force

Left-handed particles (Right-handed antiparticles) have weak charge



 $\vec{\Sigma} \equiv \begin{pmatrix} \vec{\sigma} & 0 \\ 0 & \vec{\sigma} \end{pmatrix}$

Right-handed particles (left-handed antiparticles) are "weak charge neutral"



left-handed anti-neutrino

helicity operator

 $\vec{p} \bullet \Sigma \equiv h$

$$\Sigma u = -u \quad \Box \rangle \frac{(1-\gamma^5)}{2}u = u$$

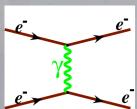
For massless particles: $\gamma^5 u = (\vec{p} \bullet \vec{\Sigma}) u$

$$\Sigma u = + u \, \square \rangle \, \frac{(1 - \gamma^5)}{2} u = 0$$

Parity-violating electron scattering

Electric charge determines strength of electric force

Electrons and protons have same charge magnitude: same strength



observed

For massless particles:

$$\Sigma u = + u \, \Box \rangle \, \frac{(1 - \gamma^5)}{2} u = 0$$

 $\gamma^5 u = (\vec{p} \bullet \vec{\Sigma}) u$

$$P_L = \frac{(1 - \gamma^5)}{2} \quad P_R = \frac{(1 + \gamma^5)}{2}$$

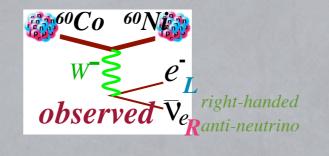
Left- and right-handed projections

$$P_{L,R} u \equiv u_{L,R}$$
 $P_i P_j = \delta_{ij} P_j$ $\sum_i P_i =$

Parity-violating electron scattering

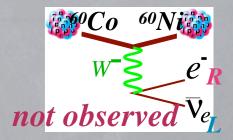
Weak charge determines strength of weak force

Left-handed particles (Right-handed antiparticles) have weak charge



 $\vec{\Sigma} \equiv \begin{pmatrix} \vec{\sigma} & 0 \\ 0 & 0 \end{pmatrix}$

Right-handed particles (left-handed antiparticles) are "weak charge neutral"



 $\vec{p} \bullet \vec{\Sigma} \equiv h$ left-handed anti-neutrino

helicity operator

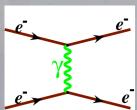
$$\Sigma u = -u \quad \Box \rangle \frac{(1-\gamma^5)}{2}u = u$$

Krishna Kumar, J-C School Lecture 1, Sep 30 2010

14

Electric charge determines strength of electric force

Electrons and protons have same charge magnitude: same strength



observed

For massless particles: $\gamma^5 u = (\vec{p} \bullet \vec{\Sigma})u$

$$\Sigma u = + u \, \Box \rangle \, \frac{(1 - \gamma^5)}{2} u = 0$$

$$P_L = \frac{(1 - \gamma^5)}{2} \quad P_R = \frac{(1 + \gamma^5)}{2}$$

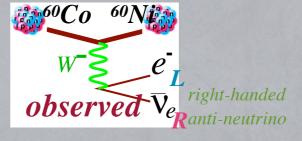
Left- and right-handed projections

$$P_{L,R} u \equiv u_{L,R}$$
 $P_i P_j = \delta_{ij} P_j$ $\sum_i P_i = I$

Parity-violating electron scattering

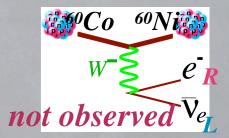
Weak charge determines strength of weak force

Left-handed particles (Right-handed antiparticles) have weak charge



 $\vec{\Sigma} \equiv \begin{pmatrix} \vec{\sigma} & 0 \\ 0 & \vec{\sigma} \end{pmatrix}$

Right-handed particles (left-handed antiparticles) are "weak charge neutral"



left-handed anti-neutrino

helicity operator

 $\vec{p} \bullet \Sigma \equiv h$

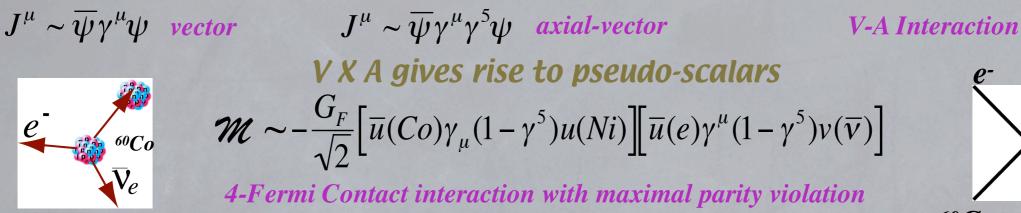
$$\Sigma u = -u \quad \Box \rangle \frac{(1-\gamma^5)}{2}u = u$$

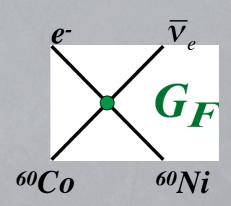
$$-\frac{G_F}{\sqrt{2}} \Big[\overline{u}_L(Co) \gamma_\mu u_L(Ni) \Big] \Big[\overline{u}_L(e) \gamma^\mu v_R(\overline{v}) \Big]$$

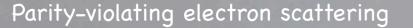
Only left-handed particles participate in charged weak interactions

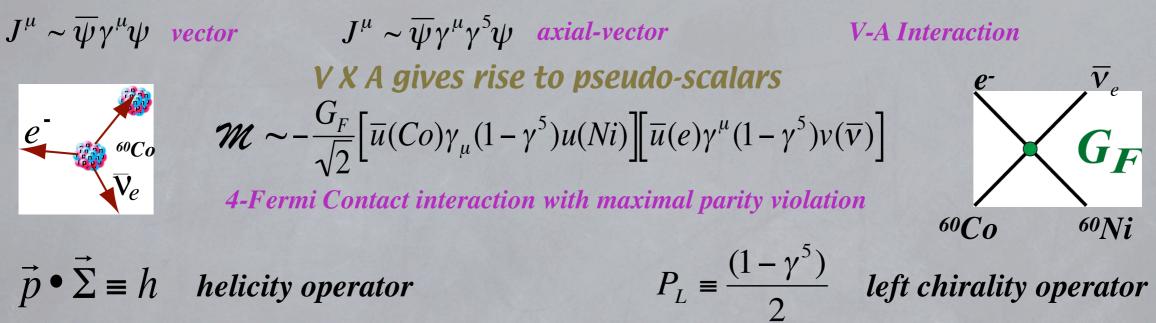
Krishna Kumar, J-C School Lecture 1, Sep 30 2010

14

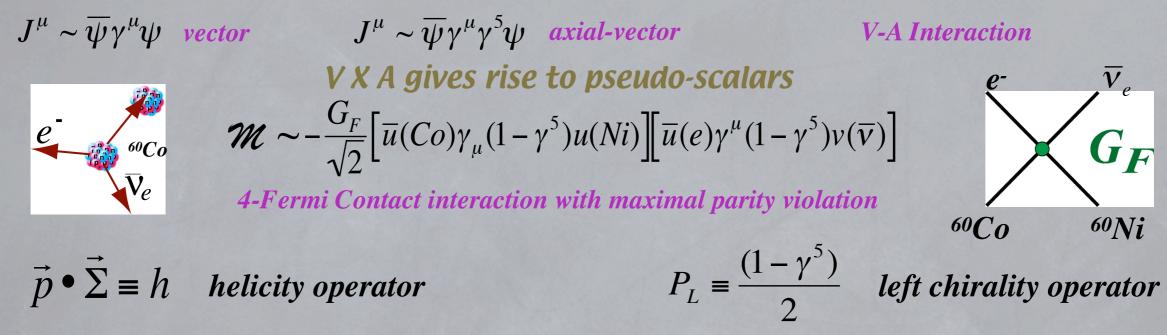






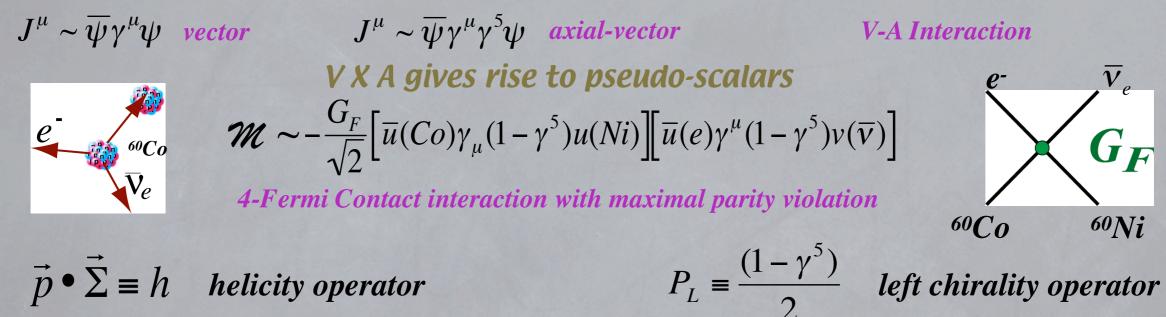


Important: Helicity ≠ *Chirality if m*≠0!



Important: Helicity ≠ Chirality if m≠0! Helicity operator commutes with free-particle Hamiltonian Conserved but not Lorentz invariant! (Can race past a massive particle and observe it spinning the other way)

Parity-violating electron scattering



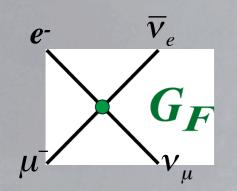
Important: Helicity ≠ Chirality if m≠0! Helicity operator commutes with free-particle Hamiltonian Conserved but not Lorentz invariant! (Can race past a massive particle and observe it spinning the other way)

Chirality operator not conserved, but Lorentz invariant!

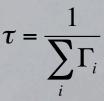
Freely propagating left-chiral projection will develop a right-chiral component

Parity-violating electron scattering

15



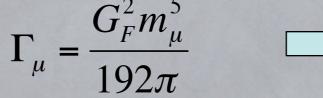
Lifetime



Each decay mode provides a partial width Γ_i

 $\begin{aligned} & \mathcal{S} cattering \\ & \mathcal{M} \sim -\frac{G_F}{\sqrt{2}} \Big[\bar{u}(v_{\mu}) \gamma_{\mu} (1-\gamma^5) u(\mu) \Big] \Big[\bar{u}(e) \gamma^{\mu} (1-\gamma^5) v(\bar{v}_e) \Big] \end{aligned}$

Partial width has units of energy $C^2 m^5$

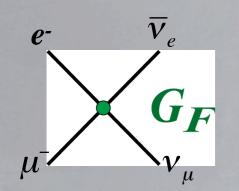


Conversion factor: 197 MeV-fm

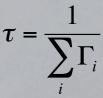
Muon lifetime in vacuum: 2.2 µs

 $\begin{aligned} & \mathcal{S} cattering \\ & \mathcal{M} \sim -\frac{G_F}{\sqrt{2}} \Big[\bar{u}(v_{\mu}) \gamma_{\mu} (1-\gamma^5) u(\mu) \Big] \Big[\bar{u}(e) \gamma^{\mu} (1-\gamma^5) v(\bar{v}_e) \Big] \end{aligned}$

Each decay mode provides a partial width Γ_i



Lifetime



Partial width has units of energy

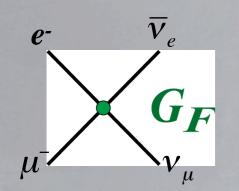
Conversion factor: 197 MeV-fm

Gedanken Experiments: The luxury of being a theorist

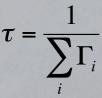
Consider **Can use same** \mathcal{M} $\sigma = \frac{G_F E^2}{2 \sigma^2}$ $\overline{v}_e + e^- \rightarrow \overline{v}_\mu + \mu^-$

 $\begin{aligned} & \mathcal{S} cattering \\ & \mathcal{M} \sim -\frac{G_F}{\sqrt{2}} \Big[\overline{u}(v_{\mu}) \gamma_{\mu} (1-\gamma^5) u(\mu) \Big] \Big[\overline{u}(e) \gamma^{\mu} (1-\gamma^5) v(\overline{v}_e) \Big] \end{aligned}$

Each decay mode provides a partial width Γ_i



Lifetime



Partial width has units of energy

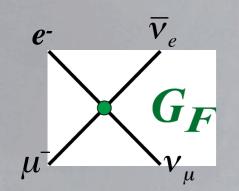
Conversion factor: 197 MeV-fm

Gedanken Experiments: The luxury of being a theorist $\sigma = \frac{G_F^2 E^2}{2}$

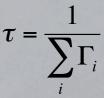
Consider $\overline{v}_e + e^- \rightarrow \overline{v}_u + \mu^-$

Each decay mode provides a partial width Γ_i

 $\mathcal{M} \sim -\frac{G_F}{\sqrt{2}} \left[\overline{u}(v_{\mu}) \gamma_{\mu} (1 - \gamma^5) u(\mu) \right] \left[\overline{u}(e) \gamma^{\mu} (1 - \gamma^5) v(\overline{v}_e) \right]$



Lifetime



Partial width has units of energy

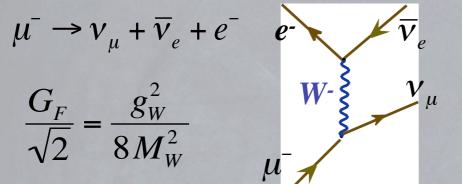
Conversion factor: 197 MeV-fm

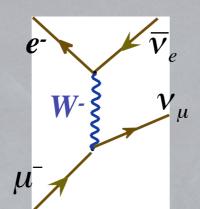
Gedanken Experiments: The luxury of being a theorist

Can use same \mathcal{M} $\sigma = \frac{G_F^2 E^2}{2 r^2}$ Consider $\overline{v}_e + e^- \rightarrow \overline{v}_\mu + \mu^-$

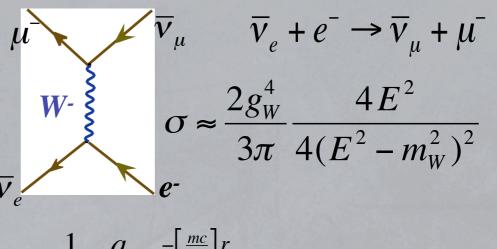
For $E \sim 1$ TeV, probability > 1!

More particles going out than coming in



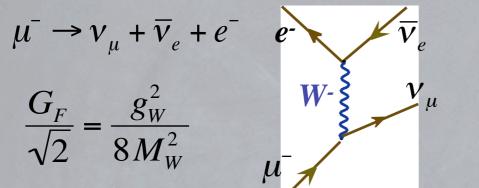


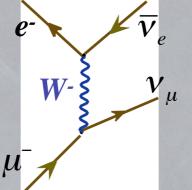


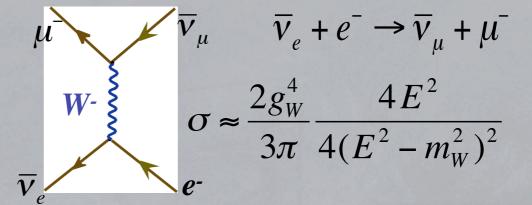


Mass of the W between 10 and 100 GeV

 $V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r} e^{-\left[\frac{mc}{\hbar}\right]r}$ Short range







Mass of the W between 10 and 100 GeV

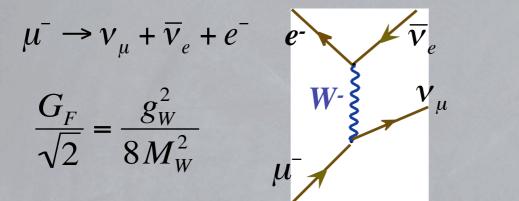
$$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r} e^{-\left[\frac{mc}{\hbar}\right]r} \qquad Short range$$

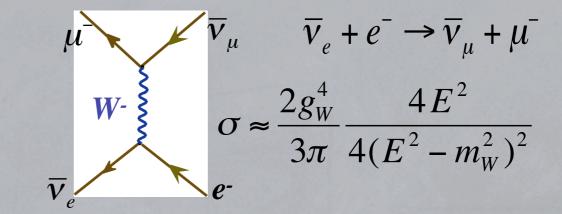
Real W production

Fixed target: $M^2_{new} \sim 2ME$

 $u + \overline{d} \rightarrow W^+ \rightarrow e^+ + v_e$

Collider: $M_{new}^2 \sim 4E^2$





Mass of the W between 10 and 100 GeV

$$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r} e^{-\lfloor\frac{\pi}{\hbar}\rfloor^r} \qquad Short range$$

[mc]

Real W production

 $u + \overline{d} \rightarrow W^+ \rightarrow e^+ + v_e$

Fixed target: $M^2_{new} \sim 2ME$

Collider: $M_{new}^2 \sim 4E^2$

Very short lifetime $\langle - \rangle$ Large width

 $p(E) = \frac{\Gamma}{2\pi} \frac{1}{(E - m_W)^2 + (\Gamma/2)^2}$

Parity-violating electron scattering

 $A + B \rightarrow W^+ \rightarrow C + D$

Krishna Kumar, J-C School Lecture 1, Sep 30 2010

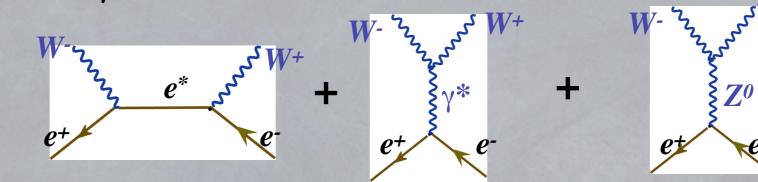
 $\sigma_{peak} \approx \frac{4\pi}{3m^2} \frac{\Gamma_{AB}}{\Gamma} \frac{\Gamma_{CD}}{\Gamma}$

The Z Boson & Electroweak Unification

More gedanken experiments

 $e^+ v_{\rho} \rightarrow W^+ \gamma$

Electron-positron collisions $e^+e^- \rightarrow W^+W^-$

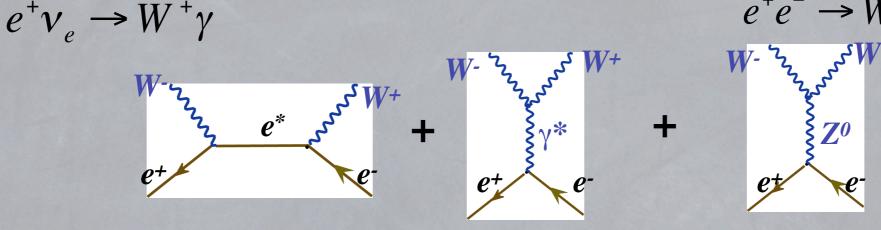


Unitarity violation forces important constraints
Need WW_γ vertex: same charge as electron!
Need a new, neutral massive weak boson: the Z⁰
One free parameter: θ_w, the weak mixing angle

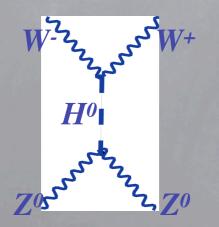
The Z Boson & Electroweak Unification

More gedanken experiments

Electron-positron collisions $e^+e^- \rightarrow W^+W^-$



Unitarity violation forces important constraints
Need WW_γ vertex: same charge as electron!
Need a new, neutral massive weak boson: the Z⁰
One free parameter: θ_w, the weak mixing angle



Scattering of longitudinal vector bosons (m=0)

•eeZ couplings depend on $\sin^2 \theta_W$

$$\frac{m_W}{m_Z} = \cos\theta_W$$

Parity-violating electron scattering

Ζ.

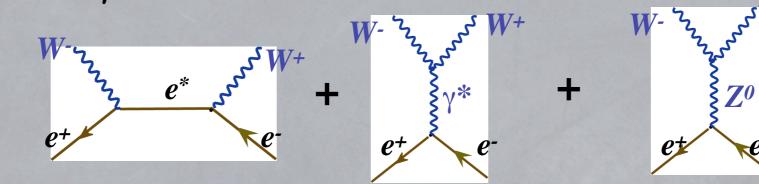
Krishna Kumar, J-C School Lecture 1, Sep 30 2010

The Z Boson & Electroweak Unification

More gedanken experiments

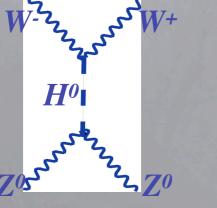
 $e^+ v_{\rho} \rightarrow W^+ \gamma$

Electron-positron collisions $e^+e^- \rightarrow W^+W^-$



Unitarity violation forces important constraints
Need WW_γ vertex: same charge as electron!
Need a new, neutral massive weak boson: the Z⁰
One free parameter: θ_W, the weak mixing angle

Something like this must occur



Scattering of longitudinal vector bosons (m=0)

•eeZ couplings depend on $\sin^2 \theta_W$

$$\frac{m_W}{m_Z} = \cos\theta_W$$

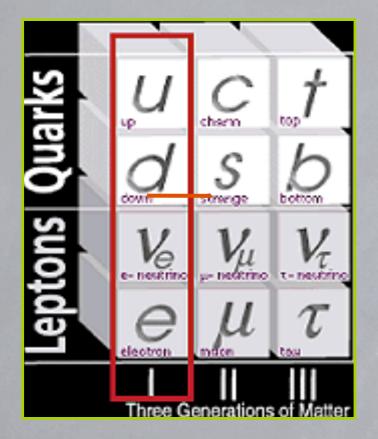
Parity-violating electron scattering

18

Ζ.

Krishna Kumar, J-C School Lecture 1, Sep 30 2010

W & Z Charges



Left-handed particles in isodoublets
Right-handed particles iso-singlets
Including neutrinos!

	Left-	Right-
γ Charge	$q = 0, \pm 1, \pm \frac{1}{3}, \pm \frac{2}{3}$	$q = 0, \pm 1, \pm \frac{1}{3}, \pm \frac{2}{3}$
W Charge	$T = \pm \frac{1}{2}$	T = 0
Z Charge	$T-q\sin^2\theta_W$	$-q\sin^2\theta_W$

- •Ws and Zs are massive
- •Ws have no couplings to right-handed particles
- •Zs couple to both (provided the particles are charged): introduce g_L and g_R •However, the Z couplings to left- and right-handed particles are different: parity violation, but not maximal

Also use g_V and g_A :

 $g_V = g_L + g_R$ $g_A = g_L - g_R$ Vector and Axial-vector couplings

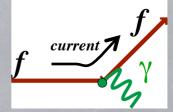
Electron Scattering

Free fermions fields are solutions to the Dirac equation $(i\gamma_{\mu}\partial^{\mu} - m)\psi = 0$ *Corresponding Lagrangian:* $\mathcal{L} \sim \overline{\psi}(i\gamma_{\mu}\partial^{\mu} - m)\psi$

 $-J_{\mu}A^{\mu}$

Local gauge invariance gives rise to interaction with photon field: Conserved electromagnetic current $J^{\mu} = q \overline{\psi} \gamma^{\mu} \psi \quad 4\text{-vector}$

Feynman Rules: emission and absorption of virtual photons by fermion electromagnetic current

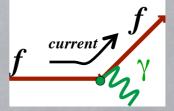


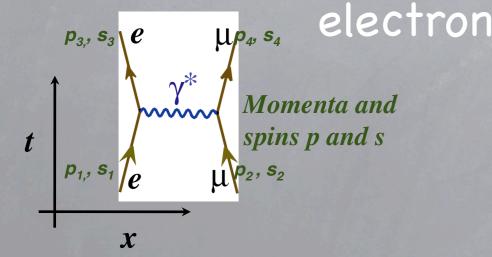
Free fermions fields are solutions to the Dirac equation $(i\gamma_{\mu}\partial^{\mu} - m)\psi = 0$ *Corresponding Lagrangian:* $\mathcal{L} \sim \overline{\psi}(i\gamma_{\mu}\partial^{\mu} - m)\psi$

Local gauge invariance gives rise to interaction with photon field:

Conserved electromagnetic current $J^{\mu} = q \overline{\psi} \gamma^{\mu} \psi \quad 4\text{-vector}$

Feynman Rules: emission and absorption of virtual photons by fermion electromagnetic current





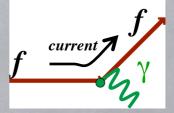
electron-muon scattering

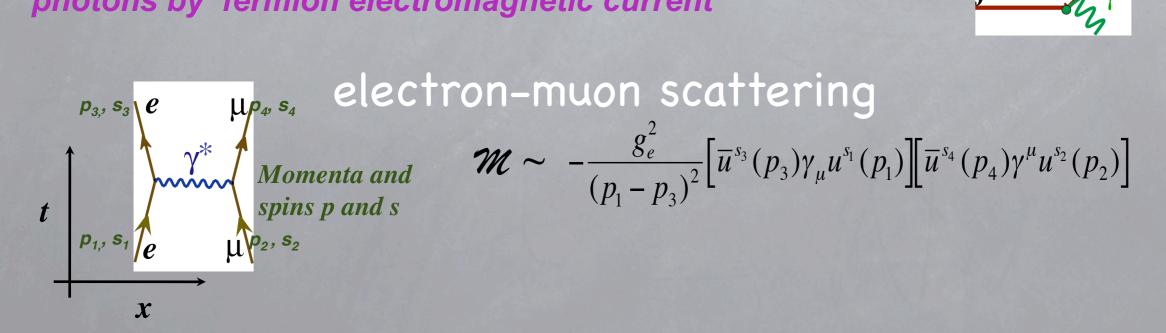
 $-J_{\mu}A^{\mu}$

Free fermions fields are solutions to the Dirac equation $(i\gamma_{\mu}\partial^{\mu} - m)\psi = 0$ *Corresponding Lagrangian:* $\mathcal{L} \sim \overline{\psi}(i\gamma_{\mu}\partial^{\mu} - m)\psi$

Local gauge invariance gives rise to interaction with photon field: Conserved electromagnetic current $J^{\mu} = q \overline{\psi} \gamma^{\mu} \psi \quad 4\text{-vector}$

Feynman Rules: emission and absorption of virtual photons by fermion electromagnetic current





 $-J_{\mu}A^{\mu}$

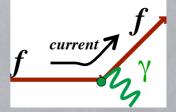
Free fermions fields are solutions to the Dirac equation $(i\gamma_{\mu}\partial^{\mu} - m)\psi = 0$ *Corresponding Lagrangian:* $\mathcal{L} \sim \overline{\psi}(i\gamma_{\mu}\partial^{\mu} - m)\psi$

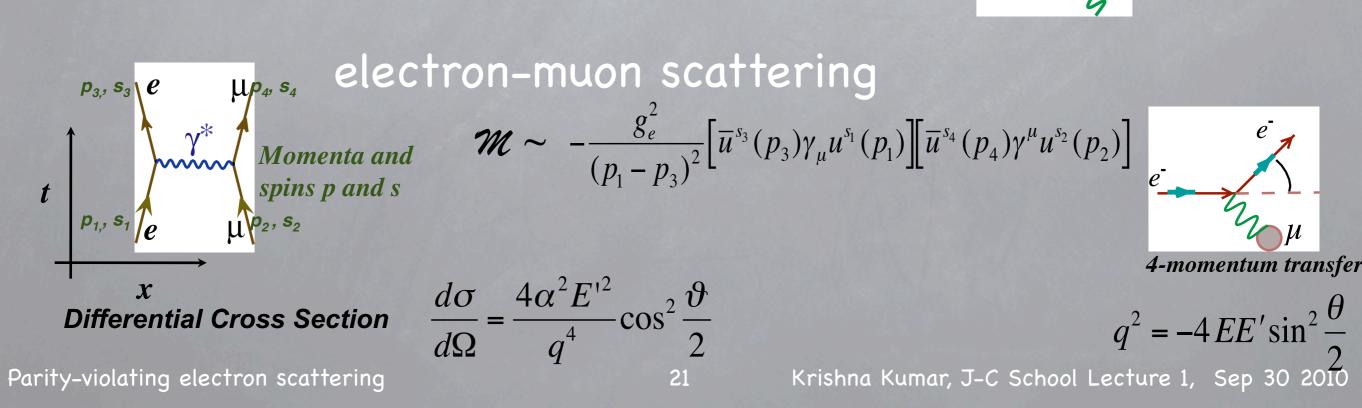
 $-J_{\mu}A^{\mu}$

Local gauge invariance gives rise to interaction with photon field:

Conserved electromagnetic current $J^{\mu} = q \overline{\psi} \gamma^{\mu} \psi \quad 4\text{-vector}$

Feynman Rules: emission and absorption of virtual photons by fermion electromagnetic current



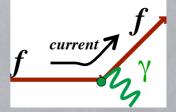


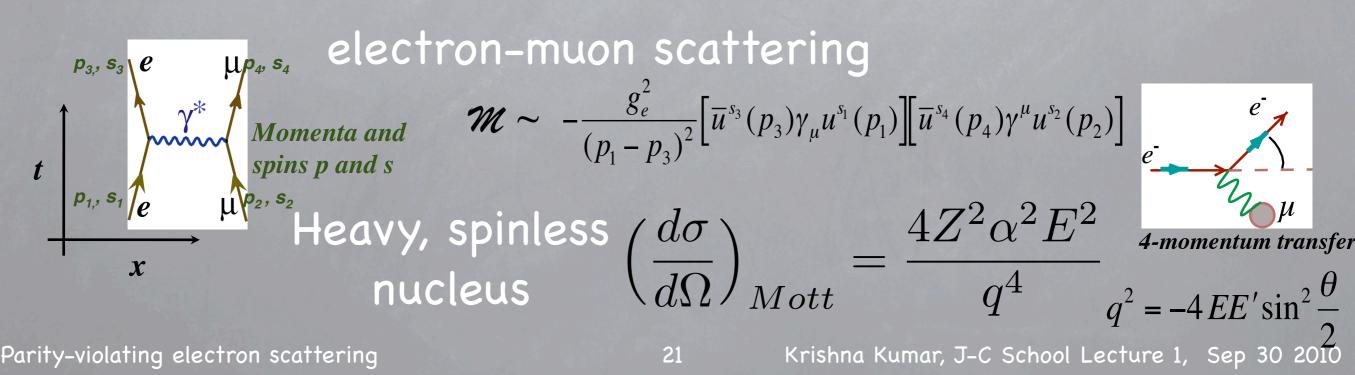
Free fermions fields are solutions to the Dirac equation $(i\gamma_{\mu}\partial^{\mu} - m)\psi = 0$ *Corresponding Lagrangian:* $\mathcal{L} \sim \overline{\psi}(i\gamma_{\mu}\partial^{\mu} - m)\psi$

 $-J_{\mu}A^{\mu}$

Local gauge invariance gives rise to interaction with photon field: Conserved electromagnetic current $J^{\mu} = q \overline{\psi} \gamma^{\mu} \psi \quad 4\text{-vector}$

Feynman Rules: emission and absorption of virtual photons by fermion electromagnetic current



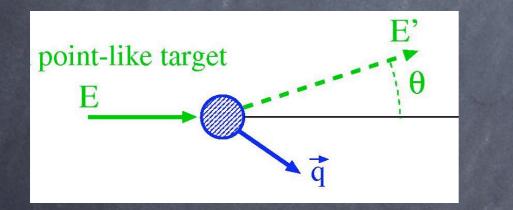


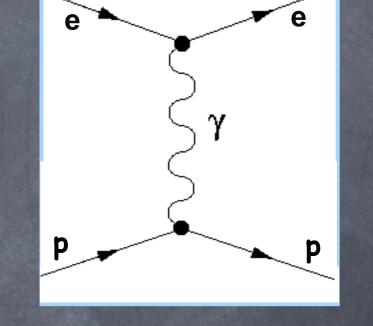
Electromagnetic Probe of Hadron Matter

 $Q \approx \frac{hc}{2}$

Electron scattering: electromagnetic interaction, described as an exchange of a virtual photon.

If photon carries low momentum -> long wavelength -> low resolution





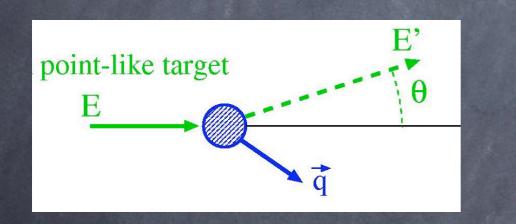
Q²: 4-momentum of the virtual photon

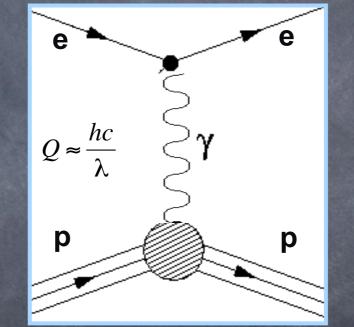
Increasing momentum transfer -> shorter wavelength -> higher resolution to observe smaller structures

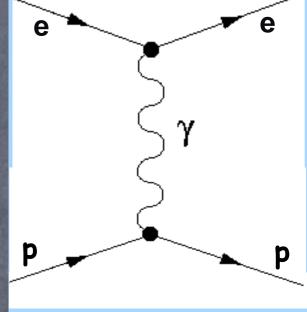
Electromagnetic Probe of Hadron Matter

Electron scattering: electromagnetic interaction, described as an exchange of a virtual photon.

If photon carries low momentum -> long wavelength -> low resolution







P P P

Q²: 4-momentum of the virtual photon

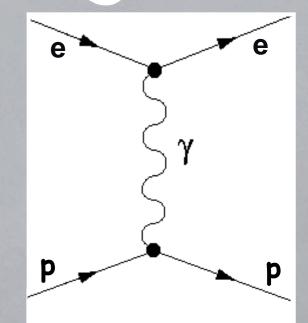
Increasing momentum transfer -> shorter wavelength -> higher resolution to observe smaller structures

Elastic e-p Scattering

For a point-like target, accounting for target recoil:

Function of (E, θ) . Cross-section for infinitely heavy, fundamental target

	$T = Q^2 / 4M^2$ is a
	convenient
$rac{{ m d}\sigma}{{ m d}\Omega}=rac{{ m d}\sigma}{{ m d}\Omega}_{ m Mott}$	kinematic factor $\left\{ 1 + 2 au an^{2}(heta/2) ight\}$



Elastic e-p Scattering

For a point-like target, accounting for target recoil:

 $\mathbf{d}\sigma$

 $= \frac{\mathrm{d}\Omega}{\mathrm{d}\Omega}_{\mathrm{Mott}}$

 $\mathbf{d}\sigma$

 $\mathrm{d}\Omega$

Function of (E, θ) . Cross-section for infinitely heavy, fundamental target

If proton is not point-like: The electric and magnetic form factors G_E and G_M parameterize the effect of proton structure.

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega} \underbrace{\frac{E'}{E}}_{Mott} \left\{ \underbrace{\left(G_{E}^{2} + \tau G_{M}^{2} \right)}_{1 + \tau} + 2\tau G_{M}^{2} \tan^{2}(\theta/2) \right\}}_{I + \tau}$$
If the proton were like the electron:
 $G_{E} = 1$ (proton charge)
 $G_{M} = 1$ (and the magnetic moment
would be 1 Bohr magneton).

Parity-violating electron scattering

e

 $\tau = Q^2/4M^2$ is a

kinematic factor

convenient

 $\{\mathbf{1}+\mathbf{2}\tau^{\dagger}\tan^{2}(\theta/\mathbf{2})\}$

e

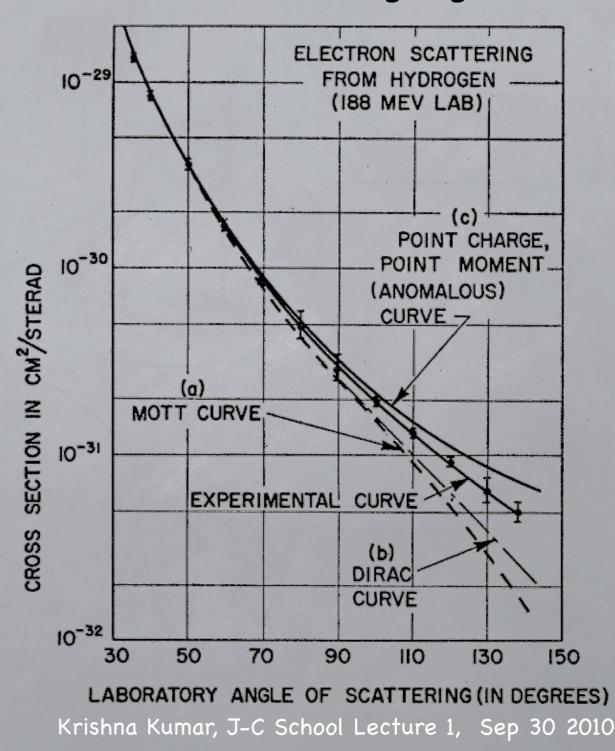
Finite Size of the Proton

Otto Stern (1932) measured the proton magnetic moment $\mu_p \sim 2.5 \mu_{Bohr}$ (first indication that the proton was not a point-like particle, Nobel prize 1943)

Otto Stern (1932) measured the proton magnetic moment $\mu_{\rm p} \sim 2.5 \ \mu_{\rm Bohr}$ (first indication that the proton was not a point-like particle, Nobel prize 1943)

Stanford U. Mark III Accelerator McAllister and Hofstadter, Physical Review 102 (1956) 851.

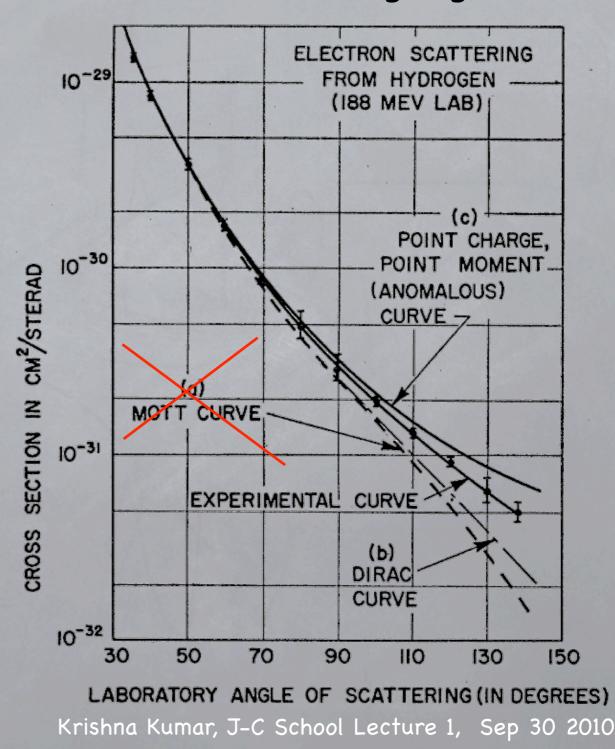
various scattering angles



Otto Stern (1932) measured the proton magnetic moment $\mu_{\rm p} \sim 2.5 \ \mu_{\rm Bohr}$ (first indication that the proton was not a point-like particle, Nobel prize 1943)

Stanford U. Mark III Accelerator McAllister and Hofstadter, Physical Review 102 (1956) 851.

various scattering angles

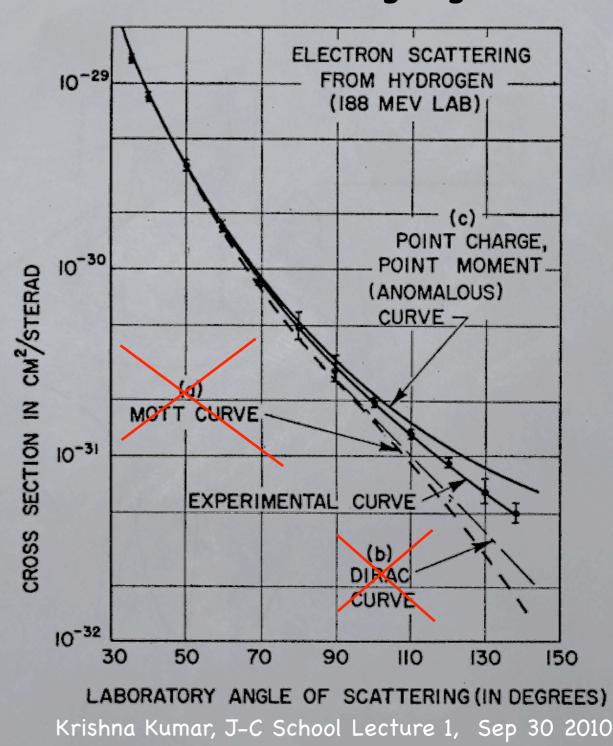


24

Otto Stern (1932) measured the proton magnetic moment $\mu_{\rm p} \sim 2.5 \ \mu_{\rm Bohr}$ (first indication that the proton was not a point-like particle, Nobel prize 1943)

Stanford U. Mark III Accelerator McAllister and Hofstadter, Physical Review 102 (1956) 851.

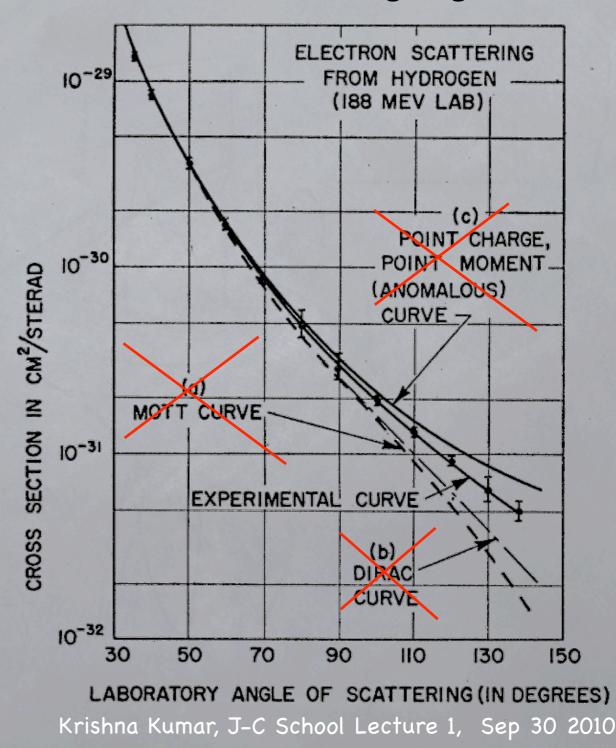
various scattering angles



Otto Stern (1932) measured the proton magnetic moment $\mu_{\rm p} \sim 2.5 \ \mu_{\rm Bohr}$ (first indication that the proton was not a point-like particle, Nobel prize 1943)

Stanford U. Mark III Accelerator McAllister and Hofstadter, Physical Review 102 (1956) 851.

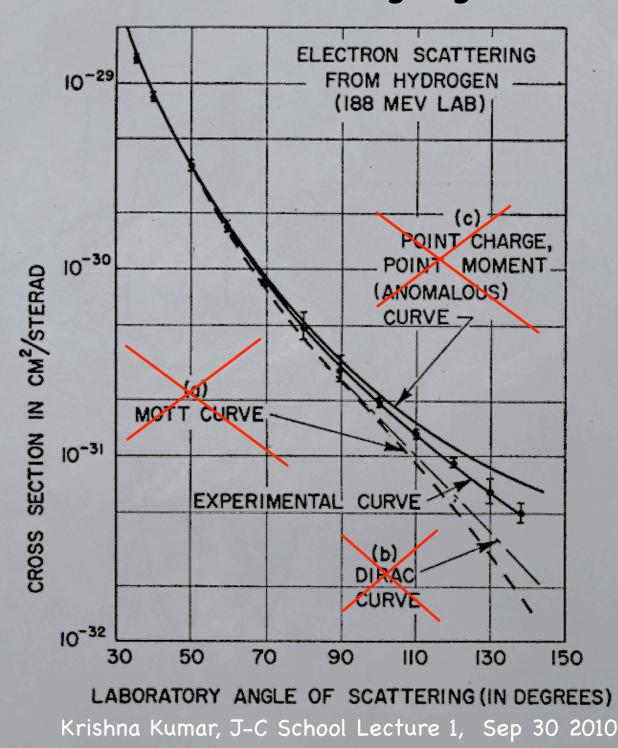
various scattering angles



Otto Stern (1932) measured the proton magnetic moment $\mu_{\rm p} \sim 2.5 \ \mu_{\rm Bohr}$ (first indication that the proton was not a point-like particle, Nobel prize 1943)

Stanford U. Mark III Accelerator McAllister and Hofstadter, Physical Review 102 (1956) 851.

It isn't Mott, nor Dirac, nor Rosenbluth with $G_F=1$ and $G_M=2.79...$ various scattering angles



Finite Size of the Proton

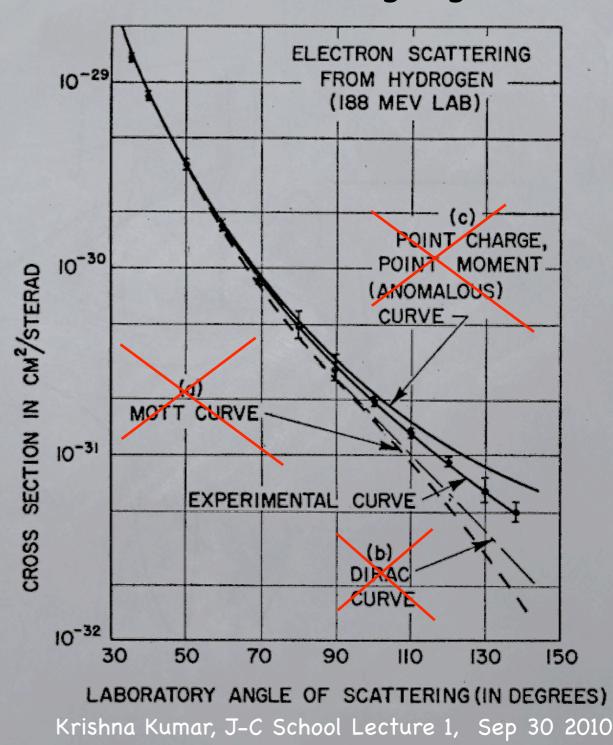
Otto Stern (1932) measured the proton magnetic moment $\mu_p \sim 2.5 \mu_{Bohr}$ (first indication that the proton was not a point-like particle, Nobel prize 1943)

Stanford U. Mark III Accelerator McAllister and Hofstadter, Physical Review 102 (1956) 851.

It isn't Mott, nor Dirac, nor Rosenbluth with $G_E=1$ and $G_M=2.79...$

the proton has finite size!

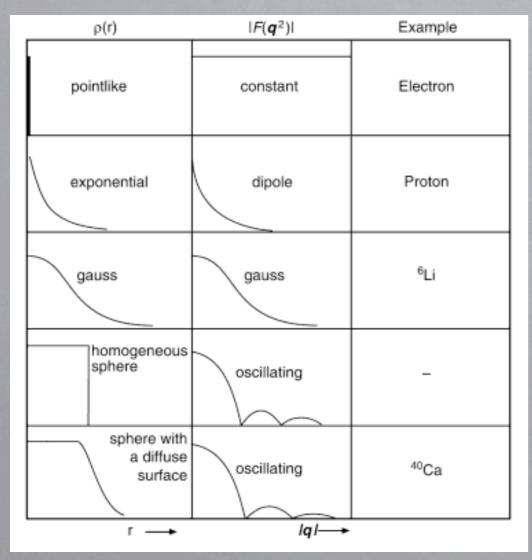
Robert Hofstadter – Noble Laureate 1961 Cross-section measurements at various scattering angles



Nuclear Size

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\rm Mott} \left|F(q)\right|^2$$

The point-like scattering probability modified: account for Finite Target Extent with a "form factor" $F(q) = \int e^{iqr} \rho(r) d^3r$ Form factor is the Fourier transform of charge distribution



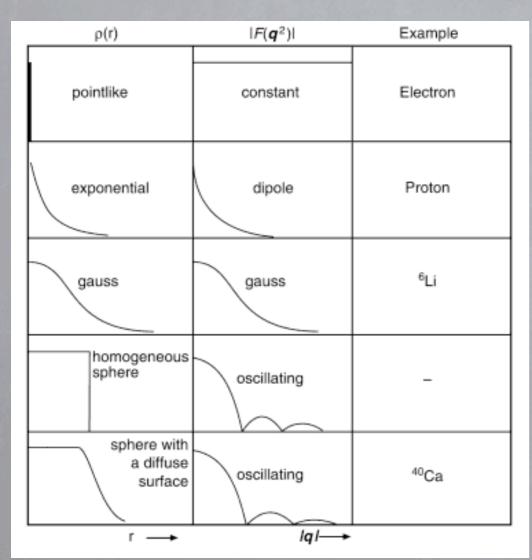
Parity-violating electron scattering

Krishna Kumar, J-C School Lecture 1, Sep 30 2010

Nuclear Size

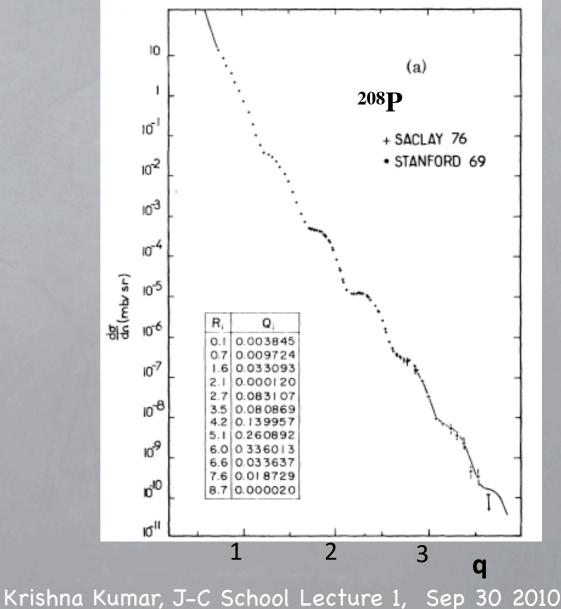
$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\rm Mott} \left|F(q)\right|$$

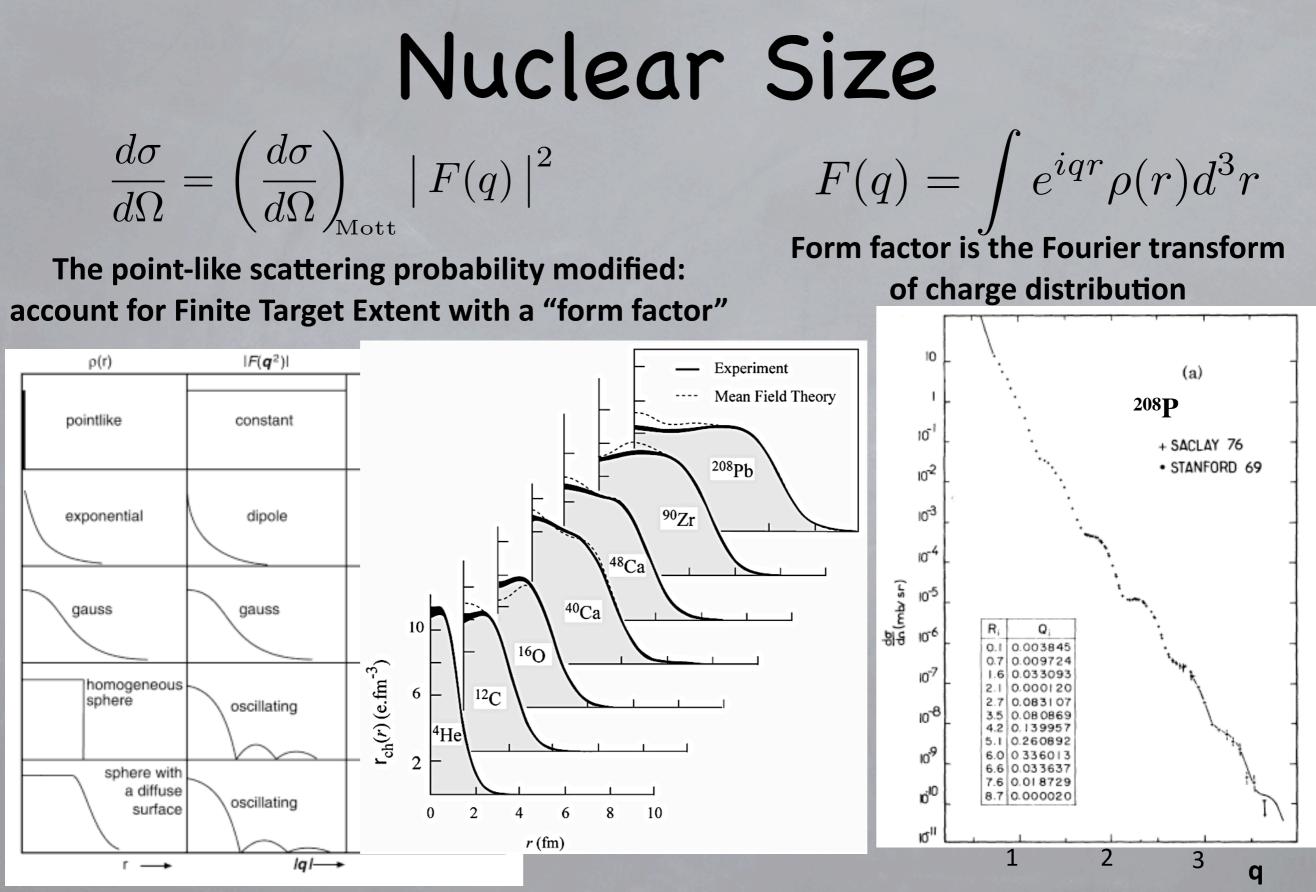
The point-like scattering probability modified: account for Finite Target Extent with a "form factor"



 $F(q) = \int e^{iqr} \rho(r) d^3r$ Form factor is the Fourier transform

Form factor is the Fourier transform of charge distribution





25

Parity-violating electron scattering

Krishna Kumar, J-C School Lecture 1, Sep 30 2010

A Classic Paper

LETTERS TO THE EDITOR

PARITY NONCONSERVATION IN THE FIRST ORDER IN THE WEAK-INTER-ACTION CONSTANT IN ELECTRON SCATTERING AND OTHER EFFECTS

Ya. B. ZEL' DOVICH

Submitted to JETP editor December 25, 1958

J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 964-966 (March, 1959)

Parity Violation in Electron Scattering?

(2)

WE assume that besides the weak interaction that causes beta decay,

 $g(\overline{PON})(\overline{e}^{-}Ov) + \text{Herm. conj.},$ (1)

there exists an interaction

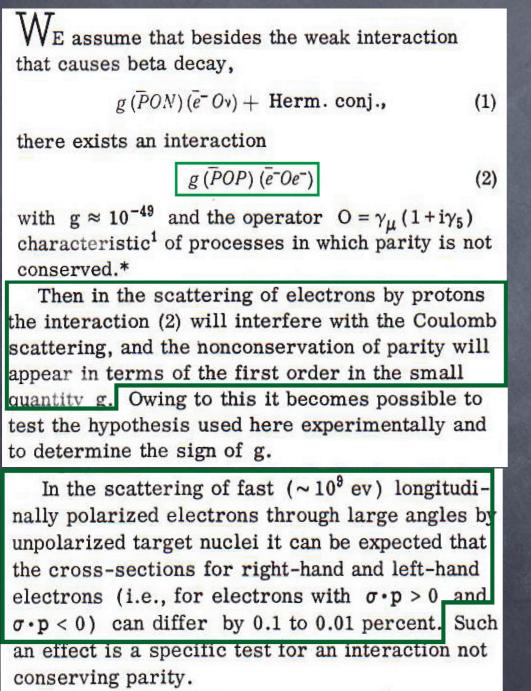
g (POP) (e^-Oe^-)

with $g \approx 10^{-49}$ and the operator $O = \gamma_{\mu} (1 + i\gamma_5)$ characteristic¹ of processes in which parity is not conserved.*

Then in the scattering of electrons by protons the interaction (2) will interfere with the Coulomb scattering, and the nonconservation of parity will appear in terms of the first order in the small quantity g. Owing to this it becomes possible to test the hypothesis used here experimentally and to determine the sign of g.

In the scattering of fast $(\sim 10^9 \text{ ev})$ longitudinally polarized electrons through large angles by unpolarized target nuclei it can be expected that the cross-sections for right-hand and left-hand electrons (i.e., for electrons with $\sigma \cdot \mathbf{p} > 0$ and $\sigma \cdot \mathbf{p} < 0$) can differ by 0.1 to 0.01 percent. Such an effect is a specific test for an interaction not conserving parity.

Parity Violation in Electron Scattering?



Neutron β Decay $V \longrightarrow \stackrel{e}{G_F} \xrightarrow{e} \stackrel{e}{p} \xrightarrow{e} \stackrel{e}{G_F} \stackrel{e}{g}$

Parity-violating electron scattering

Krishna Kumar, J-C School Lecture 1, Sep 30 2010

 W_E assume that besides the weak interaction that causes beta decay,

 $g(\overline{PON})(\overline{e}^{-}Ov) + \text{Herm. conj.},$ (1)

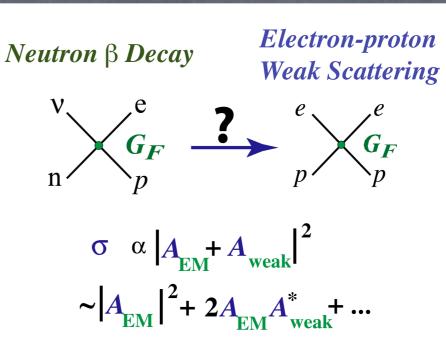
there exists an interaction

$$g(\overline{P}OP)(\overline{e}^{-}Oe^{-})$$
(2)

with $g \approx 10^{-49}$ and the operator $O = \gamma_{\mu} (1 + i\gamma_5)$ characteristic¹ of processes in which parity is not conserved.*

Then in the scattering of electrons by protons the interaction (2) will interfere with the Coulomb scattering, and the nonconservation of parity will appear in terms of the first order in the small quantity g. Owing to this it becomes possible to test the hypothesis used here experimentally and to determine the sign of g.

In the scattering of fast $(\sim 10^9 \text{ ev})$ longitudinally polarized electrons through large angles by unpolarized target nuclei it can be expected that the cross-sections for right-hand and left-hand electrons (i.e., for electrons with $\sigma \cdot \mathbf{p} > 0$ and $\sigma \cdot \mathbf{p} < 0$) can differ by 0.1 to 0.01 percent. Such an effect is a specific test for an interaction not conserving parity.



 W_E assume that besides the weak interaction that causes beta decay,

 $g(\overline{PON})(\overline{e}^{-}Ov) + \text{Herm. conj.},$ (1)

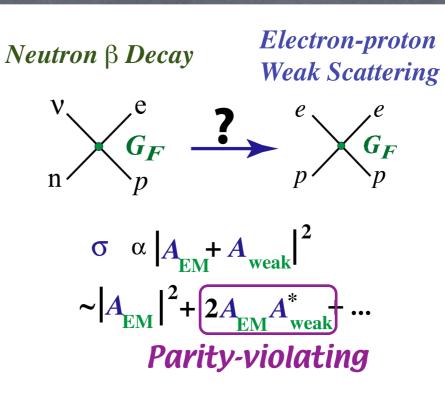
there exists an interaction

$$g(\overline{P}OP)(\overline{e}^{-}Oe^{-})$$
(2)

with $g \approx 10^{-49}$ and the operator $O = \gamma_{\mu} (1 + i\gamma_5)$ characteristic¹ of processes in which parity is not conserved.*

Then in the scattering of electrons by protons the interaction (2) will interfere with the Coulomb scattering, and the nonconservation of parity will appear in terms of the first order in the small quantity g. Owing to this it becomes possible to test the hypothesis used here experimentally and to determine the sign of g.

In the scattering of fast $(\sim 10^9 \text{ ev})$ longitudinally polarized electrons through large angles by unpolarized target nuclei it can be expected that the cross-sections for right-hand and left-hand electrons (i.e., for electrons with $\sigma \cdot p > 0$ and $\sigma \cdot p < 0$) can differ by 0.1 to 0.01 percent. Such an effect is a specific test for an interaction not conserving parity.



 W_E assume that besides the weak interaction that causes beta decay,

 $g(\overline{PON})(\overline{e}^{-}Ov) + \text{Herm. conj.},$ (1)

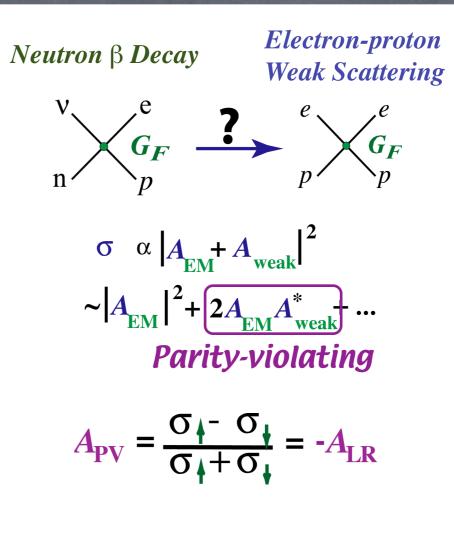
there exists an interaction

$$g(\overline{P}OP)(\overline{e}^{-}Oe^{-})$$
(2)

with $g \approx 10^{-49}$ and the operator $O = \gamma_{\mu} (1 + i\gamma_5)$ characteristic¹ of processes in which parity is not conserved.*

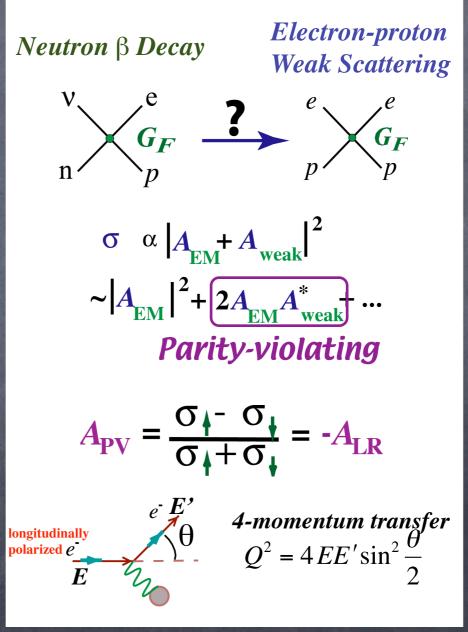
Then in the scattering of electrons by protons the interaction (2) will interfere with the Coulomb scattering, and the nonconservation of parity will appear in terms of the first order in the small quantity g. Owing to this it becomes possible to test the hypothesis used here experimentally and to determine the sign of g.

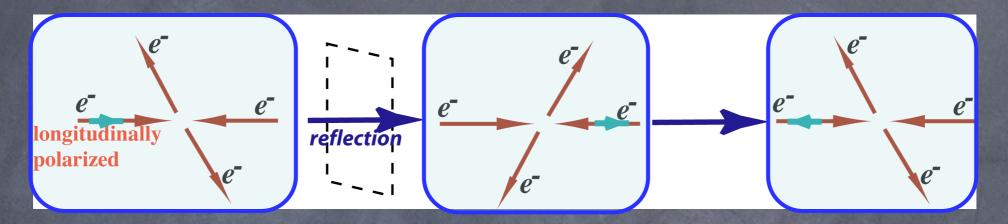
In the scattering of fast ($\sim 10^9$ ev) longitudinally polarized electrons through large angles by unpolarized target nuclei it can be expected that the cross-sections for right-hand and left-hand electrons (i.e., for electrons with $\sigma \cdot p > 0$ and $\sigma \cdot p < 0$) can differ by 0.1 to 0.01 percent. Such an effect is a specific test for an interaction not conserving parity.

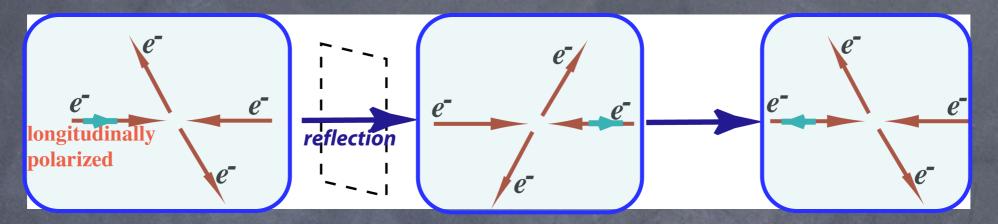


 W_E assume that besides the weak interaction that causes beta decay, $g(\overline{PON})(\overline{e}^{-}Ov) + \text{Herm. conj.},$ (1) there exists an interaction g (POP) (e-Oe-) (2)with $g \approx 10^{-49}$ and the operator $O = \gamma_{\mu} (1 + i\gamma_5)$ characteristic¹ of processes in which parity is not conserved.* Then in the scattering of electrons by protons the interaction (2) will interfere with the Coulomb scattering, and the nonconservation of parity will appear in terms of the first order in the small quantity g. Owing to this it becomes possible to test the hypothesis used here experimentally and to determine the sign of g. In the scattering of fast (~ 10^9 ev) longitudinally polarized electrons through large angles by

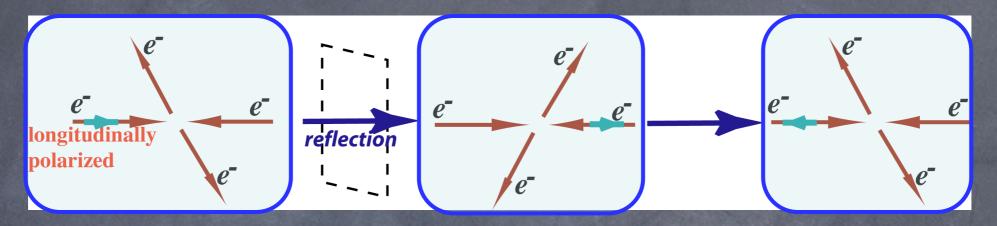
unpolarized target nuclei it can be expected that the cross-sections for right-hand and left-hand electrons (i.e., for electrons with $\sigma \cdot p > 0$ and $\sigma \cdot p < 0$) can differ by 0.1 to 0.01 percent. Such an effect is a specific test for an interaction not conserving parity.





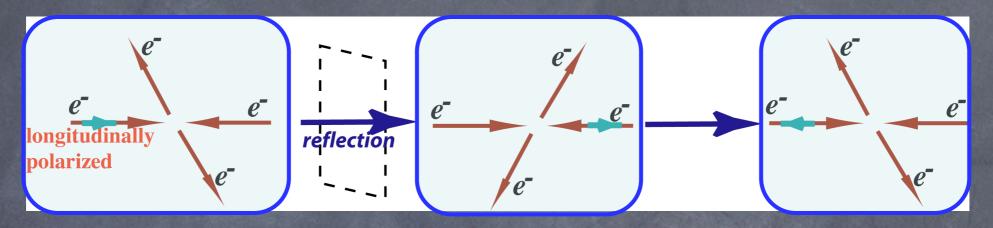


One of the incident beams longitudinally polarized Change sign of longitudinal polarization Measure fractional rate difference



One of the incident beams longitudinally polarized Change sign of longitudinal polarization Measure fractional rate difference

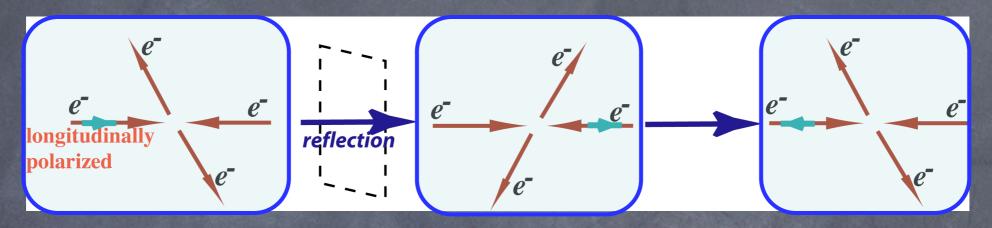
The matrix element of the Coulomb scattering is of the order of magnitude e^2/k^2 , where k is the momentum transferred ($\hbar = c = 1$). Consequently, the ratio of the interference term to the Coulomb term is of the order of gk^2/e^2 . Substituting $g = 10^{-5}/M^2$, where M is the mass of the nucleon, we find that for $k \sim M$ the parity nonconservation effects can be of the order of 0.1 to 0.01 percent.



One of the incident beams longitudinally polarized Change sign of longitudinal polarization Measure fractional rate difference

The matrix element of the Coulomb scattering is of the order of magnitude e^2/k^2 , where k is the momentum transferred ($\hbar = c = 1$). Consequently, the ratio of the interference term to the Coulomb term is of the order of gk^2/e^2 . Substituting $g = 10^{-5}/M^2$, where M is the mass of the nucleon, we find that for $k \sim M$ the parity nonconservation effects can be of the order of 0.1 to 0.01 percent.

$$A_{\rm PV} = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} \sim \frac{A_{\rm weak}}{A_{\rm EM}} \sim \frac{G_F Q^2}{4 \pi \alpha}$$
$$A_{PV} \sim 10^{-4} \cdot Q^2 ({\rm GeV}^2)$$



One of the incident beams longitudinally polarized Change sign of longitudinal polarization Measure fractional rate difference

The matrix element of the Coulomb scattering is of the order of magnitude e^2/k^2 , where k is the momentum transferred ($\hbar = c = 1$). Consequently, the ratio of the interference term to the Coulomb term is of the order of gk^2/e^2 . Substituting $g = 10^{-5}/M^2$, where M is the mass of the nucleon, we find that for $k \sim M$ the parity nonconservation effects can be of the order of 0.1 to 0.01 percent.

$$A_{\rm PV} = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} \sim \frac{A_{\rm weak}}{A_{\rm EM}} \sim \frac{G_F Q^2}{4 \pi \alpha}$$
$$A_{PV} \sim 10^{-4} \cdot Q^2 ({\rm GeV}^2)$$

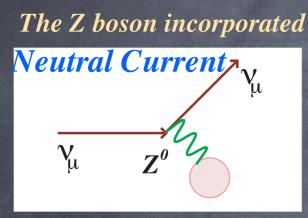
The idea could not be tested for 2 decades: Several circumstances aligned to make this an important measurement

Parity-violating electron scattering

29

Weak Interaction Theory

A Model of Leptons Steve Weinberg - 1967



Gargamelle finds one $v_{\mu} e^{-}$ event in 1973! (two more by 1976)

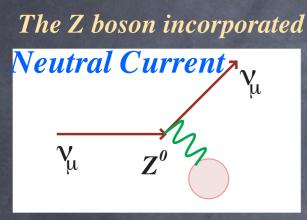
One free parameter: the weak mixing angle θ_W introduced

If θ_W were strictly zero, W & Z bosons would weigh exactly the same and right-handed particles would not exchange Z bosons either

	Left-	Right-
γ Charge	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$
W Charge	$T = \pm \frac{1}{2}$	zero
Z Charge	$T - q\sin^2\theta_W$	$-q\sin^2\theta_W$

Weak Interaction Theory

A Model of Leptons Steve Weinberg - 1967



Gargamelle finds one $v_{\mu} e^{-}$ event in 1973! (two more by 1976)

Neutrino scattering measurements find θ_W is non-zero

One free parameter: the weak mixing angle θ_W introduced

If θ_W were strictly zero, W & Z bosons would weigh exactly the same and right-handed particles would not exchange Z bosons either

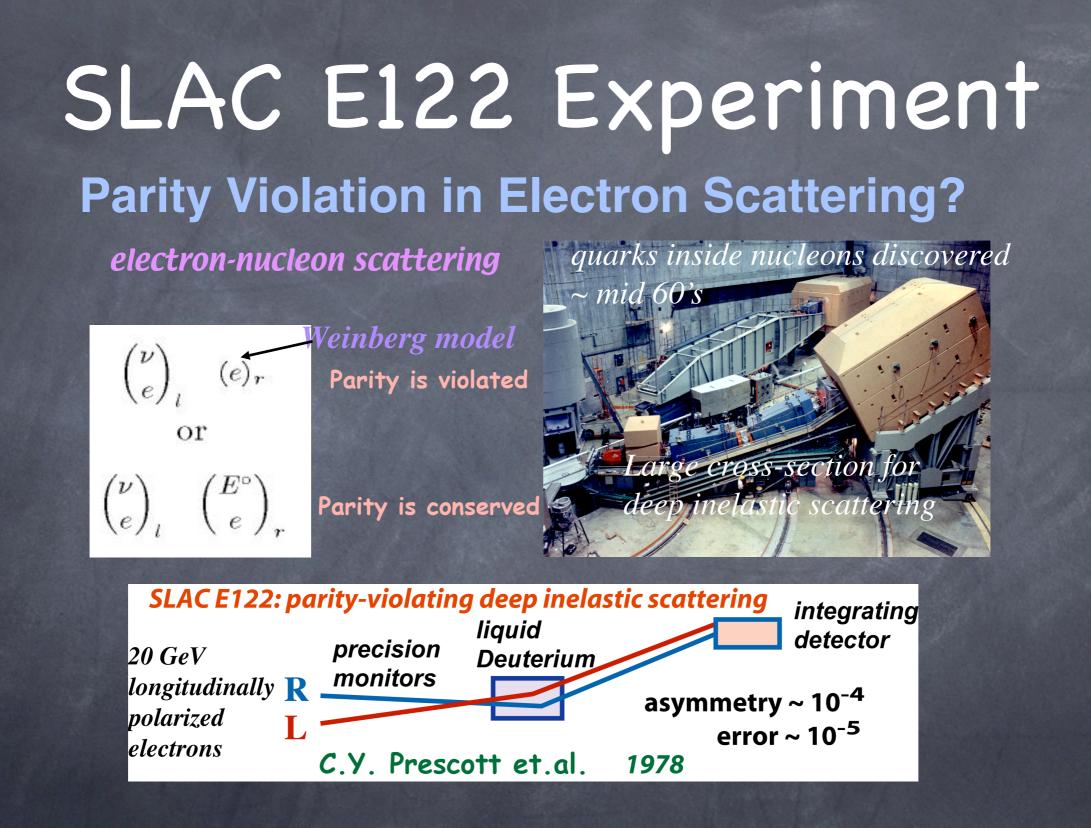
	Left-	Right-
γ Charge 0	$\pm 1, \pm \frac{1}{3}, \pm \frac{2}{3}$	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$
W Charge	$T = \pm \frac{1}{2}$	zero
Z Charge	$-q\sin^2\theta_W$	$-q\sin^2\theta_W$

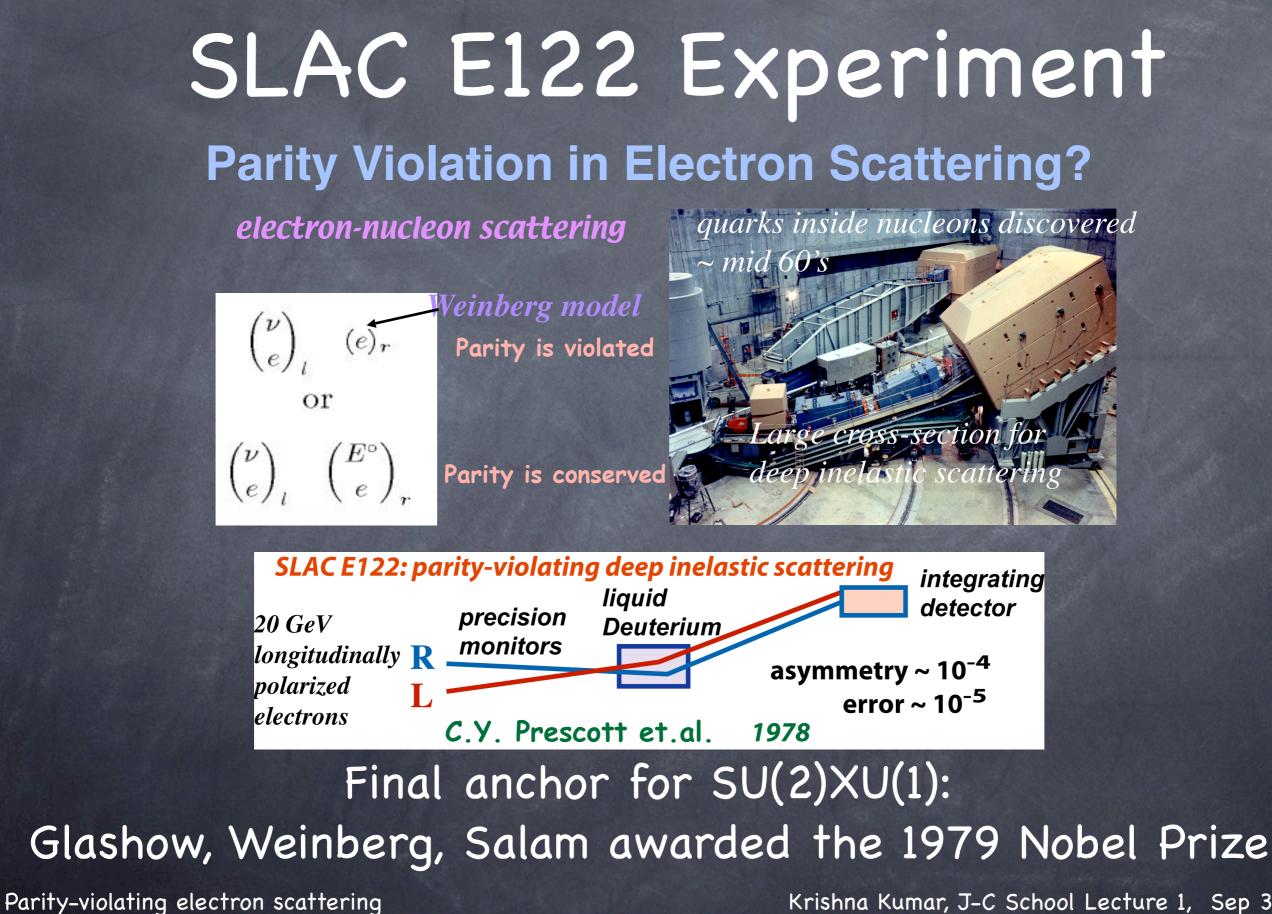
SLAC E122 Experiment **Parity Violation in Electron Scattering?** electron-nucleon scattering

 $\begin{pmatrix} \nu \\ e \end{pmatrix}_{l} \quad \stackrel{(e)_{r}}{(e)_{r}} \quad Parity is violated$ or $\begin{pmatrix} \nu \\ e \end{pmatrix}_l \quad \begin{pmatrix} E^\circ \\ e \end{pmatrix}_r$ Parity is conserved

Parity-violating electron scattering

<section-header><section-header><text><text><text><text><text>





Summary

A very successful theoretical framework exists to describe electroweak interactions over a wide range of energy scales

Neutral weak interactions can be used to probe novel aspects of hadron structure

Parity-violating electron scattering is the ideal tool to probe low energy neutral weak interactions

Parity-violating electron scattering

Lecture 2 Overview

Strange Quark Content of the Nucleon The HAPPEX and HAPPEXII experiments The Neutron Skin of a Heavy Nucleus The PREX Experiment Future Program of Parity-violating Electron Scattering