Development of collective behavior in nuclei

- Results primarily from correlations among valence nucleons.
- Instead of pure "shell model" configurations, the wave functions are mixed - linear combinations of many components.
- Leads to a lnanninn nf thn nnllonti»n ntates and to enhanced

N DEGENERATE
LEVELS.ALLV
EQUAL
$-(\mathrm{N}-1) \mathrm{V}$
$\psi_{\text {ionss }}-\frac{1}{\sqrt{N}}\left[\phi_{1}+\phi_{2}+\cdots+\phi_{x}\right]$

Coherence and Transition Rates

Consider simple case of N degenerate levels: 2^{+}

$$
\begin{aligned}
& \Delta \mathrm{E}=(N-1) V \\
& \Psi=a \varphi_{1}+\mathrm{a} \varphi_{2}+\cdots a \varphi_{N} \\
& \text { where } \mathrm{a}=\frac{1}{\sqrt{N}} \\
& \left(\sum_{i=1}^{N} a^{2}=\frac{N}{N}=1\right)
\end{aligned}
$$

Consider transition rate from $2_{1}^{+} \rightarrow \mathrm{O}_{1}^{+}$

$$
\begin{aligned}
& B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)=\frac{1}{2 J_{i}+1}\left\langle 0_{1}^{+}\|E 2\| 2_{1}^{+}\right\rangle^{2} \\
& \left\langle 0_{1}^{+}\|E 2\| 2_{1}^{+}\right\rangle=\left\langle 0_{1}^{+}\|E 2\| \Psi\right\rangle=a \sum_{i=1}^{N}\left\langle 0_{1}^{+}\|E 2\| \varphi_{i}\right\rangle
\end{aligned}
$$

The more configurations that mix, the stronger the $B(E 2)$ value and the lower the energy of the collective state. Fundamental property of collective states.

Low Lying \longrightarrow Quadrupole Vibrations
Angular Momentum 2^{+}

Phonon creation and destruction operators

Quadrupole
 case

$$
b_{2 \mu}, b_{2 \mu}^{\dagger} \quad\left(\text { drop " }^{2 \mu}\right. \text { ") }
$$

$$
\begin{array}{l|l}
\left|n_{b}\right\rangle \equiv & b\left|n_{b}\right\rangle=\sqrt{n_{b}}\left|n_{b}-1\right\rangle \\
\text { state with } \\
n_{b} \text { phonons }
\end{array} \quad b^{\dagger}\left|n_{b}\right\rangle=\sqrt{n_{b}+1}\left|n_{b}+1\right\rangle
$$

$$
\left\lvert\, \begin{gathered}
b|0\rangle=0 \\
b^{\dagger}|0\rangle=\left|n_{b}=1\right\rangle=\Psi_{1 \text { pronone }}
\end{gathered}\right.
$$

$b^{\dagger} b=\underline{\text { number }}$ operator-counts n_{b} :

$$
\begin{gathered}
b^{\dagger} b\left|n_{b}\right\rangle=b^{\dagger} \sqrt{n_{b}}\left|n_{b}-1\right\rangle=\sqrt{n_{b}} \sqrt{\left(n_{b}-1\right)+1}\left|n_{b}\right\rangle \\
b^{\dagger} b\left|n_{b}\right\rangle=n_{b}\left|n_{b}\right\rangle
\end{gathered}
$$

Electromagnetic Transitions in the phonon model

E2 operator is proportional to the annihilation operator, b, for a phonon.

$$
\begin{aligned}
\left\langle n_{f}\right| b\left|n_{i}\right\rangle & =\left\langle n_{f}\right| \sqrt{n_{i}}\left|n_{i}-1\right\rangle \\
& =\sqrt{n_{i}}\left\langle n_{f} \mid n_{i}-1\right\rangle \\
& =\sqrt{n_{i}} \delta_{n_{f}, n_{i-1}}
\end{aligned}
$$

a) E2 transition probability

$$
\left[\propto\langle |\left\rangle^{2}\right] \propto n_{i}\right.
$$

b) Selection rule $\Delta n=1$
c) Branching ratio $\frac{B(E 2 ; n=2 \rightarrow n=1)}{B(E 2 ; n=1 \rightarrow n=0)}=2$
d) $B\left(E 2 ; n=2 \rightarrow 0^{+}\right.$g.s. $)=0$--- forbidden

B(E2) VALUES FOR DECAY OF MULTI-PHONON STATES

$4^{+}=$| 2.51 | |
| :--- | :--- |
| $0^{+}=$ | 2.29 |
| 2.16 | $4^{+}=$ |
| $2^{+}=$ | 29 |
| | $0^{+}=1.91$ |
| | $2^{+}=1.80$ |

$2^{+}-1.33 \quad 2^{+}=0.99$

$\mathrm{O}^{+}{\underset{\mathrm{Ni}}{ }{ }^{60}} 0$
$0^{+} Z_{\mathrm{Zn}^{64}} 0$
$0^{-}{\underset{S e^{76}}{ }} 0$
$\mathrm{O}^{+} \underset{\mathrm{Pd}^{106}}{ } 0$
$\begin{array}{ll}4^{+} & 2.28 \\ 0^{+} & 2.05 \\ 2^{+} & 2.04\end{array}$

$2^{*}=1.23$

$\begin{array}{lr}4^{+} & 1.40 \\ 0^{+}= & 1.36 \\ 2^{+}= & 1.17 \\ 2^{+}= & 0.60\end{array}$
$0^{+}{\widetilde{C d^{114}}} 0$
$0^{+}{\underset{S n}{ } 118} 0$
$0^{+} \prod_{T e^{122}} 0$
$0^{+}{\underset{B a^{134}}{ } 0}$

Octupole Vibrations

3^{-}
2-phonon $\quad 3^{-} \otimes 3^{-} \Rightarrow J=0^{+}, 2^{+}, 4^{+}, 6^{+}$
A few examples beginning to be known

$$
{ }_{40}^{96} \mathrm{Zr}, \quad{ }_{64}^{146} \mathrm{Gd}
$$

Multi-phonon Octupole - Quadrupole

$$
3^{-} \otimes 2^{+}
$$

Detormea, ellipsoldal, rotational nuclei

Lets look at a typical example and see the various aspects of structure it shows

Axially symmetric case Axial asymmetry

Rotational states built on

Axial asymmetry (Triaxiality)

(Specified in terms of the coordinate γ (in degrees), either from 0 \rightarrow 60 or from $-30 \rightarrow+30$ degrees - zero degrees is axially
symmetric)

Note: fôkfally symm. deformed nuclei, MUST have

Axial Asymmetry in Nuclei - two types

Use staggering in gamma band energies as signature for the kind of axial asymmetry

Overview of yrast energies

Can express energies as $E \sim J(J+X)$

Now that we know some simple models of atomic nuclei, how do we know where each of these structures will appear? How does structure vary with Z and N ? What do we know?

- Near closed shells nuclei are spherical and can be described in terms of a few shell model configurations.
- As valence nucleons are added, configuration mixing, collectivity and, eventually, deformation develop. Nuclei near mid-shell are collective and deformed.
- The driver of this evolution is a competition between the pairing force and the p-n interaction, both primarily acting on the valence nucleons.

Estimating the properties of nuclei

We know that 134 Te $(52,82)$ is spherical and noncollective.

We know that 170Dy $(66,104)$ is doubly mid-shell and very collective.

Whatieadouttit Master subtitle style
156Te $(52,104) \quad 156 \mathrm{Gd}(64,92)$ 184Pt $(78$, 106) ???

All have 24 valence nucleons. What are their relative structures ???

Valence Proton-Neutron Interaction

Development of configuration mixing, collectivity and deformation - competition with pairing

Changes in single particle energies and magic numbers

Partial history: Goldhaber and de Shalit (1953); Talmi (1962); Federman and Pittel (late 1970's); Casten et al (1981); Heyde et al (1980's); Nazarewicz, Dobacewski et al (1980's); Otsuka et al(2000's); Cakirli et al (2000's); and many others.

The idea of "both" types of nucleons - the p-n interaction

If p-n interactions drive configuration mixing, collectivity and deformation, perhaps they can be exploited to understand the evolution of structure.

Lets assume, just to play with an idea, that all p-n interactions have the same strength. This is not realistic since the interaction strength depends on the orbits the particles occupy, but, maybe, on average, it might be OK.

How many valence p-n interactions are there? Np x Nn If all are equal then the integrated $p-n$ strength should scale with Np x Nn

The NpNn Scheme

Valence Proton-Neutron Interactions

Correlations, collectivity, deformation. Sensitive to magic numbers.

NpN Scheme

$P=N p N n /(N p+N n)$ p-n interactions per pairing interaction

The NpNn scheme: Interpolation vs. Extrapolation

Predicting new nuclei with the NpNn Scheme

All the nuclei marked with x's can be predicted by INTERpolation

Competition between pairing and the p -n interactions

A simple microscopic guide to the evolution of structure
(The next slides allow you to estimate the structure of any nucleus by multiplying and dividing two numbers each less than 30)
(or, if you prefer, you can get the same result from 10 hours of supercomputer time)

Valence p-n interaction: Can we measure it?

Empirical interactions of the last proton with the last neutron
$\square V p n(Z, N)=-1 / 4[[B(Z, N)-B(Z, N-2)]$

$$
-[B(Z-2, N)-B(Z-2, N-2)]\}
$$

p-n / pairing

$$
P=\frac{N p}{N p^{N}+N n} \square \frac{p-}{n}
$$

p-n interactions per pairing interaction
Pairing int. ~ $\mathbf{1}$ pairing MeV, \quad p-n $\sim 200 \mathrm{keV}$
Hence takes ~ 5 p-n int. tocompete with one pairing int.

$$
\left(\mathbf{h}_{9 / 2}\right)^{2} 0^{210}{ }_{84} \mathrm{Po}_{126}
$$

$\left(\mathrm{g}_{7 / 2}\right)^{2} 0^{+}{ }^{134}{ }_{52} \mathrm{Te}_{82} \mathrm{l}$

P~5

Comparison with the data

The Interacting Boson Approximation Model

A very simple phenomenological model, that can be extremely Why the BAR rameter-efficient, for collective

- Basic ideas about the IBA, includiotandinet ennie Group Theory basis
- The Dynamical Symmetries of the IBA

Practical calculations with the IBA

IBA - A Review and Practical Tutorial

F. lachello and A. Arima

Drastic simplification of shell model

- Valence nucleons
- Only certain configurations
- Simple Hamiltonian - interactions
"Boson" model because it treats nucleons in pairs
2 fermions boson

The Need for Simplification in
Multiparticle Spectra

Why do we need to
 simplify - why not just
 calculate with the Shell
 Model????

Example: How many 2^{+}states?

\# nucl.

$$
\begin{array}{lll}
2 & d_{5 / 2}^{2} & 1 \\
4 & d_{5 / 2} g_{7 / 2} \geq 7 & \\
& & \left|d_{5 / 2}^{2} J=2, g_{7 / 2}^{2} J=0\right\rangle,\left|d_{5 / 2}^{2} J=0, g_{7 / 2}^{2} J=2\right\rangle \\
& \left|d_{5 / 2}^{2} J=4, g_{7 / 2}^{2} J=2 ; J=2\right\rangle, \\
& & \left|d_{5 / 2}^{2} J=2, g_{7 / 2}^{2} J=4 ; J=2\right\rangle, \\
& & \left|d_{5 / 2}^{2} J=4, g_{7 / 2}^{2} J=6 ; J=2\right\rangle, \\
& & \left|d_{5 / 2} g_{7 / 2} J=1, d_{5 / 2} g_{7 / 2} J=1 ; J=2\right\rangle, \\
& & \left|d_{5 / 2}^{2} J=4, g_{7 / 2}^{2} J=4, J=2\right\rangle .
\end{array}
$$

${ }_{62}^{154} \mathrm{Sm}_{92}$			
cl. sh.	50	82	12 val. π in $50-82$ 10 val. v in $82-126$
$N_{p}=12 N_{n}=10$			

Shell Model Configurations

$$
\begin{aligned}
& \text { The IBA } \\
& \text { Boson } \\
& \text { configurations } \\
& \text { (by considering } \\
& \text { only } \\
& \text { configurations } \\
& \text { of pairs of } \\
& \text { fer,...nns with } \\
& J=0 \text { or 2.) }
\end{aligned}
$$

0+s-boson
$2+d$-boson
s boson is like a Cooper pair d boson is like a generalized pair

- Valence nucleons only
- s, d bosons - creation and destruction operators
$H=H s+H d+H i n t e r a c t i o n s$
Number of bosons fixed: $N=n s+n d$
$=1 / 7$ nf $1 / \boldsymbol{a}$ nrntnnc $+1 /$ \# 1/a! nolitranc

Modeling a Nucleus

Why the IBA is the best thing since baseball, a jacket potato, aceto balsamico, Mt. Blanc, raclette, pfannekuchen, baklava,

154S Shell model 3×1014 2+ states

 m
Need to

truncate
IBA
assthyfiptiontsceons
2. Fermions \rightarrow bosons

$$
\begin{aligned}
& J=0 \text { (s bosons) } \\
& J=2 \text { (d bosons) }
\end{aligned}
$$

IBA: 26 2+ states

Why the IBA ?????

- Why a model with such a drastic simplification Oversimplification ???
- Answer: Because it works !!!!!
- By far the most successful general nuclear collective model for nuclei
- Extremely parameter-economic

Note key point:

\square
Bosons in IBA are pairs of fermions in valence shell
Number of bosons for a given nucleus is a fixed number
${ }_{62}{ }^{154} \mathrm{Sm}_{92}$

$$
\begin{aligned}
& \mathbf{N} \square=6 \quad 5=\mathbf{N} \square \\
& \square \mathbf{N B}=11
\end{aligned}
$$

Basically the IBA is a Hamiltonian written in terms of s and d bosons and their interactions. It is written in terms of boson creation and destruction operators.

Where the IBA fits in the pantheon of

- shell Mucdel esph. models
- Geometric - (Macroscopic)
- Third approach — "Algeb \quad aic"

\int| |
| :--- |
| |
| |
| |
| Dynamical |
| Symetries |

Group Theoretical
Phonon-like model with microscopic basis explicit from the start.

IBA has a deep relation to Group

 theoryThat relation is based on the operators that create, destroy s and d bosons
$s t, s, \stackrel{d}{d}, d$
operA巿Q! $\$ 10 m .2$

$$
\begin{aligned}
& d \dagger \square, d \square \quad \square=2,1,0, \\
& -1,-2
\end{aligned}
$$

Hamiltonian is written in terms of s, d operators

Since boson number is conserved for a given nucleus, H can only contain "bilinear" terms: 36 of them.

$$
s \not s, s+d, d \dagger s,
$$

$$
d+d
$$

$\longrightarrow \quad$| Gr. Theor. |
| :---: |
| classification |
| of |
| Hamiltonian |

[^0]
Brief, simple, trip into the Group Theory of the IBA

DON'T BE SCARED

> You do not need to understand all the details but try to get the idea of the relation of groups to degeneracies of levels and quantum numbers

A more intuitive name for this application of Group Theory is
"Spectrum Generating Algebras"

Review of phonon creation and destruction

$$
\begin{aligned}
\mathbf{b}\left|n_{b}\right\rangle & =\sqrt{n_{b}}\left|n_{b}-1\right\rangle \\
\mathbf{b}^{\dagger}\left|n_{b}\right\rangle & =\sqrt{\left(n_{b}+1\right)}\left|n_{b}+1\right\rangle
\end{aligned}
$$

What is a creation operator? Why useful?
A) Bookkeeping - makes calculations very simple.
B) "Ignorance operator": We don't know the structure of a phonon but, for many predictions, we don't need to know its microscopic basis.

$$
\mathbf{b}^{\dagger} \mathbf{b}\left|n_{b}\right\rangle=\mathbf{b}^{\dagger} \sqrt{n_{b}}\left|n_{b}-1\right\rangle=\sqrt{n_{b}} \sqrt{\left(n_{b}-1\right)+1}\left|n_{b}\right\rangle=n_{b}\left|n_{b}\right\rangle
$$

$\mathbf{b}^{+} \mathbf{b}$ is a \mathbf{b}-phonon number operator.
For the IBA a boson is the same as a phonon - think of it as a collective excitation with ang. mom. 0 (s) or 2 (d).

Concepts of group theory

First, some fancy words with simple meanings:

 Generators, Casimirs, Representations, conserved
quantum numbers, degeneracy splitting

 Generators of a group: Set of operators, Oi that close on qobirntffion oi Oj - Oj Oi = Ok i.e., their commutator gives back 0 or a member of the set For IBA, the 36 operators $\boldsymbol{s} \dagger \boldsymbol{s}, \boldsymbol{d} \boldsymbol{\dagger} \boldsymbol{s}, \boldsymbol{s} \boldsymbol{\dagger} \boldsymbol{d}, \boldsymbol{d} \boldsymbol{\dagger} \boldsymbol{d}$ are generators of ex: $\quad\left[d^{\dagger} s, s^{\dagger} s\right]\left|n_{d} n_{s}\right\rangle=\left(d^{\dagger} s s^{\dagger} s-s^{\dagger} s d^{\dagger} s\right)\left|n_{d} n_{s}\right\rangle$$$
\begin{aligned}
& =d^{\dagger} s n_{s}\left|n_{d} n_{s}\right\rangle-s^{\dagger} s d^{\dagger} s\left|n_{d} n_{s}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{n_{d}+1} \sqrt{n_{s}}\left|n_{d}+1, n_{s}-1\right\rangle-N s^{+} d \Psi=\mathbf{O} \\
& =d^{\dagger} s\left|n_{d} n_{s}\right\rangle
\end{aligned}
$$

e.g:
or: $\quad\left[d^{\dagger} s, s^{\dagger} s\right]=d^{\dagger} s$
A Hamiltonian written solely in terms of Casimirs can be solved analytically

Sub-groups:

Subsets of generators that commute among themselves.
e.g: $\quad d+d 25$ generators-span $U(5)$

They conserve nd (\# d bosons)
Set of states with same nd are the representations of the group [$U(5)$]

Simple example of dynamical symmetries, group chain, degeneracies

$[H, J 2]=[H, J Z]=0 \quad J, M \quad$ constants of motion

Let's illustrate group chains and

 Consider a Hamiftontan that is a function ONLY of: $\boldsymbol{s t s}+\boldsymbol{d t} \boldsymbol{d}$That is: $\quad H=a(s \dagger s+d \dagger d)=a(n s+n d)$

$$
H^{\prime}=H+k \quad: a N
$$

Now, add a term to this Hamiltonian:

Now the energies depend not only on \mathbf{N} but also on nd

States of a given nd are now degenerate. They are "frepresentations" of the group U(5). States with different nd are not deaenerate

OK, here's the key point :

Concept of a Dynamical Svmmetrv

Next

time

Classifying Structure -- The Symmetry Triangle

[^0]: Group is called
 U(6)

