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Themes and challenges of Modern Science

Complexity out of simplicity -- Microscopic

How the world, with all its apparent complexity and diversity can be
constructed out of a few elementary building blocks and their interactions

What is the force that binds nuclei?

Simplicity out of complexity — Macroscopic

How the world of complex systems can display such remarkable regularity
and simplicity

What are the simple patterns that nuclei
display and what is their origin ?




Where do nuclel fit into the overall picture?

How does complexity
emerge from simple
constituents?

How can complex systems
display astonishing

X simplicities? What is the New ]
Stondard Model?

undamental

&

interactions

How deo nuclei shape
the physical universe?
What is the origin of

the elements?




The scope of Nuclear Structure Physics

The Four Frontiers Nuclear Landscape
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Evolution of structure within
these boundaries

Terra incognita — huge gene pool of new nuclel

We can customize our system — fabricate “designer” nuclel
to isolate and amplify specific physics or interactions




A confluence of advances leading to a great opportunity for science
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This enterprise depends critically on a
continuing influx of bright new people into the field
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Simple Observables - Even-Even Nuclel
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Reminder slide:
The Independent Particle Model
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Clusters of levels + Pauli
Principle = magic numbers,
Inert cores, valence nucleons

Key to structure. Many-body - few-
body: each body counts.

(Addition of 2 neutrons in a nucleus with 150
can drastically alter structure)
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Residual Interactions

Need to consider a more complete Hamiltonian:

Hshen Model = Hipm + Hresidual

H | reflects interactions not in the single particle potential.

residua

NOT a minor perturbation. In fact, these residual interactions
determine almost everything we know about most nuclei.

These interactions mix different independent particle model wave
functions so that a physical wave function for a given state in the
Shell Model is a linear combination of many independent Particle
Model configurations.

This mixing is essential to understanding structure and structural
evolution.



Caveat slide: Fragility of the Shell Model
ependent Particle Model — Trouble in Paradise
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How can we see changes in shell structure experimentally.

We will soon see one easy tool.
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Key Nuclear observables and their
behavior with N and Z

What nuclei do, how we study them
(what observables), and some
simple ideas about structure — single
particle and collective aspects
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Remember: The nuclei are always right !!! Don’t

y
impose our preconceptions on them. Let them tell us
what they are doing.



Let's start with R,,,. How does it vary, and why,

and why do we care

« We care because it is the almost the only observable whose

value immediately tells us something (not everything — as we
on shall see in the third lecture on the IBA model!!l) about the
structure.

« We care because it Is easy to measure.

Other observables, like E(2,*) and masses, are measurable

Information in the context of regional behavior, but generally
not as directly.



Starting from a doubly magic nucleus, what happens as the
numbers of valence neutrons and protons increase?
Case of few valence nucleons:

Lowering of energies, development of multiplets. R,, > ~2-2.4
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Origin of collectivity:
Mixing of many configurations

Consider atoy model: Mixing of degenerate states

This Is about as
=z . .
o — Important as it
EQUAL gets.
e Please remember

It and think about
It often (and try to
develop a deep
love for It).

1
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This is the origin of
collectivity in nuclel.



Types of collective structures
Few valence nucleons of each type:
The spherical vibrator

Vibrator (H.O.)
E(J)=n (/% ay)
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Lots of valence nucleons of both types:
emergence of deformation and therefore rotation (nuclel
live Iin the world, not in their own solipsistic enclaves)
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Rotor
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Doubly maqic
plus 2 nucleons
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Reminder of several types of spectra and where they occur

2 VALENCE NUCLEONS
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A special phenomenon —rapid structural change

AR:L-J = R‘-IE(ZEN) - R:IE (Z:N+2)
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E(27) (MeV)

E2,™) [MeV]
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E(2*,)
a simple measure of
collectivity




2" levels in neutron-rich nuclei
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R,, and E(27,) 2

R,, across atypical region 22]




Broad perspective on structural evolution
Z=50-82, N=82-126
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The remarkable regularity of these patterns is one of the beauties of nuclear
systematics and one of the challenges to nuclear theory.
Whether they persist far off stability is one of the fascinating questions

o for the future
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Think about the striking regularities in these data.
Take a nucleus with A ~100-200. The summed volume of all
the nucleons is ~ 60 % the volume of the nucleus, and they

orbit the nucleus ~ 104! times per second!

Instead of utter chaos, the result is very regular behavior,
reflecting ordered, coherent, motions of these nucleons.

This should astonish you.
How can this happen??!!!!

Much of understanding nuclei is understanding the relation
between nucleonic motions and collective behavior



Transition rates (half lives of excited levels) also tell us a lot about
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Coherence and Transition Rates

Consider simple case of N degenerate levels: 2°
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Alternate look:
Behavior of key observables centered
on a shell closure
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Evolution of nuclear structure

(as a function of nucleon number)
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Two-neutron separation energies
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Isotope Shifts — sensitive to structural
changes, especially deformation
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So far, everything we have plotted has been an
individual observable against N or Z (or A)

Now we introduce the idea of correlations of
different observables with each other.



Correlations of Collective Observables
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There is only one worry, however .... accidental or false
correlations. Beware of lobsters !!!






How can we understand collective
behavior

Do microscopic calculations, in the Shell Model or its modern
versions, such as with density functional theory or Monte Carlo
methods. These approaches are making amazing progress in the
last few years. Nevertheless, they often do not give an intuitive
feeling for the structure calculated.

Collective models, which focus on the structure and symmetries
of the many-body, macroscopic system itself. Two classes:
Geometric and Algebraic

Geometrical models introduce a potential which
depends on the shape of the nucleus. One can then have
rotations and vibrations of that shape.

Algebraic models invoke symmetries of the nucleus and
use group theoretical approaches to solve as much as
possible analytically.



Nuclear Shapes

Need to specify the shape. Need two parameters, 3 and
y. The concept of “intrinsic frame”.

| B specifies the ellipsoidal deformation of the shape. (We
consider quadrupole shapes only — American football or frisbee

shapes.)

| y specifies the amount of axial asymmetry

H=T+V(@.,y) Models are primarily a question of
choosing V(B.,y)
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spherical. So we must sp cify orientation of the nucleus
In space (the lab frame). Introduces three more
coordinates, Euler angles.



The Geometric Collective Model
H=T+ T + V(B

V-C,B*>+C,B3cos 3y+ C,B%4+ ...

Six terms in all for the potential. These three are normally the
only ones used as they allow a rich variety of collective
structures without an explosion of parameters. In addition,
there is a kinetic energy term.

This is a phenomenological model which cannot predict
anything without being “fed”. One selects simple data to help
pinpoint the parameters, then uses the model to calculate
other observables.



Geometric Collective Model

Vi(B)
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Key ingredient. Quantum mechanics -- confinement

Particles in Confinement is

a‘“box” or & 1 origin of

“potential” guantized
well energies levels




Energies in an Infinite Square Well
( box)

Simple Derivation

A\ P(0)=W(d)=0
|
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a) confinement —
— quantization
b) wave/particle relation



Geometric Collective Model —
H _ T + Trot + V(BsY)

V(B)
B
V()
y
Vib. v-soft ax. rotor
rotor
Vibrator:
1 .2
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Next time ...

e Geometric models
» Types of collective nuclel

* The microscopic drivers of collectivity
— the valence p-n interaction

« Simple ways of estimating the
structure of any nucleus

* Introduction to the Interacting Boson

Approximation (IBA) Model



