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The Independent Particle Model

The basic idea of the IPM is to assume that, at zeroth order, the result of
the complicated two body interactions among the nucleons is to produce
an average self-binding potential. Mayer and Jensen (1949) proposed an
spherical mean field consisting in an isotropic harmonic oscillator plus a
strongly attractive spin-orbit potential and an orbit-orbit term. Later,
other functional forms were adopted, e.g . the Woods-Saxon well

The usual procedure to generate a mean field in a system of N
interacting fermions, starting from their free interaction, is the
Hartree-Fock approximation, extremely successful in atomic physics.
Whatever the origin of the mean field, the eigenstates of the N-body
problem are Slater determinants i .e. anti-symmetrized products of N
single particle wave functions.
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The Independent Particle Model

In the nucleus, there is a catch, because the very strong short range
repulsion and the tensor force make the HF approximation based upon
the bare nucleon-nucleon force impracticable.

However, at low energy, the nucleus do manifest itself as a system of
independent particles in many cases, and when it does not, it is due to
the medium range correlations that produce strong configuration mixing
and not to the short range repulsion.

Does the success of the shell model really “prove” that nucleons move
independently in a fully occupied Fermi sea as assumed in HF
approaches? In fact, the single particle motion can persist at energies in
fermion systems due to the suppression of collisions by Pauli exclusion
(Pandharipande et al., RMP69)

Brueckner theory takes advantage of the Pauli blocking to regularize the
bare nucleon- nucleon interaction, in the form of density dependent
effective interactions of use in HF calculations or G-matrices for large
scale shell model calculations.
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The Independent Particle Model

The wave function of the ground state of a nucleus in the IPM is the
product of an Slater determinant for the Z protons that occupy the Z
lowest states in the mean field and another Slater determinant for the N
neutrons in the N lowest states of the mean field
In second quantization, this state can be written as:

|N〉 · |Z 〉

with

|N〉 = n†1n
†
2 . . . n

†
N |0〉

|Z 〉 = z†1 z
†
2 . . . z

†
Z |0〉

It is obvious that the occupied states have occupation number 1 and the
empty ones occupation number 0
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Spectroscopic factors

Lets denote the nucleon creation and annihilation operators by a† and a,
and consider the ground states of the systems of A-1, A, and A+1
nucleons, then,

|A〉 = a†1a
†
2 . . . a

†
A|0〉 and, trivially

〈A + 1|a†A+1|A〉 = 1 ; 〈A + 1|a†
6=A+1)|A〉 = 0

〈A − 1|a†A−1|A〉 = 1 ; 〈A − 1|a†
6=A−1)|A〉 = 0

the expectation values of the operators a† and a between the states of the
nuclei with A+1 and A, and A-1 and A, give the spectroscopic amplitudes
for stripping and pick-up reactions. The spectroscopic factors are the
squares of this amplitudes with some angular momentum coefficients.
When correlations are included, the spectroscopic amplitudes depart from
their 0 or 1 values. The knowledge of the spectroscopic factors make it
possible to learn about the structure of the mean field and the role of
correlations.
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Spectroscopic Factors and the Meaning of the Shell Model

Dilution of the Spectroscopic strength by the bare N-N interaction.
Results for nuclear matter.

If we had a system of non interacting fermions, the figure would be just a
step function with occupation 1 below the Fermi level and 0 above
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Spectroscopic Factors and the Meaning of the Shell Model

In spite of that, the nuclear quasi-particles resemble extraordinarily to the
mean field solutions of the IPM, as can be seen in the classical example
of the charge density difference between 206Pb and 205Tl, measured in the
electron scattering experiments of Cavedon et al, 1982
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Spectroscopic Factors and the Meaning of the Shell Model

The shape of the 3s1/2 orbit is very well given by the mean field
calculation. To make the agreement quantitative the calculated density
has to be scaled down by the occupation number
To know more, Read the article “ Independent particle motion and correlations in fermion systems”

V. R. Pandharipande, I. Sick and P. K. A. deWitt Huberts, RMP 69 (1997) 981.
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The Interacting Shell Model (ISM)

Is an approximation to the exact solution of the nuclear A-body problem
using effective interactions in restricted spaces

The effective interactions are obtained from the bare nucleon-nucleon
interaction by means of a regularization procedure aimed to soften the
short range repulsion. In other words, using effective interactions we can
treat the A-nucleon system in a basis of independent quasi-particles

A Shell Model calculation amounts to diagonalizing the nuclear
hamiltonian in the basis of all the Slater determinants that can be built
distributing the valence particles in a set of orbits which is called valence
space. The orbits that are always full form the core.
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The three pillars of the shell model

I The Effective Interaction

I Valence Spaces

I Algorithms and Codes

E. Caurier, G. Mart́ınez-Pinedo, F. Nowacki, A. Poves and A. P. Zuker. “The Shell Model as a

Unified View of Nuclear Structure”, RMP 77 (2005) 427.
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Making the Effective Interaction Simple

The effective shell model interaction appears sometimes as a long list of
meanigless numbers; the two body matrix elements of the Hamiltonian.

Without loosing the simplicity of the Fock space representation, we can
recast these numbers in a way full of physical insight, following
Dufour-Zuker rules

Any effective interaction can be split in two parts: H = Hm(monopole)
+ HM(multipole). Hm contains all the terms that are affected by a
spherical Hartree-Fock variation, hence it is responsible for the global
saturation properties and for the evolution of the spherical single particle
energies
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The Monopole Hamiltonian

Hm = Hsp +
∑

[

1

(1 + δij)
aij ni (nj − δij)

+
1

2
bij

(

Ti · Tj −
3ni

4
δij

)]

.

The coefficients a and b are defined in terms of the centröıds:

V T
ij =

∑

J V JT
ijij [J]

∑

J [J]

as: aij =
1
4 (3V

1
ij + V 0

ij ), bij = V 1
ij − V 0

ij , the sums run over Pauli allowed
values.

A. Poves SHELL MODEL AND SPECTROSCOPIC FACTORS



The Monopole Hamiltonian

The evolution of effective spherical single particle energies with the
number of particles in the valence space is dictated by Hm. In the case of
identical particles the expression reads:

εj(n) = εj(n = 1) +
∑

i

V 1
ij ni

The monopole hamiltonian Hm also governs the relative position of the
various T-values in the same nucleus, via the terms:

bij Ti · Tj

Even small defects in the centroids can produce large changes in the
relative position of the different configurations due to the appearance of
quadratic terms involving the number of particles in the different orbits.
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The Drift of the Single Particle Energies
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The Multipole Hamiltonian

HM can be written in two representations, particle-particle and
particle-hole:

HM =
∑

r≤s,t≤u,Γ

W Γ
rstuZ

+
rsΓ · ZtuΓ,

HM =
∑

rstuΓ

[γ]1/2
(1 + δrs)

1/2(1 + δtu)
1/2

4
ωγrtsu(S

γ
rtS

γ
su)

0,

where Z+
Γ ( ZΓ) is the coupled product of two creation (annihilation)

operators and Sγ is the coupled product of one creation and one
annihilation operator.

Z+
rsΓ = [a†r a

†
s ]
Γ and Sγrs = [a†r as ]

γ
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The Multipole Hamiltonian

The W and ω matrix elements are related by a Racah transformation:

ωγrtsu =
∑

Γ

(−)s+t−γ−Γ

{

r s Γ
u t γ

}

W Γ
rstu[Γ],

W Γ
rstu =

∑

γ

(−)s+t−γ−Γ

{

r s Γ
u t γ

}

ωγrtsu[γ].

The operators Sγ=0
rr are just the number operators for orbits r and Sγ=0

rr ′

the spherical HF particle hole vertices. Both must have null coefficients if
the monopole hamiltonian satisfies HF self-consistency.
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The Multipole Hamiltonian

The operator Z+
rrΓ=0 creates a pair of particle coupled to J=0 (or coupled

to L=0 and S=0, or in a state of zero total momentum). Therefore the
terms

Z+
rrΓ=0 · ZssΓ=0

represent different pairing hamiltonians, whose specificities determine the
values of the matrix elements W Γ=0

rrss
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The Multipole Hamiltonian

The operators Sγrs are typical multipole vertices of multipolarity γ. For
instance, r = s, γ=(L=0,S=1) produces a (~σ · ~σ) term which is the main
component of the residual interaction in mixed droplets of 4He-3He

The terms Sγrs γ=(J=2,T=0), that appear in the (Q · Q) interaction that
is responsible for the existence of deformed nuclei, are specially large and
attractive when jr − js=2 and lr − ls=2.
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Collectivity in Nuclei

The widespread presence of nuclei with deformed shapes is a conspicuous
manifestation of the importance of the quadrupole-quadrupole terms in
the nuclear multipole hamiltonian. Nuclear superfluidity (and the shift of
the mass parabolas in even isobaric multiplets, and many other effects)
signal also the importance of the pairing terms.

For a given interaction, a many body system would or would not display
coherent features at low energy depending on the structure of the mean
field around the Fermi level.
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Universality of the Multipole Hamiltonian

Indeed, a careful analysis of the effective nucleon-nucleon interaction in
the nucleus, reveals that the multipole hamiltonian is universal and
dominated by BCS-like isovector and isoscalar pairing plus
quadrupole-quadrupole and octupole-octupole terms of very simple
nature (rλYλ · rλYλ)

Interaction particle-particle particle-hole

JT=01 JT=10 λτ=20 λτ=40 λτ=11

KB3 -4.75 -4.46 -2.79 -1.39 +2.46

FPD6 -5.06 -5.08 -3.11 -1.67 +3.17

GOGNY -4.07 -5.74 -3.23 -1.77 +2.46

GXPF1 -4.18 -5.07 -2.92 -1.39 +2.47

BONNC -4.20 -5.60 -3.33 -1.29 +2.70
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Mean Field vs Correlations; Nuclear needles and
superconductivity

An attractive pairing interaction in an electron gas at T=0 produces the
superconducting phase transition
The quadrupole-quadrupole interaction left alone –i .e.– if the monopole
hamiltonian is negligible, would produce nuclear needles.
Magic nuclei are spherical despite the strong quadrupole-quadrupole
interaction, because the large gaps in the nuclear mean field at the Fermi
surface block the quadrupole correlations
The isotropic harmonic oscillator has SU(3) symmetry. The quadrupole
operators are generators of this group and the Casimir of the group
contains the quadrupole-quadrupole interactions. Therefore the states of
lower energy are those with maximal deformation compatible with the
Pauli principle.
The spin orbit interaction breaks the SU(3) symmetry, but other SU3
variants emerge when there are favorable orbits around the Fermi level,
like Pseudo-SU3 or Quasi-SU3.
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The Effective Interaction(s): Key aspects

The evolution of the spherical mean field in the valence spaces. What is
missing in the monople hamiltonian derived from the realistic NN
interactions, be it through a G-matrix, Vlow−k or other options? Most
probably three body forces whose need seems already well established.
Some claim that they could be reducible to simple monopole forms, a
kind of density dependence, or more precisely, occupation number
dependence

The multipole hamiltonian does not seem to demand major changes with
respect to the one derived from the realistic nucleon-nucleon potentials
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Algorithms and Codes

Algorithms include Direct Diagonalisation, Lanczos, Monte Carlo Shell
Model, Quantum Monte Carlo Diagonalization, DMRG etc. There are
also a number of different extrapolation ansatzs

The Strasbourg-Madrid codes can deal with problems involving basis of
1010 Slater determinants, using relatively modest computational resources
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The most popular“flaws”of the standard ISM description

I Quadrupole effective charges are needed (But their value is universal
and rather well understood)

I Spin operators are quenched by another universal factor which
relates to the regularization of the interaction, the same effect of the
short range correlations that shows up in the (e, e ′) and (e, e ′p)
experiments

I Not all the regions of the nuclear chart are amenable to a SM
description yet
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Physics Goals

Description of the nuclear correlations in the laboratory frame

Changing magic numbers far from stability: The competing roles of
spherical mean field and correlations

Precision Spectroscopy toward larger masses

Double β decay, the key to the nature of the neutrinos, the absolute scale
of their masses and their hierarchy

Nuclear Structure and Nuclear Astrophysics
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Spectroscopic factors

The spectroscopic factors are defined as:

S(j , tz) =
〈Jf Tf Tzf ||a

†
jtz
||JiTiTzi〉

2

2Jf + 1

where the matrix element is reduced in angular momentum only; j and tz
refer to the spin and third isospin component of the stripped nucleon.
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Spectroscopic factors

Imagine we start on doubly magic 48Ca. The states

|rjtz〉 = a
†
jtz
|48Ca gs〉

are not, except in the non-interacting case, eigenstates of the
Hamiltonian for 49Sc or 49Ca. The strongest the correlations, the farther
they are. Therefore, to calculate S(j , tz) we overlap |r〉 with the physical
states in the final nucleus. In practice, we just take |r〉 as starting vector
for a sequence of Lanczos iterations. The total spectroscopic factor is the
norm of the state |r〉
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Spectroscopic factors

The excitation energies of the starting vectors, er = 〈r |H|r〉 − 〈f |H|f 〉,
(in MeV)

ep3/2
= 4.54 ep1/2

= 5.99 ef5/2
= 5.76

are almost identical to the monopole prediction.

εp3/2
= 4.58 εp1/2

= 5.99 εf5/2
= 5.66

a result readily explained by the weakness of the ground state correlations
in 48Ca. By the same token the sum rules for (2j + 1)S(j , tz) are very
close to their theoretical maximum, (2j + 1). Indeed, the sum rule is
actually quenched by a factor of about 0.7 because of the short range
correlations that take us out of the model space.
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Stripping on 48Ca → 49Sc 0f7/2
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Stripping on 48Ca → 49Sc 1p3/2
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Stripping on 48Ca → 49Sc 1p1/2
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Stripping on 48Ca → 49Sc 0f5/2
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Spectroscopic factors and correlations; 48Ca vs 46Ar

The correlations act in two ways:

I Shifting strength from the particle to the hole channel.

I Fragmenting the strength into many states

For the neutron stripping on 48Ca and 46Ar the situation is as follows:

I orbit strength

I f7/2 0.025(Ca) 0.136(Ar)

I p3/2 0.982(Ca) 0.793(Ar)

I p1/2 0.987(Ca) 0.966(Ar)

I f5/2 0.984(Ca) 0.969(Ar)
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Spectroscopic factors and correlations

In the presence of correlations, when the single particle strength is
fragmented, one can still have an idea of the bearings of the underlying
mean field, constructing equivalent single particle energies

εj =

∑

n(E0 − E−n )S−n +
∑

m(2j + 1)(E0 − E+
m )S+

m

(2j + 1)

∑

n

S−n + (2j + 1)
∑

m

S+
m = 2j + 1
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Stripping on 48Ca → 49Ca, and 46Ar → 47Ar; 0f7/2
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Stripping on 48Ca → 49Ca, and 46Ar → 47Ar; 1p3/2
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Stripping on 48Ca → 49Ca, and 46Ar → 47Ar; 1p1/2
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Stripping on 48Ca → 49Ca, and 46Ar → 47Ar; 0f5/2
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Deformed nuclei; Stripping on 48Cr → 49Cr

In deformed nuclei, much of the particle strength goes to the hole
channel, for instance in 48Cr we have only 0.585 of 0f7/2 strength instead
of 1.0 in the single particle limit. In addition the strength is fragmented
among several states. The lowest 7/2− state in the figure belongs to the
K=5/2 ground state band of 49Cr which has β=0.3.
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Deformed nuclei; Stripping on 48Cr → 49Cr

Most of the 0f5/2 strength (0.96) remains in the particle channel. But
now the fragmentation is much stronger. Notice that the ground state
Jπ= 5/2− does not have any 0f5/2 strength.
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