...pour les réactions directes

P. Roussel-Chomaz GANIL patricia@ganil.fr

ole Joliot Curie, Septembre 200

Sources des documents: INPC2007 (http://www.inpc2007.jp) DREB2007(http://ribf.riken.go.jp/DREB2007) mes collègues du GANIL, IPNO, SPhN Saclay Collaborations MUST2, MAYA

Ecole Joliot Curie, 17-21 Septembre 2007 « Les réactions nucléaires comme sonde de la structure »

Plan du cours

1) Les réactions avec les faisceaux secondaires Réactions directes: diffusion élastique et inélastique, transfert, knock-out cinématique directe/inverse

2) Faisceaux secondaires : méthodes de production en vol et en ligne (ISOL). Avantages et inconvénients de chacune.
Exemples à GANIL, GSI, CERN-ISOLDE, Louvain la Neuve, TRIUMF, Oak Ridge, RIKEN

3) Cibles :

- cibles solides
- cibles cryogéniques (gaz, liquide, solide pour H et D)
- cibles polarisées
- 4) Détecteurs de faisceaux

5) Systèmes de détection et exemples d'expériences :

- ensembles pour particules chargées (MUST, MUST2, TIARA, HIRA....)
- cibles actives (MAYA) :

principe de fonctionnement.

Comparaison avec les ensembles de détecteurs à base de Silicium

- spectromètres (VAMOS/SPEG) :

caractéristiques, optiques, systèmes de détection du plan focal.

– Détecteur y (EXOGAM)

Méthode de masse manquante, Méthode de masse invariante Section efficace, Distribution angulaire, Distribution en moment

6) Les machines du futur: nouveaux accélérateurs, nouveaux détecteurs Japon: RIBF RIKEN USA: RIA (light) Europe: SPIRAL2, FAIR, EURISOL

Experimental techniques

Part 1:

Reactions induced with secondary beams

Why study nuclear reactions between the barrier and 100 MeV/A?

Elastic Scattering

- optical model potentials
- nuclear densities
- effective nucleon-nucleon potentials
- Inelastic scattering

E. Bauge

- electromagnetic excitation is sensitive "only" to protons while proton scattering is mainly sensitive to neutrons
- compare proton with e.m. excitation to disentangle proton and neutron deformations and transition matrix elements Mn(p)
- Transfer reactions (N. Keeley) / Knock-out reactions (D. Baye, L. Cortina)
 - Microscopic structure of ground and excited states
 - Study of unbound nuclei beyond the drip lines
- Deep inelastic reactions
 - Very efficient to produce exotic nuclei
- Fusion reactions (C. Simenel)
 - Explore the influence of novel structures on reaction mechanisms
 - Search for new paths towards heavy elements

Direct reactions with exotic beams

A(B,C)D

Direct reactions (Two-body): elastic, inelastic scattering, transfer reactions Proceed directly from initial to final state, generally in one step as opposed to compound nucleus reactions.

Exotic beams

Exotic nuclei do not live long enough to make targets secondary beam

To determine the properties of a given nucleus: interaction with simple structure particles (e^{-},p,d,α)

Inverse kinematics

Detection of the heavy ejectile or/and the light recoil or/and the deexcitation γ

Direct reactions with inverse kinematics

Detection of the heavy residue

Emission at forward angles in the laboratory frame

○ good detection efficiency even with limited angular coverage

○ angular resolution difficult to achieve

Impossible when not bound (does not give information on the structure)

Ecole Joliot Curie, Septembre 2007

P. Roussel-Cbomaz

Direct reactions in Inverse Kinematics

30 MeV/nucleon

P. Roussel-Cho

A [target] (B [projectile], C [measured]) D Example: ${}^{32}Mg(p,d){}^{31}Mg \rightarrow p({}^{32}Mg,d){}^{31}Mg$

- Q value
- : position of level
- Angular distribution : L of the transition
- Cross section : B(EL) or spectroscopic factor (or ANC)
- Detection
 - Ejectile: spectrometer
 - Light recoil: Si array
 - Deexcitation γ : Ge array

A Typical Direct Reaction Experiment

Experimental techniques

Part 2:

Production of radioactive/exotic/secondary beams

P. Roussel-Chomaz

- •Provides "high intensity" beams with good optical properties
- •Can produce "pure" beams
- •Poor efficiency for short living nuclei, but progress is being done
- •For refractory elements, only possible in "IGISOL" mode

MANY ways to get lost what you produced...
Efficiency is an important issue.
Different methods - different facilities - developed complementary techniques, guaranteeing better efficiency and reliability

Selected ISOL Facilities : CRC - LLN

		Mass sep: 2 10 ⁻⁴						
25.3	Transmission: 3 to 5%							
	Element	Half live, T _{1/2}	charge state	beam intensity [pps on target]	energy range [MeV]			
	⁶ Helium	0.8 s	1+ 2+	9 10 ⁶ 3 10 ⁵	5.3 - 18 30 - 73			
For low energy	⁷ Beryllium	53 days	1+ 2+	2 10 ⁷ 4 10 ⁶	5.3 - 12.9 25 - 62			
0.1 to 1 MeV/u	¹⁰ Carbon	19.3 s	1+ 2+	2 10 ⁵ 1 10 ⁴	5.6 - 11 24 - 44			
nto longer in op:	¹¹ Carbon	20 min	1+	1 10 ⁷	6.2 - 10			
CYCLONE 44	¹³ Nitrogen	10 min	1+ 2+ 3+	4 10 ⁸ 3 10 ⁸ 1 10 ⁸	7.3 - 8.5 11 - 34 45 - 70	30 MeV p		
	¹⁵ Oxygen	2 min	2+	6 10 ⁷	10 - 29	300 micro		
7	¹⁸ Fluorine NO LONGUER AVAILABLE	110 min	2+	5 10 ⁶	11 - 24			
AF .	¹⁸ Neon	1.7 s	2+ 3+	6 10 ⁶ 4 10 ⁶	11 - 24 24 - 33,45 - 55			
	¹⁹ Neon	17 s	2+ 3+ 4+ 6+	2 10 ⁹ 1.5 10 ⁹ 8 10 ⁸ 3 10 ⁷	11 - 23 23 - 35,45 - 50 60 - 93 171	C		
	³⁵ Argon	1.8 s	3+	2 10 ⁶	20 - 28			

Selected ISOL facilities: SPIRAL - GANIL

Selected ISOL Facilities: SPIRAL - GANIL

P. Roussel-Chomaz

http://www.ganil.fr/operation/available_beams/radioactive_beams.htm

					.								
update : 24 mars 2006													
	Radioactive Beam	Charge	Intensity (pps)		Min Energy	Max Energy	Primary	Primary Beam Power on ECS	Primary Beam Energy				
гΙ	(halflife)	oldle	LEB	Target*	(mevnucleon)	(mev/nucleon)	Degili	Target (kW)	(MeV/nucleon)				
	⁶ He (0.8s)	+1	3 10 ^{7**}				¹³ C	2.4	75				
		+1		1.7 10 ⁷	3.2	7.3		1.2					
		+1		2.8 10 ⁷	3.8	7.3		2.5					
		+1		3.2 10 ⁷	5	7.3		1.2					
		+2	2.8 10 ⁷	5.6 10 ⁶	6.8	22.8		1.4					
	⁸ He (0.12s)	+1		1.5 10 ⁵	2.5	4.1	2.5 130	2.5	75				
		+1	2.6 10 ⁵	5.2 10 ⁴	3.5	4.1		0.9					
		+1		1.8 10 ⁵	3.8	4.1		2.5	15				
		+2	1.3 to 1.5 10 ⁵	2 to 3 10 ⁴		15.4		1.4					

* Available intensity for the experiment.

** LIRAT figures

Color code :

- 2.8 10^7 = extrapolated figures from SIRA experiment from 400 W to 1.4 kW.
- **2.8** 10^7 = measured figures with SPIRAL.
- **2.8** 10^7 = expected figures after acceleration (<u>not measured</u>) with 20% transport efficiency.

INPC2007 - ACC Villari - GANIL

Other ISOL facilities: CERN-ISOLDE

Ecole Joliot Curie, Septembre 2007

M. Lindroos courtesy

Other ISOL facilities

Other ISOL facilities

•EXCYT, Catania - delivered the first ⁸Li beam

•DRIBS - Dubna

Ecole Joliot Curie, Septembre 2007

•TRIAC (KEK-JAERI) is also starting (accelerator moved from former INS)

INPC2007 - ACC Villari - GANIL

In Flight Facilities

Ecole Joliot Curie, Septembre 2007

Production of Secondary ³⁰S beam

ousse -Cboma

C C C C C C Intensities are (typically 5) orders of magnitude lower than for stable beams: Highly efficient detection systems are needed Patience is required Results should be critically examined for lack of statistics

Intensity drops by 1 order of magnitude for each additional neutron (or proton).

Experiments with RIBs: some numbers

$\mathsf{N}_\mathsf{R} = \mathsf{N}_\mathsf{T} \times \mathsf{N}_\mathsf{B} \times \sigma$

- N_R reaction rate (yields observable)
- N_T atomic density of target
- N_B beam rate
- σ cross section (given by nature)

- Example
 - $-\sigma$ = 10 mbarn
 - Target CH₂ 1 mg/cm²
 - $N_{T} = 10^{20} \text{ cm}^{-2}$
 - N_B = 3000 Hz
 - $-N_{R} = 3 \times 10^{-3} \text{ Hz} = 260/\text{day}$
- Typical reactions
 - elastic scattering:
 - Inelastic scattering: 10 to few 10³pps
 - Transfer reactions: 10⁴pps
 - Knock-out reactions: few pps

Experimental techniques

Part 3:

Targets

Targets for secondary beams

In high resolution spectrometer (SPEG) beam dispersed on target If width of the beam in momentum is 1%and dispersion on target 10 cm/% $\Rightarrow 10 \text{ cm}$ wide beam

 CH_2 , CD_2 \Rightarrow Need to measure background due to C

Ecole Joliot Curie, Septembre 2007

⇒for the same energy loss 3 times less atoms of H or D than in cryogenic Target with pure H_2/D_2

P. Roussel-Chomai

Vide

Experiments:

GANIL Proton reaction cross section measurements Dubna ⁶He(p,pp)⁵H ⁶He(d,p)⁷He ⁸He(p,t)⁶He RIKEN ⁸He(p,pp)⁷H ⁸He(d,p)⁹He

arrivee H, J.F. Libin, P.Gangnant Rapport Ganil-Aires 01-97 He Н, He Vide Cold finger + He $T \approx 6K$, 1-2 mm thick Solid hydrogen

arrivee He

arrivée de gaz

Ecole Joliot Curie, Septembre 2007

tête

cryogenique

Thickness : 1 mm (17 mg.cm⁻² = 7. 10^{19} cm⁻²) Windows : 4 × 6 mm Mylar (3. mg.cm⁻²)

Helium cooling (4 K)

P.Dolégiéviez & al., Report GANIL A 00 01 (2000) F. Santos de Oliveira & al., Eur. Phys. Jour. A, (2005)

Cryogenic H₂/D₂ target

34

P. Dolégiéviez et al. / Nuclear Instruments and Methods in Physics Research A 564 (2006) 32-37

Fig. 1. Schematic view of the target that allows formation of homogeneous solid H2 or D2 without window deformation.

H2 capillaries

RIKEN: Windowless H₂ target

Diameter: 25 mm Thickness: 5-10 mm (40-80 mg/cm²) T=4.2 K Crystal formation from gas at 7K Also possible from liquid at 3 MPa

S. Ishimoto, NIMA480 (2002) 304

Ecole Joliot Curie, Septembre 2007

Other cryogenic targets Dubna: Tritium target

Thickness: 0.4 mm to 4mm (liq/gas) 12 μ m stainless steel windows + two protection barriers Operation pressure: 0.1 Mpa Window destruction pressure: 2 Mpa Storage in compound state with ²³⁸U (380 cm³ of tritium) Release by heating \approx 700 K

A. Yukhimchuk et al., NIMA513 (2003) 439

CNS Polarized Proton Target

- Strong point
 - Operation in modest conditions
 - Low magnetic field: 0.1 T
 - High temperature: 100 K
- Target material

Single crystal of naphthalene + pentacene

Polarizing method

Ecole Joliot Curie, Septembre 2007

- Laser excitation
 - \rightarrow Electron pol. in aromatic molecules

A. Henstra et al., Phys. Lett. A 134 (1988) 134. T. Wakui et al., NIM A 526 (2004) 182.

Study of unstable nuclei with polarized proton

⇔ Conventional

pol. p target (2.5 T, 0.5 K)

1 mm^t

14 mm ϕ

Thickness: 4 10²¹ at/cm² Polarisation 14% T. Uesaka, NIMA526 (2004) 186

Polarised Targets

J^{π} dependence

Which experiments?

- Elastic Scattering (p,p) (d,d) spin-orbit potential
- (p,p'), (p,n): spin-isospin response
- (*d*, p), (*p*,d), (*d*, t): J^π of single particlehole states from analyzing power
- Spin-orbit potential localized on nuclear surface

cole Joliot Curie, Septembre 200

$$V_{LS} \approx \frac{1}{r} \frac{d}{dr} \rho$$

Neutron halo/skin nuclei: difference between Proton and neutrons densities How does spin-orbit potential behave???

Active target: MAYA

fast out (a.u.)

4000

3000

MAYA is essentially an ionization chamber, where the gas plays also the role of reaction target.

Experimental techniques

Part 4:

Beam tracking detectors

Why do we need beam tracking detectors?

- Count the incoming particles
- Identify them : TOF, ΔE -TOF
- reconstruct trajectories and impact point on target

At high energy:

- plastic scintillators
- diamond detectors

At low energy:

- gas detectors
- microchannel plates

Beam tracking detectors

Ecole Joliot Curie, Septembre 2007

Beam detectors :

As low interception of the beam as possible (1 mg/cm²) Efficiency \approx 100 % Counting rate \approx 10⁵ - 10⁶ pps Position resolution \approx 1mm Angular resolution \approx 1 mrad

- Drift chamber
- CATS: Low pressure multiwire chambers

Beam tracking detectors: CATS

CATS: Chambre à trajectoires de Saclay S. Ottini-Hustache et al., NIMA431 (1999)476 MWPC, isobutane 6-15 torr

Beam detectors: CATS

...in the focal plane

of SPEG

Effect of beam tracking detectors...

⁶He + (CH₂)₅ Θ_{speg} =3.5 deg sans pah oved pch angle de diffusion Ū 7 Φ j, D Thèse 0 215 220 225 E(MeV) 230 220 225 E(MeV) 230 210 215 V. Lapou 210 E_{ab}=38.3 McV/A ...and for the recoil nucleus detected with MUST/MUST2

Experimental techniques

End of first lecture

Part 5

cole Joliot Curie, Septembre 2001

Detection systems and selected examples of experiments

a) Missing mass method: Detection of recoil nucleus Application to elastic & inelastic scattering, transfer reactions MUST, MUST2, TIARA, HIRA, ORRUBA, MAYA

b) Invariant mass method: Detection of all outgoing particles Application to giant resonances

c) And the contrary: Transfer via invariant mass method Giant resonances via missing mass method

Experimental techniques

Part 5

Detection systems and selected examples of experiments

In a nuclear reaction a(A,b)B we need to characterize the particles by their:

- M mass
- Z atomic number
- Q charge state
- E energy (or v velocity)

Experimental techniques

Variable	Detector	Resolution typically	Domain
E	semiconductor	qq.10 ⁻³	range < 1 cm
6	scintillatorr	qq.10 ⁻²	E≥ some MeV/n
	gas	qq.10 ⁻²	range < 1 m.atm
ΔΕ	semiconductor scintillator gas	qq.10 ⁻²	E≥ some MeV/n
Bρ	spectrometer	10-3 - ~10-5	$E \ge \text{some keV/n}$
^t flight	scintillator	(0.1-0.5) ns	E≥qq keV/n
	gas	$\Delta t/t$ dependent on d	$E \ge \sim MeV/nucl$
	semiconductors	typically : 10^{-2} -	
		~10-4	

In a nuclear reaction a(A,b)B we need to characterize the particles by their:

- M mass
- Z atomic number
- Q charge state
- E energy (or v velocity)

Very often B (projectile residue) is not bound.

Two ways to obtain information on its structure:

— missing mass method: due to the 2-body character of the reaction, all the information on B can be inferred from the kinematical characteristics

of b

— invariant mass method: all the outgoing particles resulting from the decay of B are measured.

Part 5

e Joliot Curie, Septembre 200

Detection systems and selected examples of experiments

a) <u>Missing mass method: Detection of recoil nucleus</u> <u>Application to elastic & inelastic scattering, transfer reactions</u>

Missing mass method

Ecole Joliot Curie, Septembre 2007

Reaction a(A,b)B

Detection of b

- forward center of mass angles (large cross sections) correspond to very low energy recoil particles
- -elastic scattering at 90 °
- —pick-up at 0°
- -stripping at 180°

P. Roussel-Chomaz

Detection set up must have

- low threshold
- large dynamic range
- a large angular coverage
- modularity
- « Catford » plots

Experimental setup : MUST

Ecole Joliot Curie, Septembre 2007

L. Gaudefroy PhD Thesis

Ecole Joliot Curie, Septembre 2007

PRL 97, 092501 (2006)

Ecole Joliot Curie, Septembre 2007

Reduction of the Spin-Orbit Splittings at the N = 28 Shell Closure

L. Gaudefroy,^{1,2} O. Sorlin,^{2,1} D. Beaumel,¹ Y. Blumenfeld,¹ Z. Dombrádi,³ S. Fortier,¹ S. Franchoo,¹ M. Gélin,² J. Gibelin,¹ S. Grévy,² F. Hammache,¹ F. Ibrahim,¹ K. W. Kemper,⁴ K.-L. Kratz,^{5,6} S. M. Lukyanov,⁷ C. Monrozeau,¹ L. Nalpas,⁸ F. Nowacki,⁹ A. N. Ostrowski,^{5,6} T. Otsuka,¹⁰ Yu.-E. Penionzhkevich,⁷ J. Piekarewicz,⁴ E. C. Pollacco,⁸ P. Roussel-Chomaz,² E. Rich,¹ J. A. Scarpaci,¹ M. G. St. Laurent,² D. Sohler,¹¹ M. Stanoiu,¹² T. Suzuki,¹³ E. Tryggestad,¹ and D. Verney¹

N=28 gap has decreased by 330(80) keV between Ca and Ar Decrease of the f and p spin-orbit splittings by 800keV and 900keV, respectively

The MUSTZ Array

Collaboration: IPNO,SPhN/Saclay,GANIL

MUST2 : a major upgrade of MUST > Increased angular coverage

- Better efficiency
- Measure several reactions in one shot
- Increased granularity (multiparticle events)

New ASIC based electronics : more compact

Saclay

IPN

GANI

288 Energy Spectra
150 KeV Threshold
40 KeV FWHM α
288 Time Spectra
500 psec FWHM

Other detection systems : ORRUBA @ Oak Ridge

ORRUBA: Oak Ridge Rutgers University Barrel Array

- Flexible design for measuring ejectiles from transfer reactions in inverse kinematics
- Resistive and non-resistive Si detectors (1000μm, 500μm and 65μm)
- ORRUBA gives ~80% ¢ coverage over the range 47° →132°
- 288 electronics channels (conventionally instrumented)

Other detection systems : ORRUBA @ Oak Ridge

¹³²Sn(d,p) Courtesy of K. Jones

O The most exotic nuclei are usually the most interesting ones.
O The production rate for exotic nuclei decreases basically exponentially with the increase of proton-neutron imbalance

- High efficiency set-up
- Thick targets : loose of energy resolution
- Low energy of light-ion recoil

New concept : Target becomes a good resolution detector

Detector gas : H₂, D₂,³He, ⁴He, C₄H₁₀ ... 3-D tracking, Range & Energy losses of particles

- \checkmark Very high efficiency
- ✓ Thick target
- ✓ Low particle thresholds
- \checkmark Large range of center of mass angles
- \checkmark Excitation function
- ✓ 10⁴ Hz

MAYA Active Target

W. Mittig et al. European Physical Journal A 25 (2005) 263 C. E. Demonchy et al. Journal of Physics G 31 (2005) S1831

MAYA active target

Z †

x

Y

P. Roussel-Chomaz

Zone active

Ecole Joliot Curie, Septembre 2007

MAYA active target

ASIC technology : Gassiplex (GAS64)

- ≈thousand channels
- Multiplexed serial readout
- Dynamic fixed
- Common track & hold

Ecole Joliot Curie, Septembre 2007

Specificity of MAYA data analysis

Principle :

- Energies (Ranges) and scattering of all charges particles are determine inside MAYA

Quantities used for data analysis are :

- Energy deposited in Si and CsI wall
- Scattering angle of particles (heavy and light partners)
- Totally and partially integrated energy loss in MAYA
- Vertex of the reaction Important Excitation function

Limitations :

- Vertex determination at small angle
- Resolution depends on the length of tracks
- Tracking cannot be made near Φ =90° and 270° (reaction plane is vertical and drift time can not be measured)

Maya identification

O For particle stopping inside MAYA, identification is given by the energy of the particle and its range :

E^2/MZ^2

Curie, Septembre 2007

e Joliot

O For particle leaving MAYA at forward angles, identification is given by the energy loss in MAYA, energy deposit in Si and CsI wall

Evenement.Range

Evenement.Range2 {InConf == 2}

9Li @ 3.6 MeV/u

Range = 173.7 (1.2) mm

OReconstruction of the reaction kinematics

P. Roussel-Chomaz

Event analysis

Ecole Joliot Curie, Septembre 2007

MAYA random selected events

Matrix

MAYA@TRIUMF ¹¹Li campaign (H. Savajols and I. Tanihata spokepersons, thèse Th. Roger)

Matrix

P. Roussel-Chomaz

MAYA and the quest of ⁷H

Hector Alvarez-Pol, Esther Estevez-Aguado, USC

Ecole Joliot Curie, Septembre 2007

Amplification in the gas detector: GEMS

THIN METAL-COATED POLYMER FOIL CHEMICALLY ETCHED WITH 5-100 HOLES mm²

MANUFACTURED BY CERN-TS-DEM (Rui De Oliveira)

F. Sauli, NIMA 386(1997)531

Typically: 50 µm Kapton 5 µm Copper 70 µm holes at 140 µm pitch

A DELLAR DELLA

INDEPENDENT PROPORTIONAL COUNTERS (~ 50/mm²) > HIGH RATE CAPABILITY

HIGH VOLTAGE ELECTRODE SEPARATED FROM READOUT >> ROBUSTNESS

FAST ELECTRON SIGNAL ONLY >> HIGH RATES, GOOD TWO-TRACK RESOLUTION

READOUT ELECTRODE: ARBITRARY PATTERN

Amplification in the gas detector: MICROMEGAS

Aluminized Mylar

Micromegas : Micro Mesh Gaseous Detector

Y. Giomataris et al, NIMA376 (1996) 29

(every 2mm, 100µm diam)

Ecole Joliot Curie, Septembre 2007

Experimental techniques

Part 5

Detection systems and selected examples of experiments

b) Invariant mass method: Detection of all outgoing particles Application to giant resonances

The collective response of the nucleus: Giant Resonances

Electric giant resonances: Hydrodynamic Picture

P. Roussel-Chomaz

The dipole response of neutron-rich nuclei

Electromagnetic excitation at high energies

measurement of the momenta of all outgoing particles (invariant mass)

Experimental Approach: Production of (fission-)fragment beams

Experimental Scheme: The LAND reaction setup @GSI

Dipole-strength distributions in neutron-rich Sn isotopes

Part 5

cole Joliot Curie, Septembre 200

Detection systems and selected examples of experiments

c) And the contrary:

<u>Giant resonances via missing mass method</u> <u>Transfer via invariant mass method</u>

Inelastic scattering (d,d') (α , α ') @ E \geq 25 A.MeV

 $\theta_{\rm c.m.}({\rm deg.})$

0

D.H. Younblood *et al*, Phys. Rev. Lett **76**, 1429 (1996)

Experimental setup

Analysis with gaussian fit

Ch. Monrozeau

Reaction : DWBA with double folding using HF and RPA ⁵⁶Ni gs and transition densities

P. Roussel-Chomaz

Summary & outlooks

- Isoscalar GMR and GQR measured in the ⁵⁶Ni unstable nucleus
- Use of MAYA active target with d gas
- 16h of 10⁴ pps beam
- Results compatible with the ⁵⁸Ni (stable) data
- The method works !

•Improvements : identification & d breakup, reaction model

• Next : neutron rich Ni isotopes, ¹³²Sn ACTAR active target

P. Roussel-Choma

²²O(d,p)²³O

RIKEN RIPS 34AMeV ²²O 600pps CD₂ target 30mg/cm² Si telescope 96cm down the target: identification of scattered particles, x and y 156 CsI(TI) array: Backward emitted protons 80 NaI(TI) scintillators: γ rays Neutron wall: neutrons from decaying ²³O above threshold

Confirmation of N=16 shell closure (gap=4 MeV) Second excited state not present in USD shell model: fp shell N=20 shell gap \approx 1.3 MeV in good agreement with MCSM Disappearance of N=20 at Z=8

Experimental techniques

End of second lecture

Part 5 (continued)

Detection systems and selected examples of experiments

<u>d) Magnetic spectrometers</u> _____i) angular distributions ii)momentum distributions

<u>e) Magnetic spectrometers in coincidence with γ-detection</u>
i) momentum distributions
ii) in beam γ spectroscopy
iii) direct reactions: inelastic scattering, transfers
iv) deep inelastic

Part 6

Future facilities

Detection systems and selected examples of experiments

d) Magnetic spectrometers

0

Some notions on magnetic optics

particle coordinates

- x distance in the horizontal plan of the z axis θ angle in the plane x, z
- y distance in the vertical plane of the z axis ϕ angle in the plane y, z
- l difference of length of the trajectory considered and the central trajectoire

 δ difference of momentum of the particle with respect to the reference particle $\delta = (p-p_0)/p_0$.
Ecole Joliot Curie, Septembre 2007

for malism of particle transport to 1st order

example

$$x_f = f_x(x_i, \theta_i, y_i, \phi_i, l_i, \delta_i)$$

with i=initial, f=final

Taylor expansion, for example for x, θ to1st order

$$x_{f} = \frac{\partial f_{x}}{\partial x} x_{i} + \frac{\partial f_{x}}{\partial \theta} \theta_{i} + \frac{\partial f_{x}}{\partial y} y_{i} + \frac{\partial f_{x}}{\partial \phi} \phi_{i} + \frac{\partial f_{x}}{\partial l} l_{i} + \frac{\partial f_{x}}{\partial \delta} \delta$$

$$\theta_{f} = \frac{\partial f_{\theta}}{\partial x} x_{i} + \frac{\partial f_{\theta}}{\partial \theta} \theta_{i} + \dots$$

In matrix formalism, this is :

 $\begin{pmatrix} x_{f} \\ \theta_{f} \\ y_{f} \\ \varphi_{f} \\ l_{f} \\ \delta_{f} \end{pmatrix} = \begin{pmatrix} R_{11} R_{12} R_{13} R_{14} R_{15} R_{16} \\ R_{21} R_{22} \\ \vdots \\ R_{61} \\ R_{66} \end{pmatrix} \begin{pmatrix} x_{i} \\ \theta_{i} \\ y_{i} \\ \varphi_{i} \\ l_{i} \\ \delta_{i} \end{pmatrix} = \begin{pmatrix} x_{i} \\ R_{16} = 0 \text{ sys} \\ R_{16} = R_{26} = 0 \text{ sys} \\ R_{16} = R_{16} = 0 \text{ sys} \\ R_{16} = 0 \text{ sys} \\ R_{16} = 0 \text{ sys} \\ R_{16} = 0 \text$

 R_{16} =0 système non dispersif R_{16} = R_{26} =0 système achromatique → R52=0 isochronisme R_{12} =0 focalisation point-point R_{22} =0 foc. point parallèle Some notions on magnetic optics

Use of this matrix formalism:

$$\vec{\mathbf{x}}_1 = \mathbf{R}_1 \, \vec{\mathbf{x}}_0$$

$$\vec{x}_2 = R_2 \vec{x}_1 = R_2 R_1 \vec{x}_0$$

The final result is formally described as a product of matrices, representing the different elements of the optical system

See Ecole Joliot Curie 1994:

« Physique Nucléaire expérimentale: des éléments pour un bon choix » Cours W. Mittig

At the focal plane of a spectrometer, we need to: -identify the particles -reconstruct their trajectory to determine their

momentum and (eventually) their angle of emission

For that purposes, the focal plane of a spectrometer is usually equiped with gas detectors (drift chambers) to measure the position of the particles, and a set of detectors to obtain ΔE -E or TOF-E identification: ionisation chamber, Si detector array, plastic scintillator, secondary emission detectors.

Spectrometer description

Ecole Joliot Curie, Septembre 2007

OAcceptance ± 6% in momentum

Focal Plane Setup

beam

Ecole Joliot Curie, Septembre 2007

Si Wall

Drift Chamber

Position measurement

Ecole Joliot Curie, Septembre 2007

P Roussel-Chomaz

Ecole Joliot Curie, Septembre 2007

Angular calibration of VAMOS

 $\mathsf{B}\rho = \mathsf{B}\rho_0 + 3\%$

Part 5

Septembre 2007

Curie,

Ecole Joliot

Detection systems and selected examples of experiments

<u>d) Magnetic spectrometers</u> i) angular distribution

Examples: elastic/inelastic sattering, charge exchange reaction

Ecole Joliot Curie, Septembre 200

Réaction d'échange de charge p(⁶He,⁶Li)n

Ecole Joliot Curie, Septembre 2007

Rather restricted range of possibilities

- angular resolution difficult to achieve for A>10 in reverse kinematics
- not possible for unbound ejectile
- not very efficient beam use: several (many)
- $B\rho$ values necessary for a complete angular distribution.

Part 5

Septembre 2007

Curie,

Ecole Joliot

Detection systems and selected examples of experiments

<u>d) Magnetic spectrometers</u> ii) momentum distribution

Fragment Momentum Distributions

Sept

Ecole Joliot

Fragment Momentum Distributions

P. Roussel-Chomaz

Part 5

Detection systems and selected examples of experiments

e) Magnetic spectrometers in coincidence with y-detection

Some examples of γ -detection arrays

Château de cristal: 74 BaF2

RIKEN: CNS GRAPE: planar Ge detectors (18) with PSA analysis DALI2: 160 NaI(TI) detectors

MSU/NSCL: SeGA

Septembre 2007

Ecole

TRIUMF: TIGRESS

Some examples of γ -detection arrays

Gamma-ray energy spectrum

Doppler corrections

0

Part 5

Detection systems and selected examples of experiments

<u>e) Magnetic spectrometers in coincidence with γ-detection</u> i) momentum distribution

Exclusive 1-n removal reaction: Experimental procedure

- •¹¹Be beam, ⁹Be target
- •Ascertain 1n stripping (identify ¹⁰Be)
- •Final state of ¹⁰Be (measure γ)
- •l of emitted nucleon (measure ¹⁰Be momentum distribution)

Is ¹¹Be a pure s-wave halo state?

$${}^{11}_{4}Be_{g.s.} = S^{1/2} \left(0^+ \right)^{10} Be_{0+} \otimes 2s + S^{1/2} \left(2^+ \right)^{10} Be_{2+} \otimes 1d + .$$

 γ spectrum (from ¹⁰Be)

Ecole Joliot Curie, Septembre 2007

ground state momentum distribution

224

259(39)

Σ

Microscopic structure of ¹¹Be through (p,d) reaction

Ecole Joliot Curie, Septembre 2007

An Example: The Ground State of ¹²Be

Exclusive Momentum Distributions

Breakdown of the N=8 shell gap in ¹²Be ¹²Be ground state only 32% $v(1s1p)^8$ and 68% $v(1s1p)^6$ -(2s,1d)²

Part 5

Detection systems and selected examples of experiments

<u>e) Magnetic spectrometers in coincidence with γ-detection</u> ii) in beam spectroscopy

In beam spectroscopy

P Roussel-Chomaz

In-beam spectroscopy at N=28, ⁴²Si

ssel-Cho

Roll

0

Part 5

Septembre 2007

Curie

Ecole Joliot

Detection systems and selected examples of experiments

<u>Magnetic spectrometers in coincidence with γ-detection</u> iii) direct reactions: inelastic scattering, transfers

Study of N=20 region

Experimental details

M. Gelin PhD Thesis

Study of N=20 region

Experimental details

Ecole Joliot Curie, Septembre 2007

P. Roussel-Choma

The case of ³²Mg

 Several nuclei
Several reaction channels at the same time

M.Gelin, PhD Thesis

Ecole Joliot Curie, Septembre 2007

 $\gamma - \gamma$ coincidences for ³²Mg

200
Angular distributions for ³⁴Si and ³²Mg

$W(\theta) = Const[1 + a_2 P_2 cos(\theta)]$

Firm assignment of 3⁻ in ³⁴Si at 4.2 MeV

Structure of ²³F: Multiple reactions in one experiment ~35 MeV/nucl,100 mg/cm² liquid helium target at RIKEN

Ecole Joliot Curie, Septembre 2007

Part 5

Detection systems and selected examples of experiments

<u>Magnetic spectrometers in coincidence with γ-detection</u> iv) deep inelastic

- populate neutron rich nuclei
- single particle and collective states
- many nuclei at the same time
- •Excitation energy

- selectivity
- sensitivity

- beam 238U at 5.5 MeV/u
- target ⁴⁸Ca
- inverse kinematics

Identification spectra

Neutron rich Calcium isotopes

M. Rejmund et al Phy Rev C76 (2007) 021304

No gap at N=34

Limits of the method

Part 6

Future facilities

RIA – Light @ NSCL-MSU

Production rates at FAIR

Ecole Joliot Curie, Septembre 2007

Ssel-Cho P Roll

Experiments at Storage Rings: EXL and ELISe

- Reactions with internal targets
 - © Elastic p scatt.
 - ③ (p,p') (α,α')
 - ☺ transfer
- Electron scattering
 - © elastic scattering
 - ☺ inelastic

Exotic Nuclei Studied in Light-Ion Induced Reactions at NESF

Ecole Joliot Curie, Septembre 200

Target-Recoil and Gamma Detector around internal target

The Electron-Ion (eA) Collider

SPIRAL 2 Layout

Marek Lewitowicz, GANIL

19/10/05

Fission yields

4.5 mA 10¹³ f/s ρ =2.3g/cm³ V=240cm³ 5 mA 5.10¹³ f/s ρ =11g/cm³ V=240cm³ 5 mA 2.10¹⁴ f/s ρ =11g/cm³ V=1000cm³ 6kW (limit) Fission of ²³⁹U E_x= 20 MeV

40 MeV deuterons, 5 mA \Rightarrow **200 kW** in the converter

Without converter

Septembre

0.15mA 5.10¹² f/s 6kW Fission of ²⁴⁰Pu,... $E_x \ge 50$ MeV

acces to a wider mass region

Production of neutron deficient and (super) heavy

Fusion-evaporation and transfer reactions residues produced by thick target method (like ISOL@GSI) exemple 1/s ¹⁰⁰Sn 1⁺

Fusion-evaporation residues produced by thin target method (In-Flight) example: $3x10^4$ /s ^{80}Zr 1⁺

Spectroscopy of N=Z A≈100, spectroscopy of SH, SHE production...

Primary Heavy Ion beams at 14.5A MeV of 1 mA, up to Ar

Isotope	A/Z	T _{1/2} , s	Production action
⁶ He	3.0	0.81	⁹ Be(na) ⁶ He
⁸ He	4.0	0.12	⁹ Be(¹³ C, ¹⁴ O) ⁸ He
⁸ Li	2.7	0.84	$^{11}B(n\alpha)^{8}Li \text{ or }^{9}Be(d^{3}He)^{8}Li$
⁹ Li	3.0	0.18	$^{11}B(n,He)^{9}Li \text{ or }^{9}Be(^{7}Li,^{7}Be)^{9}Li$
¹¹ Be	2.8	13.8	$^{11}B(n,p)^{11}Be$
¹⁵ C	2.5	2.45	⁹ Be(Li,p) ¹⁵ C
¹⁶ N	2.3	7.13	$^{16}O(n,p)^{6}N \text{ or }^{10}B(^{7}\text{Li},p)^{16}N$
^{18}N	2.6	0.62	$^{18}O(n,p)^{18}N$
¹⁹ O	2.4	26.9	$^{19}F(n,p)^{19}O$
²⁰ O	2.5	13.5	${}^{19}F(n\gamma){}^{20}O \text{ or}{}^{19}F(d,n){}^{20}O$
²³ Ne	2.3	37.2	19 F(⁶ Li,2p) ²³ Ne or ²⁴ Mg(n,2p) ²³ Ne
²⁵ Ne	2.5	0.60	$^{26}Mg(^{3}C,^{14}O)^{25}Ne \text{ or}^{26}Mg(n,2p)^{25}Ne$
²⁵ Na	2.3	59.1	$^{25}Mg(^{12}C,^{12}N)^{25}Na \text{ or}^{25}Mg(n,p)^{25}Na$
²⁶ Na	2.4	1.08	²⁶ Mg(d,He) ²⁶ Na or ²⁶ Mg(n,p ²⁶ Na

⁹Be(n,α)⁶He ~ 10¹³ pps ¹⁴N(d,n)¹⁵O ~ 10¹² pps

Future Equipment for SPIRAL2

-Chomaz

ũ

n

The EURISOL Concept

Calculations for EURISOL : Helge Ravn

Fig. 5.2: The region of the chart of nuclides that illustrates the interesting doubly-magic nuclei far from stability and a comparison of their projected rates (as in figure 5.1) at EURISOL and the future GSI facility ('SIS 200').

Yields after acceleration Comparison between facilities

a) Yield for in-flight production of fission fragments at relativistic energy

Ecole Joliot Curie, Septembre 2007

The end...

Ecole Joliot Curie, Septembre 2007

