Isospin symmetry breaking in mirror nuclei

Experimental and theoretical methods

Silvia M. Lenzi Dipartimento di Fisica dell'Università and INFN, Padova, Italy

2. Experimental techniques for mirror spectroscopy

latituto Naziemale di Fisica Nucleare

Coulomb Energy Differences (CED)

Ζ

Isospin symmetry manifests better along the N=Z line

Analogue states with low spin are studied in CDE (IMME)

What about the difference in excitation energy with increasing spin?

CED have been restricted for many years to low-spin states due to the difficulties in populating proton rich nuclei...

Experimental issues

- proton-rich T_z < 0 isobars only weakly populated
- "mirrored" gamma-ray energies almost identical

 \rightarrow we need very clean reaction channel selection...

latituto Nazionalo di Fisice Nucleare

Populating proton-rich nuclei

Example: the $f_{7/2}$ shell

N=Z

The $1f_{7/2}$ shell is isolated in energy from the rest of fp orbitals

Wave functions are dominated by $(1f_{7/2})^n$ configurations

Experimental issue : proton-rich $T_z = -1/2$ isobars are weakly populated

"Mirrored" gamma ray energies almost identical – need very clean reaction channel selection...

Experimental requirements

High efficiency and resolution for γ detection

Low cross section at high spin (small masses)

High energy transitions

Good selectivity: particle detectors

Many channels opened: high efficient charged-particle detectors

Kinematics reconstruction for Doppler broadening

Mass spectrometers

Neutron detectors to select proton-rich channels Polarimeters and granularity (J, π, δ)

Gamma spectroscopy

Gamma-ray spectrometers

Techniques for proton-rich spectroscopy

Three basic techniques for selecting proton-rich systems

1. High efficiency & high granularity gamma-ray spectrometer high fold γ^n (n \ge 3) coincidence spectroscopy

Gamma-ray array + mass spectrometer + focal plane detectors - identify A,Z of recoiling nucleus and ToF
 → tag emitted gamma-rays

 Identify cleanly all emitted particles from reaction - needs a charged-particle detector array + high-efficiency & high granularity neutron detector array + γ-ray array

1. High-fold γ -coincidence spectroscopy

- Combined electric and magnetic dipoles \rightarrow beam rejection & A/q separation
- *A*/*q* identified by *x*-position at focal plane
- Z identified by energy loss (E- Δ E) in gas-filled ionisation chamber
- information used to "tag" coincident gamma-rays at target position
- Efficiency up to ~ 15%
- Measure the final residue

An example: the A=48 mirror pair

Selecting "pure" spectra

Contaminants can be removed by using the recorded total energy *E* and time-of-flight (*TOF*) of the recoils

Mass is proportional to ET^2

$$E = \frac{1}{2}mv^2, \quad v = \frac{d}{TOF}$$
$$\implies m \propto E(TOF)^2$$

the ET^2 information has sufficient resolution to distinguish three mass units difference.

γ - γ coincidence analysis

Fragmentation reactions and exotic beams

Fragmentation reactions with the removal of 5 or more particles are mainly of statistical character and populate yrast states.

One knock-out reactions are a direct process. Two–proton knockout from neutron-rich nuclei and two–neutron knockout from proton-rich nuclei at intermediate or relativistic bombarding energies are also direct reactions.

Direct reactions selectively populate single-hole states

Between 3 and 5 nucleons removed the two processes compete

Fragmentation reactions are particularly suitable to populate mirror nuclei far from stability and near the proton dripline.

Knockout reactions with exotic beams

Example: study the "magicity" of ³⁶Ca – mirror of magic ³⁶S (N=20, Z=16)

One neutron removal reaction from ³⁷Ca beam

Technique pioneered at GANIL (Stanoiu et al. PRC 69, 034312 (2004))

F. Azaiez et al.

Mirrored fragmentation of N=Z nuclei

MSU experiment

Mirror nuclei with multinucleon transfer

Mirror nuclei with multinucleon transfer

3. Measuring the evaporated particles

With this method we do not measure directly the final residue but the particles emitted from the compound nucleus

We need detectors with high efficiency

charged particles

neutrons

Advantage: more flexible than recoil mass spectrometry → more channels can be measured!

Disadvantage: not as clean as RMS If neutrons are needed, it may be much less efficient

Charged-particle detectors

DIAMANT

86 CsI(TI) elements scintillators

efficiency: protons ~70% alphas ~ 50%

EUCLIDES

latituto Nazionale di Fistos Nucleare Si E-ΔE telescopes efficiency: protons ~70% alphas ~ 40%

Neutron detection systems

Detectors placed downstream of the target position

Large volume liquid scintillators coupled to photo-multipliers tubes. Usually replace some of the forward-most Ge detectors of the array

letitute Nazionale di Reice Nucleare

Discrimination using time-of-flight data

Problem: one neutron scattered between two detectors looks like two neutrons...

A single scattered neutron → different times-of-flight recorded

Genuine 2-neutron event \rightarrow similar timeof-flight recorded

An example: production of ⁵⁰Fe

Experiment for ⁵⁰Fe, LNL

EUROBALL: High efficiency $(e_{ph} \sim 8\%)$ and high granularity (209 crystals) HpGe array.

26 Clover detectors (×4 crystals) & 15 Clusters (×7 crystals).

ISIS: Charged-particle detector array - 40 Si E-DE telescopes, total efficiency $e_p \sim 70\%$, $e_a \sim 40\%$

NEUTRON WALL: 50 detector elements - BC501A Liquid Scintillator. Efficiency (reaction dependent) e_{1n} ~25%.

S.M. Lenzi et al., Phys. Rev. Lett 87 (2001) 122501

First observation of excited states in ⁵⁰Fe

Spectroscopy with exotic stopped beams

Gamma and proton decay of ⁵⁴Ni

3. Theoretical tools for CED First part

Silvia Lenzi – Ecole Internationale Joliot -Curie, September 2010

latituto Nazionale di Fisica Nucleare

Basic Shell Model

Configuration mixing

$$\phi = \frac{1}{\sqrt{A!}} \det \begin{pmatrix} \psi_1(r_1) & \cdots & \psi_1(r_A) \\ \vdots & \ddots & \vdots \\ \psi_A(r_1) & \cdots & \psi_A(r_A) \end{pmatrix}$$

$$= \begin{pmatrix} \langle \phi_1 | H | \phi_1 \rangle & \langle \phi_1 | H | \phi_2 \rangle & \cdots \\ \langle \phi_2 | H | \phi_1 \rangle & \langle \phi_2 | H | \phi_2 \rangle & \cdots \\ \langle \phi_3 | H | \phi_1 \rangle & \vdots \end{pmatrix} = \begin{pmatrix} E_1 \\ E_2 \\ \ddots \end{pmatrix}$$

$$= \sum_i c_i \phi_i$$

$$\downarrow = \sum_i c_i \phi_i$$

Effective Hamiltonian

We limit the space to a reduced set of shells. The Hamiltonian becomes an effective hamiltonian H_{eff} that accounts for the missing space.

$$H_{eff} = H_m + H_M$$

monopole

- "unperturbed" energy of the different configurations in which the valence nucleons are distributed

Multipole

- determines the single particle energies
- dominant role far from stability

- correlations

- mixing of configurations
- coherence
- energy gains

Effect of the correlations

The multipole Hamiltonian H_M is dominated by the pairing and the quadrupole-quadrupole forces

The fact that some nuclei display collective behaviour depends on the structure of the spherical field near the Fermi surface for both protons and neutrons

Ingredients for the Shell Model calculations

Silvia Lenzi – Ecole Internationale Joliot -Curie, September 2010

latituto Nazioni di Fisica Nuclea

Shell model and collective phenomena

Mirror energy differences and alignment

Nucleon alignment at the backbending

J.A. Cameron *et al.*, Phys. Lett. **B 235**, 239 (1990) C.D. O'Leary *et al.*, Phys. Rev. Lett. 79, 4349 (1997)

MED are a probe of nuclear structure: reflect the way the nucleus generates its angular momentum

Nucleon alignment at the backbending

Alignment and shell model

Define the operator

$$\mathbf{A}_{\pi} = \left[\left(a_{\pi}^{+} a_{\pi}^{+} \right)^{J=6} \left(a_{\pi}^{-} a_{\pi}^{-} \right)^{J=6} \right]^{0}$$

"Counts" the number of protons coupled to J=6

Calculate the difference of the expectation value in both mirror as a function of the angular momentum

$$\Delta \mathbf{A}_{\pi,J} = \left\langle \Phi_J \left| \mathbf{A}_{\pi} (Z_{>}) \right| \Phi_J \right\rangle - \left\langle \Phi'_J \left| \mathbf{A}_{\pi} (Z_{<}) \right| \Phi'_J \right\rangle$$

In ⁵¹Fe (⁵¹Mn) a pair of protons (neutrons) align first and at higher frequency align the neutrons (protons)

M.A.Bentley et al. Phys Rev. C62 (2000) 051303

Alignment in odd- and even-mass nuclei

In odd-mass nuclei, the type of nucleons that aligns first is determined by the **blocking effect** \rightarrow the even fluid will align first

Alignment in even-even rotating nuclei

Lecture 2 The end

Silvia Lenzi – Ecole Internationale Joliot -Curie, September 2010

latituto Nazionalo di Fisica Nucleare