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Non-empirical energy functionals from low-momentum interactions
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@ Introduction to energy density functional methods

Q Low-momentum interactions from renormalization group methods
@ The building of non-empirical energy functionals

® Time-ordered Many-body perturbation theory (MBPT)

m Formal connection between single-reference EDF and MBPT
m The density matrix expansion

= First application to the pairing part of the EDF
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Constructing non-empirical EDFs for nuclei

Build non-empirical EDF in place of existing models

Bibliography
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Finite nuclei and extended nuclear matter
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Constructing non-empirical EDFs for nuclei

Build non-empirical EDF in place of existing models

QCD / x-EFT

0 20 30 40 50
K [fm™]

Predictive? Predictive...
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Energy Density Functional method: some relevant questions

Single Reference |

[ Multi Reference ]]

O spherical mean-ficld — experiment
9 |0 deformed mean-field
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« Can we relate £[p, r, k*| to H ? §iz Jooo00800008
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° Needed to g0 through ‘/e 1f. 9 Neutron Number N
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Take-away me

Time-ordered many-body perturbation theory

@ Many-body problem (seems to) becomes perturbative with H(Ajoy)
Q First applications in INM and doubly-magic nuclei confirm so

Q MBPT with H(Ajoyw) = good ab-initio scheme to build non-empirical EDF

Towards (extended) energy functionals

Q@ MBPT too expensive for heavy open-shell nuclei

Q Approximate methods, e.g. the DME, to put it under a bearable form

Q Controlled refit of A-dependent couplings to reach desired accuracy

Low-momentum interactions
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A-initio methods to solve the nuclear A-body problem

m Solve the N-body problem in terms of point-like nucleons+ H (A)

Name Short description Variational Scaleas Upto
(:::;‘::“,’V) HU = EW Yes MA A=24
Green-Function | V(7= "0 m!
Monte-Carlo —[e-UH-Eosry Yes _— A<12
(GFMC) z (M- A)IAL
+auxiliary field
Sh’:‘l’l-:l?;:el HV = EV \ 4 Asi6
Coupled- [U) = e5[Wo) = A<100
Cluster o . No (M-A)*4 A2 Only
{co) § =8+ 85+ 4 doubly-magic
for now

M : configuration space size
From D. Lacroix

m Many-body perturbation theory is missing; why!?

Low-momentum interactions
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Many-body perturbation theory (no pairing, V"V only)

m Reference Slater determinant |®) = Hi\il a2'|0>

m Associated one-body density matrix p,g = daidg;

Q Greek indices a,... = arbitrary s.p. states
© Roman indices 7,... = occupied ("hole") s.p. states
Q Roman indices a,... = empty ("particle") s.p. states

m Excited Slater determinants |<I>§‘jl?jj'), e.g. 2p-2h state |<I>§‘jb)

= aia;ajaﬂ@)

Low-momentum interactions
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Many-body perturbation theory (no pairing,

VN only)

Unperturbed (reference) vacuum

m Reference Slater determinant |®) = Hf;l a;"|0>
m Associated one-body density matrix p,g = daidg;

Q Greek indices a,... = arbitrary s.p. states
Q@ Roman indices 7,... = occupied ("hole") s.p. states
Q Roman indices a,... = empty ("particle") s.p. states

m Excited Slater determinants |<I>fjl.’j.“), e.g. 2p-2h state |<I>%b) = af a aja;|®)

Hartree-Fock s.p. basis a;( [Ya Matrix elements of VN Y
2T oy = eq v w Vs =(1:0;2: 8 VIV|1: 4521 6)
HF __ 7NN
" hay =tay+2 55 Vagye Pos n Vs = Vs — Vass,

Low-momentum interactions
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VN only)

Many-body perturbation theory (no pairing,

Unperturbed (reference) vacuum

m Reference Slater determinant |®) = Hf;l a;"|0>
m Associated one-body density matrix p,g = daidg;

Q Greek indices a,... = arbitrary s.p. states
Q@ Roman indices 7,... = occupied ("hole") s.p. states
Q Roman indices a,... = empty ("particle") s.p. states

m Excited Slater determinants |<I>§‘jl?jj'>, e.g. 2p-2h state |<I>%b) =af al;" aja;|®)

Hartree-Fock s.p. basis ag, / Ya Matrix elements of VYV
WP g = eatha w Vs =(1:0;2: 8 VIV|1: 4521 6)
HF _ 7NN
B hay' =tay+ Y55 Vapys Pos w Vs = Vass— Vaasy

Hartree-Fock energy from Wick theorem with respect to |®)

EHF = (&) H|®) Zt” 22%\{}\’

Low-momentum interactions
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Many-body perturbation theory (no pairing,

VN only)

l-ordered form

m Using Wick’s theorem with respect to |®)
H(A) = EHF_,_ZEQ :a;taa 2 —|—i Z V(%]g(; : a;ra;agafy: = Hy + Vies
« afs
m Hy denotes the unperturbed Hamiltonian and Vies the residual interaction
s Hol®gh ) = EZP @80y with BEY = E¥F 4 (catep+...—es—¢j—...)
B (D Vies|®) = (@] Vies| 7)) =0

Low-momentum interactions
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VN only)

Many-body perturbation theory (no pairing,

A) in normal-ordered form

m Using Wick’s theorem with respect to |®)
H(A) = EHF—I—Zea aa @y & A = Z aﬁvgzaga;a(;a,y: = Hp + Vies
aﬁv&
m Hy denotes the unperturbed Hamiltonian and Vies the residual interaction
s Hol®gh ) = EZP @80y with BEY = E¥F 4 (catep+...—es—¢j—...)
B (D Vies|®) = (@] Vies| 7)) =0

Correlations (always defined with respect to a given reference!)

m True ground-state energy of |¥) is E = B + ARHF
@ Can minimize AE™F through symmetry breaking (N, J,m...)

® Includes correlations with respect to symmetry restricted EHE
Q Not enough as "bulk" correlations are missing in the first place

= Cf. Infinite Nuclear Matter and doubly magic nuclei below...

<
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Many-body perturbation theory (no pairing,

VNN only)

Time-ordered (Goldstone) MBPT from Gell-Man Low theorem
s AEFF expanded as a power series in Vres
1 n
AEHF = Z <¢| Vres (7 Vres> | q>>c0nnected
n=0 B

® Summing all terms provides the exact ground-state energy

Low-momentum interactions
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Many-body perturbation theory (no pairing,

VN only)

Time-ordered (Goldstone) MBPT from Gell-Man Low theorem

s AEFF expanded as a power series in Vres

n
1
AEBHE — Z (®@| Vres (7_0 Vres> | @) connected

n=0

® Summing all terms provides the exact ground-state energy

Perturbative approach

m If it makes sense
Q@ Meaningful answer obtained from a finite number of terms
Q Contributions decreases as n increases
Q May need to define Hy (|®)) differently to speed up convergence

m Counter examples
@ Cooper instability = need to expand around a Bogoliubov vacuum
@ H(Anigh) = need to sum pp ladders and expand in (hole-lines)”

m What about using H(Ajoy) rather than H(Apjgl)?

4
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Many-body perturbation theory (no pairing,

VN only)

Q@ Truncate expansion to given order nmax
Q Insert (quasi) completeness relationship of Hy in between each operator

b b b b
Iy —[0)(®] =) |®f)(®f]+ (5 D«b“ @1+ (&) 1@y @8+ ..
a

a,b,c
i,J i3,k

@ Apply each resolvent operator (EHF — Ho)_1 to extract energy denominators
Q@ Compute each matrix elements of Vies

Low-momentum interactions
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Many-body perturbation theory (no pairing,

VN only)

mputation procedure =

Q@ Truncate expansion to given order nmax

Q Insert (quasi) completeness relationship of Hy in between each operator

1y — )@= [@f)(@f|+ (% Z@‘“’ N1+ (&) D) @ane|+ ..
a b,
d 1Y) g;,j,kc

@ Apply each resolvent operator (EHF — Ho)_1 to extract energy denominators
Q@ Compute each matrix elements of Vries

Example: second order (nmax = 1)

Needed matrix elements
s - 1y RO a0
i, a,b Q (| Vies|®F) = VLY
_ Z IVé‘fﬁfl2 ol @ @Vilaiey =0
4 Jabe@—i—e]—ea €p

Low-momentum interactions
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Many-body perturbation theory (no pairing,

VN only)

mputation procedure = 2"9 ve

Q Matrix elements <<I>a o kc, |Vres|<I>Zl,’cc ") cumbersome to compute
Q Develop systematic approach = diagrammatic techniques

Q Rules to compute Hugenholtz/Golsdtone diagrams

Example: second order (nmax = 1)

a

|2
AEHF _ zjab

4,J,a,b

@ Hole state < factor paq in Z
Q Particle state < factor 1—paq in Z

Low-momentum interactions
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Many-body perturbation theory (no pairing,

VAN only)

mputation procedure = 279 ve

Q Matrix elements (@?,/J-lflkc,/.::' | Vres|<1>?jl;€c.::') cumbersome to compute
Q Develop systematic approach = diagrammatic techniques

Q Rules to compute Hugenholtz/Golsdtone diagrams

Diagram

Energy denorminator

(ei+ej—€a—ep) ! .

Low-momentum interactions
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Many-body perturbation theory (no pairing,

VN only)

mputation procedure = 2"9 ve

Q Matrix elements <<I>a o kc, |Vres|<I>Zl,’cc ") cumbersome to compute
Q Develop systematic approach = diagrammatic techniques

Q Rules to compute Hugenholtz/Golsdtone diagrams

Diagram

a

S ~.

Plus some extra rules

® Sum over internal lines, pre-factor, sign. ..

Low-momentum interactions



Introduction on-empirical EDF Bibliography

Outline

@ Introduction

@ Time-ordered many-body perturbation theory

@ Application to symmetric nuclear matter

© Towards non-empirical energy functionals

@ Bibliography

Low-momentum inter




Introduction MBPT Non-empirical EDF Bibliography
00000 0000000000 0000000000000 000000

Infinite nuclear matter

Is nuclear matter perturbativ

m Not with H(Ahigh) : : : : J
150F
m Seems to be with H(Ajow) Lo é;hoé;lgérwladder AVIE
. — 3rd order pp ladd
m New paradigm!? 100~ e orderppaccet .
= 50
(53
: |
< of
m
501
-100
| L | L 1 L 1 L 1
08 1 12 1.4 16
Ky [fm”]
[S. K. Bogner et al., NPA 763, 59]
.
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Infinite nuclear matter

5 T T T T ] T T ]
= Vit NN from N'LO (500 MeV) ] —A=isin ]
& o I v A=20fm" ]
%) 0. Ar 3NF fit to Eyy andry ] —>A=221m 4
=" 1 1 = A=280m” ]
= r .
5 F ‘1 20< Ay <256
5 [ b A A
£ -lop ] ] !
) - 4 4 4
20 - 4 4 4
2 ;
S 50 Empirical T 1 |
S 70F [ saturation 4 ] ]
[ Hartree-Fock point I 2nd order I pp ladders ]
20 - | | | L1 | | [ | 1 | 11

I | I
08 1.0 12 14 16 08 10 12 14 1.6 08 10 12 14 16
-1 -1 -1
k. [fim ] k. [fim 7] k. [fim ]

[S. K. Bogner et al., arXiv:0903.3366]

momentum inter

m How much goes into each order depends on (A of) H but not the full answer!
= EOS is converged at 2"¢ order (at least in pp channel) for A € [1.8;2.8] fm ™!

m Good reproduction of the empirical saturation point

Low-momentum interactions
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Infinite nuclear matter

Is nuclear ma

m Not with H(Apigh) T .
m Seems to be with H(Ajow) [ Vi NN from N'LO (500 MeV) B ]
. 5+ 3NF fit to E3H and e /\3N.F =2.0fm
m New paradigm!? = A
. r 4
S _iof NN +3N A/ ]
Saturation mechanism §
S -15F ]
. = [ ]
O AR plays an essential g 0 ]
NN 2 b PP ladders ]
m Coester line with V only 8 = Az 18w E
< = [ “A=28 fm NN only 1
~25[- s—a A= 1.8 fin ' NN only ]
[ e— A=2.8fm NN only ]
ol Ny N
058 1.0 12 14 1.6
-1
ke [fm ]
[S. K. Bogner et al., arXiv:0903.3366]
v
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Finite nuclei

Doubly-magic nuclei

® Do not spontaneously break N, 7, J
m Good testing ground for symmetry conserving HF+MBPT (except for 15)
m Performed with VIJ}%VOM and no VNN

rr——TT—T"T—
® Enr
21 m Eye+ E@ 4
>
D -4} J
=3
<-6f ]
w
—S-W-
4}_I|el 24'0 I40Ic:al48ll\“I78I'\liI90IZrI114IS«]Il46IGdI

160 343 48Ca 56Ni BSS' 1009,1 1329,1 ZUBPb
[R. Roth et al., PRC73 (2006) 044312]

Binding energy (per particle)

m HF provides correct trend with A but underbinds tremendously

m Second-order MBPT provides good account of missing bulk correlations

Low-momentum interactions
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Finite nuclei

Doubly-magic nuclei
® Do not spontaneously break N, 7, J
m Good testing ground for symmetry conserving HF+MBPT (except for 15)

m Performed with VIJ}%VOM and no VNN

br—/—m————————7—7—

5t J

N
T

Ren [fm]
w

® Rir

= RypipT2

4}_‘|e 24‘0 40‘Ca 48IN| 78INi QOIZr ' 114ISn ' 146IG,dI
160 343 48Ca 56Ni BSS' 1009,1 1329,1 ZUBPb
[R. Roth et al., PRC73 (2006) 044312]

m HF underestimates significantly in heavy nuclei

» Second-order improves the situation but it is not enough (VYVV?)

Low-momentum interactions
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Heavy nuclei from H(A) at A~ 2 fm™!

Conclusions

Q@ Doubly magic nuclei
® Second-order MBPT provides bulk of correlations ~ —8 MeV /A
= Need to study effect of V"V (A) on ry, and spin-orbit splittings
® Accuracy requires to add collective fluctuations (MR)

Q Open-shell nuclei

= Should break N, Z,J? to add about f (Nyal, Yva1) X 20 MeV correlations
m Second-order MBPT very costly, i.e. scales as ngasis

Low-momentum interactions
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Heavy nuclei from H(A) at A~ 2 fm™!

Q@ Doubly magic nuclei
® Second-order MBPT provides bulk of correlations ~ —8 MeV /A
= Need to study effect of V"V (A) on ry, and spin-orbit splittings
® Accuracy requires to add collective fluctuations (MR)

Q@ Open-shell nuclei

» Should break N,Z,J? to add about f(Nyai,val) X 20 MeV correlations
m Second-order MBPT very costly, i.e. scales as ngasis

What is the plan? Connect to EDF methods

Q@ Controlled approximation to (second-order) MBPT

m A priori justification to empirical energy functionals
m Educated guess for extended energy functionals
m Estimates of coupling with uncertainty through A dependence

Q Controlled refit of "educated couplings"
= Compensates for missing accuracy (leaving out MR correlations)

<

Low-momentum interactions
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© Towards non-empirical energy functionals
@ Comparison between Skyrme EDF and MBPT expressions
@ Basics of the density matrix expansion
@ First calculations with non-empirical pairing energy functional
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Skyrme EDF in canonical basis 8 = Paa ap)

" f(R) =, Wha(FD)paa | m WIa(7g) = Veoh(Fq) - Vipa(Ta)

Trilinear Skyrme EDF in canonical basis

= 1
Elpl = Y taapaaty ) Whappacrsstg D Ulag, pacpsspry
« af afy

Low-momentum interactions
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Skyrme EDF in canonical basis (pag = paa 0a3)

Trilinear Skyrme EDF in coordinate space (no pairing)

/d”z—ﬂl +Z[ 5, 0a(7) g () + .+ COP0 pa(7) pyr (7) + ...

Matrix elements of effective vertices
2
B toa = [dF9e Wia(7q)
w 95 =2[dFY s CF, nga(Fq) Ws(7d)

w L oy =6 AT g CHT nga(Fq)Wgﬁ( N Wi (7"

Trilinear Skyrme EDF in canonical basis

1 _ 1 _
Epl = D tawpoatsd Whaghacpist gD Tl any pac Pipn
« af afy

<
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MBPT energy in canonical basis (no pairing,

VNN only)

MBPT energ;
EHF L ABHF(9) = th Pocr

1 7NN
+ 3 ZB: VaBas Paa ppp
«

2
B'yé|
1-— 1—
+ 4zea+6ﬁ_67_659aapﬁﬁ( Pyy) (1= pss)

Non-empirical, generalized, nuclear EDF

@ Defines an energy functional £[p;{eq}| of fourth order in p

» Can introduce effective vertices v”°, v°PP and v°PPP
Q Depends on {ea} for mmax > 0 = traces back to non-locality in time
@ Very non-local in space as nmax increases

= Quadruple f dr at second order versus single f dr for Skyrme

4
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174 NN

MBPT energy in canonical basis (no pairing,

Choice of the self-energy, i.e. of Hp

_ph
hap = tapt+Tap=tapt Y T ss oy
Y8

onl:

Low-momentum inter:
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MBPT energy in canonical basis (no pairing, V*V

Bibliography

onl:

Choice of the self-energy, i.e. of Hp

_ph
hap = tapt+Tap=tapt Y T ss oy
Y8

m Choice made above

m Energy-independent

® ¢q has no meaning

Low-momentum inter:
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only)

MBPT energy in canonical basis (no pairing, V*V

Choice of the self-energy, i.e. of Hp

_ph
hap = tapt+Tap=tapt Y T ss oy
Y8

II. Dress ¥ according to £

o0&
0pBa

haﬁ =

m As for EDF method
m Energy-dependent

B e, R sep. energies

Low-momentum interactions
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only)

MBPT energy in canonical basis (no pairing, V*V

Choice of the self-energy, i.e. of Hp

_ph
hap = tapt+Tap=tapt Y T ss oy
Y8

III. Local ¥ through OEP

o e-T]
BT = 5m

m Approach of DET
m Energy-independent

B cp X sep. energy

Low-momentum interactions
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MBPT energy in canonical basis (no pairing, VNV

Bibliography
00000000000

only)

Choice of the self-energy, i.e. of Hp

_ph
hap = tapt+Tap=tapt Y T ss oy
Y8

L Use X2 for all nmax II. Dress ¥ according to £ | III. Local ¥ through OEP

i _ 0 . O[E—
gﬂ/ﬁé = Va'yﬁ& haﬁ = E( ) = M

T - —
0pBa dp(7)

m Choice made above m As for EDF method m Approach of DET
m Energy-independent m Energy-dependent m Energy-independent

® ¢q has no meaning m ¢
v

o R sep. energies

B cp R sep. energy

All the above can be repeated with pairing

s MBPT with both normal (p) and anomalous (k) contractions

m Definition of the anomalous self-energy A, g

Low-momentum interactions
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, IO Spin, no isospin)

MBPT in coordinate representation (central VNV

Zeroth-order (HF') energy
EfF //dﬁdT"z VI (17 = 7)) pry 7, 7

Q Non-local through functional of the non-local density matrix pz 7,

Q Good starting point for the density matrix expansion (DME)

Low-momentum interactions
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MBPT in coordinate representation (central VN 1o spin, no isospin)

Zeroth-order (HF') energy
B ¢ //dﬁ diy VIV (|17 = o)) pr 7, i

Q Non-local through functional of the non-local density matrix pz 7,

Q Good starting point for the density matrix expansion (DME)

Second-order energy

AEF(2) C dT1234 [Z W (F)YEE) VIV (171 = Tal) s (71) s (72)
1] |2

paa ppp (1= pyy) (1= pss)
€o + €3 — €y — €5

wi(Fg)wS‘(ﬁ;)VNN(I%—ﬁl)zl)a(%)wa(ﬁ)}

Q Highly non-local + not even a functional of pz 7,

Q Extension of the DME beyond HF needed [v. Rotival et al., unpublished]

4
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EHF

Ideas underlying the DME for

m Look for separable expansion into relative 7 and center of mass R coordinates

kmax

prm = T (kp(R)r) Ok(R)

where O4(R) € {pq(é), ﬁpq(é)v qu(é)}

Low-momentum interactions
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Ideas underlying the DME for E#F

Expand the density matrix in terms of local densities
m Look for separable expansion into relative 7 and center of mass R coordinates

kmax

pri ~ YT (kp(R)r) Ox(R)

—

= Non-empirical, position/density dependent couplings Cf ' (R), e.g.

0By =am [r2ar v (r) [ e )|

<

Low-momentum interactions
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How to determine quantitative I functions?

Q@ Truncated Bessel expansion of non-locality operator e
Q First term k= 0 provides exact limit in INM

Q Sufficient for spin-saturated nuclei only

@ Analytical expressions of HZ(kF(}_é))

Low-momentum interactions
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How to determine quantitative I functions?

nsion of P77 [J. N le, D. Vautherin, PRC5, 1472]

Q@ Truncated Bessel expansion of non-locality operator e
Q First term k= 0 provides exact limit in INM

Q Sufficient for spin-saturated nuclei only

Q Analytical expressions of HZ(kF(}_é))

[B. Gebremariam, T. D., S. Bogner, in preparation]

@ Taylor expansion of non-locality operator and phase-space averaging of k

= ¢ 5 (VImVIZTEN "yl (71) G a(T2) paa
= F=m=R
Q Opens up DME for all spin-unsaturated nuclei!
Q Analytical expressions of Hi(kp(}_%))
Q@ Few % error on EFF from full fledged V¥V (Ajow) (central, tensor, spin-orbit)

4
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The density matrix expansion

rk under completion [B. emariam, T. in preparation]
@ EDF at HF level from m-exchanges of x-EFT y N - VNN 2t N2LO
® Automatized Mathematica derivation of coupling constants from R
m Ready-to use Mathematica handbook for EDF solvers

Q Educated guess for empirical fitting (with UNEDF collaboration)
® Add (quasi) density-independent Skyrme EDF to be fitted

Low-momentum interactions
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The density matrix expansion

under completion [B. Ge riam, T. r, in preparation]

@ EDF at HF level from m-exchanges of x-EFT yNN Ly NNN a6 N2LO
= Automatized Mathematica derivation of coupling constants from y NN
m Ready-to use Mathematica handbook for EDF solvers

Q Educated guess for empirical fitting (with UNEDF collaboration)
® Add (quasi) density-independent Skyrme EDF to be fitted

Near future [B. Gebremariam, T. D., S. Bogner, in preparation]

Q@ Empirical work
® Systematic study of DME couplings and role of pion-physics/ y NN
= Full fledged fitting of "augmented/educated" Skyrme-like EDF

Q Formalism
= Extend DME to non-locality in time and apply to second-order in MBPT

= Extend DME to pairing channel including ultra-violet renormalization

Low-momentum interactions
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Pairing part of the EDF

® Empirical schemes lack predictive power
m Microscopic origin of (7'=1,J = 0) superfluidity in finite nuclei?
» Direct term of VYN (18y, 3Py, 1Dy) and VVVN?

m Coupling to density, spin, isospin fluctuations: 40%?

1 1
2= |0 2=

= o {010 | s P10

v NN (

First step: vPP built at 1% order in nuclear + Coulomb)

m Starts with 15’0 only as it dominates at sub-nuclear densities

» Virtual state at E ~ 0 makes VN almost separable in LSy

Low-momentum interactions
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Finite nuclei calculations

Viow k 18 given as tables of numbers

Produce analytical operator representation
m Why?

® Interest to understand encoded operator structure
m Perform integrals analytically in codes

® Which representation?

= Vyn (quasi) separability in 130 channel provides an incentive
= Sum of separable terms is efficient for pairing part of the EDF

Low-momentum interactions
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Separable representation of Vigw x(A) + Vioul

1
Vi (kA = > galk) Aag 9(K)
a,f=1

m Fit go(k) and Agg to V., (k, K, A) and & 5 (k)

100 70
0 el Viit
100 ol AV18
-200 ol \
o -300 = |
E g o \
= a0 =
? s Viow K'=k —— z 2
= Vi k' =k ¥ 10
> 600 kS
Vigw i K'=0.05000 ol
UL Vi K'=005000 ——
800 -10
VigwkK'=1
4 20
900 k=l ——
-1000 -30
05 1 15 2 25 3 35 4 0o o5 15 2 25 35 4
K [fmY K [fmY
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Separable representation of Vigw x(A) + Vioul

1
Vi (kA = > galk) Aag 9(K)
a,f=1

m Fit go(k) and Agg to V., (k, K, A) and & 5 (k)

3/ /15) and smooth cutoff

Viit
AV18

e

70
60 |
50 f
40
ol
- —
E g \
3 [ — = 10
= Vi k= % 0
> , B
Vg  K'=0.07500 -10
Vit k'=0.07500 ——— -20
Viowk K'=0.975 —— -30
Vi k'=0.975 —— -40
-50
0051 15 2 25 3 35 4 45 5 55 6 0 05 15 2 25 35 4
K [fmY) K [fmY
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Separable representation of Vigw x(A) + Vioul

1
Vi (kA = > galk) Aag 9(K)
a,f=1

m Fit go(k) and Agg to V., (k, K, A) and & 5 (k)

For A =1.8/4.0/ fm~! (rank 3/4/ ) and smooth cutoff

70
60 | Viit
so bl O\ AV18
/ “
40 .
ol
& =
E g 2 \
3 i) Vigwk K=k —— s 1 .
S -0 Vi k'=k T <
-400 . _
500 Vg i K'=0.20000 10
-600 Vit k'=0.20000 ——— -20
-700 , g
-800 Viowk K'=1 &
-900 Vi k=1 —— -40
BT -50
012345678 910111213141516 0 05 15 2 25 35 4
K [fmY K [fmY

4
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Coulomb interaction

Need to incorporate Coulomb effects on proton gaps
m Only one such published calculation so far: Madrid group (Gogny)

m Simplified treatment of e.m. interaction (Coulomb)

Truncated Coulomb interaction at 7 = a > 2R ucleus

m A separable expansion exists (S-wave part here)

oo
k 4
Véous=o(kK) = dme*a®y (2n+1) 7, (%) i <a7>
n=0
Aap = € (2a4+1)043
o ( ak
galk) = \/471']2(%)
Ga(r) = #Pa(l—2(£)2) for r<a

VmaZr

m ~ 15 terms needed (peanuts !)

Low-momentum interactions
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Comparing theoretical and experimental "pairing gaps

¢ The good me’rhod (3
(N) Vs Athlory( )

ezpt

Agxp/th(N) = (_i)N [Eo(N+1) —2Ey(N) — Eo(N—1)] J
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Comparing theoretical and experimental "pairing gaps"

¢ The good me’rhod
ezpt (N) Vs ‘A(B) (N)

theory

¢ The actual r(nefhod

oS
N ez)pt (N) Vs AtLheory( )
(g (o)
Ag’ixp (odd) versus A} q(even) = A, in even-N nucleus J
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EDF calculations in spherical nuclei

m Handles highly non-local pairing EDF in systematic calculations

m Calculations almost as cheap as for a local pairing EDF

Spherical Bessel basis jp(kr)
m Well suited for drip-line physics

Calculations

m Results for 470 nuclei predicted spherical (Gogny-D1S)
kmax ~ 4.0 fm ™Y, Ry = 20 fm, jimas = 45/2
m Pairing complemented with (SLy4) Skyrme EDF : mg = 0.7m

[l Reminder: nothing in the pairing channel is adjusted in nuclei

H

. D., T. Lesinski, Eur. Phys. J. Special Topics 156 (2008) 207]
. Lesinski, T. D., K. Bennaceur, J. Meyer, EPJA 40 (2009) 121]
. Hebeler, T. D., T. Lesinski, A. Schwenk, arXiv:0904.3152]

D., T. Lesinski, arXiv:0907.1043]

H

. Lesinski, T. D., K. Bennaceur, J. Meyer, in preparation]
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Pairing gaps (1Sy) from vP? = VN 4V

[T. D., T. Lesinski, arXiv:0907.1043]

50 60 70 80 9 100 110 120
N

m Deepening around N ~ 115 arises from blocking of Ar,cg(odd)
m A® well described close to N = 82 without LN, proj. or pairing vib.

m New masses towards or beyond shell closure very valuable to confront theory

Low-momentum interactions
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Pairing gaps (19p) from vPP =

[T. Lesinski, T. D., K. Bennaceur, J. Meyer, in preparation]

i T L L L
20 30 40 30 40 50 60 60 80 100 120 100 120 140 160 180
N N N N
3 e AN
JIN:ZS N=126
sar 1r 1
o
=
<1 b ] . Exp.
. SLyd+Vy s
e . TR | T
20 30 30 40 S0 40 50 60 70 50 60 70 80 90
z z z z
”

v

R 3 .
m Large oscillation of Aé ) due to Coulomb in ph

m Neutron and proton gaps consistent with experiment
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Non-empirical pairing energy functional

Work under completion [T. Lesinski, T. D., K. Bennaceur, J. Meyer, in prepa

Q@ Addition of x-EFT VNNV (A) at N?LO

Q Set up of vep & YV NNHNN(N) (A) for 3D code

Near future [S. Baroni, A. Pastore, T. D., A. Schwenk, in preparation]

m Add coupling to density, spin and isospin fluctuations

Q Self-energies at second order
Q Coupling to collective QRPA modes

Low-momentum interactions
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HF single-particle energies

Doubly-magic nuclei

® Do not spontaneously break N, 7, J

m Good testing ground for symmetry conserving HF (except for }_":‘)

1y [fm] —
[ 008 009 0.10 1

70 512 e
80 5172 e,

[R. Roth et al., PRC73 (2006) 044312]

Single-particle energies €y, in 10Ca

m Ordering is correct but density of states is too low
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