Non-empirical energy functionals from low-momentum interactions III. Many-body perturbation theory and non-empirical energy functionals

T. Duguet 1,2

¹DSM/Irfu/SPhN, CEA Saclay, France

²National Superconducting Cyclotron Laboratory, Department of Physics and Astronomy, Michigan State University, USA

Ecole Joliot-Curie, Lacanau, Sept. 27th - Oct 3rd, 2009

Lecture series

0utline

- **Q** Introduction to energy density functional methods
- **2** Low-momentum interactions from renormalization group methods
- The building of non-empirical energy functionals
 - Time-ordered Many-body perturbation theory (MBPT)
 - Formal connection between single-reference EDF and MBPT
 - The density matrix expansion
 - First application to the pairing part of the EDF

Outline

1 Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods

2 Time-ordered many-body perturbation theory

- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei

Towards non-empirical energy functionals

- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional

Bibliography

Outline

1 Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods

2 Time-ordered many-body perturbation theory

- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei

3 Towards non-empirical energy functionals

- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional

Bibliography

Bibliography

Constructing non-empirical EDFs for nuclei

Long term objective

Build non-empirical EDF in place of existing models

Finite nuclei and extended nuclear matter

Bibliography

Constructing non-empirical EDFs for nuclei

Long term objective

Build non-empirical EDF in place of existing models

1 Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods

Time-ordered many-body perturbation theory

- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei

Towards non-empirical energy functionals

- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional

Bibliography

MBPT

Bibliography

Energy Density Functional method: some relevant questions

Empirical knowledge/

- $\mathcal{E}[\rho,\kappa,\kappa^*]$ built empirically so far
- Effective separation of scales for correlations
 - Bulk $\sim 800 \text{ Mev} \propto A$
 - ▲ Collective def. $\leq 20 \text{ Mev} = F(N_{val}, G_{deg})$
 - ▲ Collective fluct. $\leq 4 \text{ MeV} = G(N_{val}, G_{deg})$
- Observables impacted by correlation
 - ▲ Symmetry breaking
 - ▲ Collective fluctuation

Time-ordered many-body perturbation theory

- **Q** Many-body problem (seems to) becomes perturbative with $H(\Lambda_{\text{low}})$
- **②** First applications in INM and doubly-magic nuclei confirm so
- **3** MBPT with $H(\Lambda_{\text{low}}) = \text{good ab-initio scheme to build non-empirical EDF}$

Towards (extended) energy functionals

- MBPT too expensive for heavy open-shell nuclei
- **②** Approximate methods, e.g. the DME, to put it under a bearable form
- O Controlled refit of $\Lambda\text{-dependent}$ couplings to reach desired accuracy

1 Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods

2 Time-ordered many-body perturbation theory

- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei

Towards non-empirical energy functionals

- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional

Bibliography

A-initio methods to solve the nuclear A-body problem

Currently used ab-initio methods

Solve the N-body problem in terms of point-like nucleons+ $H(\Lambda)$

Name	Short description	Variational	Scale as	Up to
Few-body (Faddeev)	$H\Psi = E\Psi$	Yes	MA	A = 2-4
Green-Function Monte-Carlo (GFMC)	$ \begin{array}{c} \Psi(\tau) = e^{-(H-E_0)\tau}\Psi_T, \\ = [e^{-(H-E_0)\Delta T}]^*\Psi_T \\ + \text{auxiliary field} \end{array} $	Yes	M! (M-A)!A!	A <12
No-core Shell Model	$H\Psi=E\Psi$	Yes	4 ^A	A <16
Coupled- Cluster (CC)	$ \begin{split} \Psi\rangle &= e^S \Psi_0\rangle \\ S &= S_1 + S_2 + \cdots \end{split} \qquad \boxed{ \begin{array}{c} & \\ \end{array} }^3 \\ \hline \end{array} $	No	(M–A) ⁴ A ²	A <100 Only doubly-magic for now
M : configuration space siz				

From D. Lacroix

■ Many-body perturbation theory is missing; why!?

Outline

Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods

2 Time-ordered many-body perturbation theory

- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei

3 Towards non-empirical energy functionals

- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional

Bibliography

MBPT •00000000000

Outline

Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods

2 Time-ordered many-body perturbation theory

- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei

Towards non-empirical energy functionals

- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional

Bibliography

- **Q** Greek indices α, \ldots = arbitrary s.p. states
- **2** Roman indices $i, \ldots =$ occupied ("hole") s.p. states
- Solution Roman indices $a, \ldots = \text{empty}$ ("particle") s.p. states

Excited Slater determinants $|\Phi_{ij...}^{ab...}\rangle$, e.g. 2p-2h state $|\Phi_{ij}^{ab}\rangle = a_a^+ a_b^+ a_j a_i |\Phi\rangle$

Hartree-Fock s.p. basis $a_{\alpha}^+/\psi_{\alpha}$

$$h^{HF}\psi_{\alpha} = \epsilon_{\alpha}\psi_{\alpha}$$

$$h_{\alpha\gamma}^{HF} \equiv t_{\alpha\gamma} + \sum_{\beta\delta} \bar{V}_{\alpha\beta\gamma\delta}^{NN} \rho_{\delta\beta}$$

Matrix elements of V^{NI}

$$\label{eq:VNN} \blacksquare \ \bar{V}^{NN}_{\alpha\beta\alpha\beta} \equiv V^{NN}_{\alpha\beta\gamma\delta} - V^{NN}_{\alpha\beta\delta\gamma}$$

Hartree-Fock energy from Wick theorem with respect to $|\Phi\rangle$

$$E^{HF} \equiv \langle \Phi | H | \Phi \rangle = \sum_{i} t_{ii} + \frac{1}{2} \sum_{ij} \bar{V}_{ijij}^{NN}$$

oduction

MBPT

Bibliography

Many-body perturbation theory (no pairing, V^{NN} only)

Unperturbed (reference) vacuum

Reference Slater determinant $|\Phi\rangle = \prod_{i=1}^{N} a_i^+ |0\rangle$

Associated one-body density matrix $\rho_{\alpha\beta} = \delta_{\alpha i} \delta_{\beta i}$

- **Q** Greek indices α, \ldots = arbitrary s.p. states
- **2** Roman indices $i, \ldots =$ occupied ("hole") s.p. states
- **3** Roman indices $a, \ldots = \text{empty}$ ("particle") s.p. states

Excited Slater determinants $|\Phi_{ij\dots}^{ab\dots}\rangle$, e.g. 2p-2h state $|\Phi_{ij}^{ab}\rangle = a_a^+ a_b^+ a_j a_i |\Phi\rangle$

Hartree-Fock s.p. basis
$$a_{\alpha}^{+}/\psi_{\alpha}$$

h^{HF} $\psi_{\alpha} = \epsilon_{\alpha} \psi_{\alpha}$
h^{HF} _{$\alpha\gamma$} = $t_{\alpha\gamma} + \sum_{\beta\delta} \bar{V}_{\alpha\beta\gamma\delta}^{NN} \rho_{\delta\beta}$

Matrix elements of V^{NN}

$$V^{NN}_{\alpha\beta\gamma\delta} \equiv \langle 1:\alpha; 2:\beta | V^{NN} | 1:\gamma; 2:\delta \rangle$$

$$\quad \overline{V}^{NN}_{\alpha\beta\alpha\beta} \equiv V^{NN}_{\alpha\beta\gamma\delta} - V^{NN}_{\alpha\beta\delta\gamma}$$

Hartree-Fock energy from Wick theorem with respect to $|\Phi\rangle$

$$E^{HF} \equiv \langle \Phi | H | \Phi \rangle = \sum_{i} t_{ii} + \frac{1}{2} \sum_{ij} \bar{V}_{ijij}^{NN}$$

MBPT

Bibliography

Many-body perturbation theory (no pairing, V^{NN} only)

Unperturbed (reference) vacuum

Hartree-Fock s.p. basis $a_{\alpha}^+/\psi_{\alpha}$

 $\blacksquare h_{\alpha\gamma}^{HF} \equiv t_{\alpha\gamma} + \sum_{\beta\delta} \bar{V}_{\alpha\beta\gamma\delta}^{NN} \rho_{\delta\beta}$

 $\blacksquare h^{HF} \psi_{\alpha} = \epsilon_{\alpha} \psi_{\alpha}$

- Reference Slater determinant $|\Phi\rangle = \prod_{i=1}^{N} a_i^+ |0\rangle$
 - Associated one-body density matrix $\rho_{\alpha\beta} = \delta_{\alpha i} \delta_{\beta i}$
 - **Q** Greek indices α, \ldots = arbitrary s.p. states
 - **2** Roman indices $i, \ldots =$ occupied ("hole") s.p. states
 - **3** Roman indices $a, \ldots = \text{empty}$ ("particle") s.p. states

Excited Slater determinants $|\Phi_{ij\dots}^{ab\dots}\rangle$, e.g. 2p-2h state $|\Phi_{ij}^{ab}\rangle = a_a^+ a_b^+ a_j a_i |\Phi\rangle$

Matrix elements of V^{NN}

$$V^{NN}_{\alpha\beta\gamma\delta} \equiv \langle 1:\alpha; 2:\beta | V^{NN} | 1:\gamma; 2:\delta \rangle$$

$$\quad \overline{V}^{NN}_{\alpha\beta\alpha\beta} \equiv V^{NN}_{\alpha\beta\gamma\delta} - V^{NN}_{\alpha\beta\delta\gamma}$$

Hartree-Fock energy from Wick theorem with respect to $|\Phi\rangle$

$$E^{HF} \equiv \langle \Phi | H | \Phi \rangle = \sum_{i} t_{ii} + \frac{1}{2} \sum_{ij} \bar{V}_{ijij}^{NN}$$

$H(\Lambda)$ in normal-ordered form

Using Wick's theorem with respect to $|\Phi\rangle$

$$H(\Lambda) = E^{HF} + \sum_{\alpha} \epsilon_{\alpha} : a_{\alpha}^{+} a_{\alpha} : + \frac{1}{4} \sum_{\alpha \beta \gamma \delta} \bar{V}_{\alpha \beta \gamma \delta}^{NN} : a_{\alpha}^{+} a_{\beta}^{+} a_{\delta} a_{\gamma} : \equiv H_{0} + V_{\text{res}}$$

 $\begin{array}{l} \blacksquare \hspace{0.1cm} H_0 \hspace{0.1cm} \text{denotes the unperturbed Hamiltonian and } V_{\text{res}} \hspace{0.1cm} \text{the residual interaction} \\ \blacksquare \hspace{0.1cm} H_0 |\Phi_{ij\ldots}^{ab\ldots}\rangle = E_{ij\ldots}^{ab\ldots} |\Phi_{ij\ldots}^{ab\ldots}\rangle \hspace{0.1cm} \text{with } E_{ij\ldots}^{ab\ldots} = E^{HF} + (\epsilon_a + \epsilon_b + \ldots - \epsilon_i - \epsilon_j - \ldots) \\ \blacksquare \hspace{0.1cm} \langle \Phi | \hspace{0.1cm} V_{\text{res}} |\Phi\rangle = \langle \Phi | \hspace{0.1cm} V_{\text{res}} |\Phi_i^a\rangle = 0 \end{array}$

Correlations (always defined with respect to a given reference!)

- True ground-state energy of $|\Psi\rangle$ is $E \equiv E^{HF} + \Delta E^{HF}$
- Can minimize ΔE^{HF} through symmetry breaking $(N, J, \pi...)$
 - Includes correlations with respect to symmetry restricted E^{HF} !
- **②** Not enough as "bulk" correlations are missing in the first place
 - Cf. Infinite Nuclear Matter and doubly magic nuclei below...

$H(\Lambda)$ in normal-ordered form

Using Wick's theorem with respect to $|\Phi\rangle$

$$H(\Lambda) = E^{HF} + \sum_{\alpha} \epsilon_{\alpha} : a_{\alpha}^{+} a_{\alpha} : + \frac{1}{4} \sum_{\alpha \beta \gamma \delta} \bar{V}_{\alpha \beta \gamma \delta}^{NN} : a_{\alpha}^{+} a_{\beta}^{+} a_{\delta} a_{\gamma} : \equiv H_{0} + V_{\text{res}}$$

 $\begin{array}{l} \blacksquare \hspace{0.1cm} H_0 \hspace{0.1cm} \text{denotes the unperturbed Hamiltonian and } V_{\text{res}} \hspace{0.1cm} \text{the residual interaction} \\ \blacksquare \hspace{0.1cm} H_0 |\Phi_{ij\ldots}^{ab\ldots}\rangle = E_{ij\ldots}^{ab\ldots} |\Phi_{ij\ldots}^{ab\ldots}\rangle \hspace{0.1cm} \text{with } E_{ij\ldots}^{ab\ldots} = E^{HF} + (\epsilon_a + \epsilon_b + \ldots - \epsilon_i - \epsilon_j - \ldots) \\ \blacksquare \hspace{0.1cm} \langle \Phi | \hspace{0.1cm} V_{\text{res}} | \Phi \rangle = \langle \Phi | \hspace{0.1cm} V_{\text{res}} | \Phi_i^a \rangle = 0 \end{array}$

Correlations (always defined with respect to a given reference!)

• True ground-state energy of $|\Psi\rangle$ is $E \equiv E^{HF} + \Delta E^{HF}$

• Can minimize ΔE^{HF} through symmetry breaking $(N, J, \pi...)$

Includes correlations with respect to symmetry restricted E^{HF} !

② Not enough as "bulk" correlations are missing in the first place

Cf. Infinite Nuclear Matter and doubly magic nuclei below...

Many-body perturbation theory (no pairing, V^{NN} only)

Bibliography

Time-ordered (Goldstone) MBPT from Gell-Man Low theorem

 $\blacksquare \Delta E^{HF}$ expanded as a power series in $V_{\rm res}$

$$\Delta E^{HF} = \sum_{n=0} \langle \Phi | V_{\text{res}} \left(\frac{1}{E^{HF} - H_0} V_{\text{res}} \right)^n | \Phi \rangle_{\text{connected}}$$

Summing all terms provides the exact ground-state energy

Perturbative approach

If it makes sense

Meaningful answer obtained from a finite number of terms

Contributions decreases as n increases

If May need to define H_0 ($|\Phi\rangle$) differently to speed up convergence

Counter examples

- Ocoper instability = need to expand around a Bogoliubov vacuum
- $= H(\Lambda_{\text{high}}) = \text{need to sum pp ladders and expand in (hole-lines)}^n$
- What about using $H(\Lambda_{\text{low}})$ rather than $H(\Lambda_{\text{high}})$?

 $\begin{array}{cccc} \text{Minimum relation} & \text{Minimum relation} \\ \text{Many-body perturbation theory (no pairing, <math>V^{NN}$ only)} \end{array}

Time-ordered (Goldstone) MBPT from Gell-Man Low theorem

 $\blacksquare \Delta E^{HF}$ expanded as a power series in $V_{\rm res}$

$$\Delta E^{HF} = \sum_{n=0} \langle \Phi | V_{\text{res}} \left(\frac{1}{E^{HF} - H_0} V_{\text{res}} \right)^n | \Phi \rangle_{\text{connected}}$$

Summing all terms provides the exact ground-state energy

Perturbative approach

If it makes sense

Meaningful answer obtained from a finite number of terms

2 Contributions decreases as n increases

3 May need to define H_0 ($|\Phi\rangle$) differently to speed up convergence

Counter examples

- Cooper instability = need to expand around a Bogoliubov vacuum
- Θ $H(\Lambda_{\text{high}}) = \text{need to sum pp ladders and expand in (hole-lines)}^n$
- What about using $H(\Lambda_{\text{low}})$ rather than $H(\Lambda_{\text{high}})$?

Computation procedure $= 1^{st}$ version

Q Truncate expansion to given order n_{\max}

2 Insert (quasi) completeness relationship of \mathcal{H}_N in between each operator

$$\mathbb{E}_{N} - |\Phi\rangle\langle\Phi| = \sum_{\substack{a\\i}} |\Phi_{i}^{a}\rangle\langle\Phi_{i}^{a}| + \left(\frac{1}{2!}\right)^{2} \sum_{\substack{a,b\\i,j}} |\Phi_{ij}^{ab}\rangle\langle\Phi_{ij}^{ab}| + \left(\frac{1}{3!}\right)^{2} \sum_{\substack{a,b,c\\i,j,k}} |\Phi_{ijk}^{abc}\rangle\langle\Phi_{ijk}^{abc}| + \dots$$

Apply each resolvent operator (E^{HF} - H₀)⁻¹ to extract energy denominators
Compute each matrix elements of V_{res}

Example: second order $(n_{\max} = 1)$

$$\Delta E^{HF}(2) = \frac{1}{4} \sum_{i,j,a,b} \frac{|\langle \Phi | V_{\text{res}} | \Phi_{ij}^{ab} \rangle|^2}{E^{HF} - E_{ij}^{ab}}$$
$$= \frac{1}{4} \sum_{i,j,a,b} \frac{|\bar{V}_{ijab}^{NN}|^2}{\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b} < 0$$

Needed matrix elements

$$\bigcirc \langle \Phi | V_{\rm res} | \Phi_i^a \rangle = 0$$

$$(\Phi | V_{\rm res} | \Phi_{ij}^{ab}) = \bar{V}_{ijab}^{NN}$$

$$\bigcirc \langle \Phi | V_{\rm res} | \Phi^{abc...}_{ijk...} \rangle = 0$$

Computation procedure $= 1^{st}$ version

Q Truncate expansion to given order n_{\max}

2 Insert (quasi) completeness relationship of \mathcal{H}_N in between each operator

$$\mathbf{1}_{N} - |\Phi\rangle\langle\Phi| = \sum_{\substack{a\\i}} |\Phi_{i}^{a}\rangle\langle\Phi_{i}^{a}| + \left(\frac{1}{2!}\right)^{2} \sum_{\substack{a,b\\i,j}} |\Phi_{ij}^{ab}\rangle\langle\Phi_{ij}^{ab}| + \left(\frac{1}{3!}\right)^{2} \sum_{\substack{a,b,c\\i,j,k}} |\Phi_{ijk}^{abc}\rangle\langle\Phi_{ijk}^{abc}| + \dots$$

Apply each resolvent operator (E^{HF} - H₀)⁻¹ to extract energy denominators
Compute each matrix elements of V_{res}

Example: second order $(n_{\max} = 1)$

$$\begin{split} \Delta E^{HF}(2) &= \frac{1}{4} \sum_{i,j,a,b} \frac{|\langle \Phi | V_{\rm res} | \Phi_{ij}^{ab} \rangle|^2}{E^{HF} - E_{ij}^{ab}} \\ &= \frac{1}{4} \sum_{i,j,a,b} \frac{|\bar{V}_{ijab}^{NN}|^2}{\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b} < 0 \end{split}$$

Needed matrix elements

$$\mathbf{O} \ \langle \Phi | V_{\rm res} | \Phi_i^a \rangle = 0$$

$$\Phi |V_{\rm res}|\Phi^{ab}_{ij}\rangle = \bar{V}^{NN}_{ijab}$$

$$(\Phi | V_{\rm res} | \Phi^{abc...}_{ijk...}) = 0$$

Computation procedure $= 2^{nd}$ version

- Matrix elements $\langle \Phi_{i'j'k'...}^{a'b'c'...} | V_{\text{res}} | \Phi_{ijk...}^{abc...} \rangle$ cumbersome to compute
- Overlap Systematic approach = diagrammatic techniques
- Rules to compute Hugenholtz/Golsdtone diagrams

Example: second order $(n_{\max} = 1)$

$$\Delta E^{HF}(2) = \frac{1}{4} \sum_{i,j,a,b} \frac{|\bar{V}_{ijab}^{NN}|^2}{\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b}$$

Remark

- Hole state \Leftrightarrow factor $\rho_{\alpha\alpha}$ in \sum
- **2** Particle state \Leftrightarrow factor $1 \rho_{\alpha\alpha}$ in \sum

Computation procedure $= 2^{nd}$ version

- Matrix elements $\langle \Phi_{i'j'k'...}^{a'b'c'...} | V_{\text{res}} | \Phi_{ijk...}^{abc...} \rangle$ cumbersome to compute
- Overlop systematic approach = diagrammatic techniques
- Solution Rules to compute Hugenholtz/Golsdtone diagrams

Computation procedure $= 2^{nd}$ version

- Matrix elements $\langle \Phi_{i'j'k'...}^{a'b'c'...} | V_{\text{res}} | \Phi_{ijk...}^{abc...} \rangle$ cumbersome to compute
- Overlop systematic approach = diagrammatic techniques
- Solution Rules to compute Hugenholtz/Golsdtone diagrams

Plus some extra rules

Sum over internal lines, pre-factor, sign...

Outline

Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods

Time-ordered many-body perturbation theory

• Elements of formalism

• Application to symmetric nuclear matter

• Application to doubly-magic nuclei

Towards non-empirical energy functionals

- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional

Bibliography

Infinite nuclear matter

Is nuclear matter perturbative?

- Not with $H(\Lambda_{\text{high}})$
- Seems to be with $H(\Lambda_{\text{low}})$
- New paradigm!?

Saturation mechanism

- $\blacksquare V^{NNN}$ plays an essential
- Coester line with V^{NN} only

EOS of symmetric nuclear matter

Infinite nuclear matter

EOS of symmetric nuclear matter

[S. K. Bogner et al., arXiv:0903.3366]

MBPT with low-momentum interactions

- How much goes into each order depends on (Λ of) H but not the full answer!
- EOS is converged at 2^{nd} order (at least in pp channel) for $\Lambda \in [1.8; 2.8]$ fm⁻¹
- Good reproduction of the empirical saturation point

MBPT 000000000000

Bibliography

Infinite nuclear matter

Is nuclear matter perturbative?

- Not with $H(\Lambda_{\text{high}})$
- Seems to be with $H(\Lambda_{\text{low}})$
- New paradigm!?

Saturation mechanism

- V^{NNN} plays an essential
- Coester line with V^{NN} only

EOS of symmetric nuclear matter

Outline

Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods

2 Time-ordered many-body perturbation theory

- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei

Towards non-empirical energy functionals

- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional

Bibliography

Finite nuclei

Doubly-magic nuclei

- Do not spontaneously break N, Z, J
- Good testing ground for symmetry conserving HF+MBPT (except for \vec{P})
- Performed with V_{UCOM}^{NN} and no V^{NNN}

[R. Roth et al., PRC73 (2006) 044312]

Binding energy (per particle)

- HF provides correct trend with A but underbinds tremendously
 - Second-order MBPT provides good account of missing bulk correlations

Finite nuclei

Doubly-magic nuclei

- **D**o not spontaneously break N, Z, J
- Good testing ground for symmetry conserving HF+MBPT (except for \vec{P})
- **\blacksquare** Performed with V_{UCOM}^{NN} and no V^{NNN}

[R. Roth et al., PRC73 (2006) 044312]

Charge radii

- HF underestimates significantly in heavy nuclei
- Second-order improves the situation but it is not enough $(V^{NNN}?)$

MBPT

Bibliography

Heavy nuclei from $H(\Lambda)$ at $\Lambda \approx 2 \text{ fm}^{-1}$

Conclusions

- Doubly magic nuclei
 - Second-order MBPT provides bulk of correlations $\approx -8 \text{ MeV}/A$
 - Need to study effect of $V^{NNN}(\Lambda)$ on $r_{\rm ch}$ and spin-orbit splittings
 - Accuracy requires to add collective fluctuations (MR)

Open-shell nuclei

- Should break N, Z, J^2 to add about $f(N_{val}, \nu_{val}) \times 20$ MeV correlations
- Second-order MBPT very costly, i.e. scales as N_{basis}^5

What is the plan? Connect to EDF methods

- Controlled approximation to (second-order) MBPT
 - A priori justification to empirical energy functionals
 - Educated guess for extended energy functionals
 - Estimates of coupling with uncertainty through A dependence
- ② Controlled refit of "educated couplings"
 - Compensates for missing accuracy (leaving out MR correlations)

MBPT

Bibliography

Heavy nuclei from $H(\Lambda)$ at $\Lambda \approx 2 \text{ fm}^{-1}$

Conclusions

- Doubly magic nuclei
 - Second-order MBPT provides bulk of correlations $\approx -8 \text{ MeV}/A$
 - Need to study effect of $V^{NNN}(\Lambda)$ on $r_{\rm ch}$ and spin-orbit splittings
 - Accuracy requires to add collective fluctuations (MR)

Open-shell nuclei

- Should break N, Z, J^2 to add about $f(N_{val}, \nu_{val}) \times 20$ MeV correlations
- Second-order MBPT very costly, i.e. scales as N_{basis}^5

What is the plan? Connect to EDF methods

- Controlled approximation to (second-order) MBPT
 - A priori justification to empirical energy functionals
 - Educated guess for extended energy functionals
 - Estimates of coupling with uncertainty through Λ dependence
- Ontrolled refit of "educated couplings"
 - Compensates for missing accuracy (leaving out MR correlations)

Non-empirical EDF

Outline

Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods

2 Time-ordered many-body perturbation theory

- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei

Towards non-empirical energy functionals

- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional

Bibliography

Non-empirical EDF •••••••

Outline

Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods

Time-ordered many-body perturbation theory

- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei

Towards non-empirical energy functionals

- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional

Bibliography

Skyrme EDF in canonical basis $(\rho_{\alpha\beta} = \rho_{\alpha\alpha} \,\delta_{\alpha\beta})$

Trilinear Skyrme EDF in coordinate space (no pairing)

$$\mathcal{E}[\rho] = \int d\vec{r} \sum_{q} \frac{\hbar^2}{2m} \tau_q(\vec{r}) + \sum_{qq'} \left[C^{\rho\rho}_{qq'} \rho_q(\vec{r}) \rho_{q'}(\vec{r}) + \dots + C^{\rho\rho\rho}_{qqq'} \rho^2_q(\vec{r}) \rho_{q'}(\vec{r}) + \dots \right]$$

Local densities

$$f_q(\vec{r}) \equiv \sum_{\alpha} W^f_{\alpha\alpha}(\vec{r}q) \rho_{\alpha\alpha}$$

Form factors for $f \in \{\rho, \tau, \vec{J}\}$

$$W_{\alpha\alpha}^{\tau}(\vec{r}q) = \nabla \psi_{\alpha}^{\dagger}(\vec{r}q) \cdot \nabla \psi_{\alpha}(\vec{r}q)$$

$$W^{J}_{\alpha\alpha}(\vec{r}q) = -\frac{i}{2} \{ \psi^{\dagger}_{\alpha\mu}(\vec{r}q) \left[\nabla \times \hat{\sigma} \, \psi_{\alpha}(\vec{r}q) \right] - \text{h.c.} \}$$

Trilinear Skyrme EDF in canonical basis

$$\mathcal{E}[\rho] = \sum_{\alpha} t_{\alpha\alpha} \rho_{\alpha\alpha} + \frac{1}{2} \sum_{\alpha\beta} \bar{v}^{\rho\rho}_{\alpha\beta\alpha\beta} \rho_{\alpha\alpha} \rho_{\beta\beta} + \frac{1}{6} \sum_{\alpha\beta\gamma} \bar{v}^{\rho\rho\rho}_{\alpha\beta\gamma\alpha\beta\gamma} \rho_{\alpha\alpha} \rho_{\beta\beta} \rho_{\gamma\gamma}$$

Skyrme EDF in canonical basis $(\rho_{\alpha\beta} = \rho_{\alpha\alpha} \delta_{\alpha\beta})$

Trilinear Skyrme EDF in coordinate space (no pairing)

$$\mathcal{E}[\rho] = \int d\vec{r} \sum_{q} \frac{\hbar^2}{2m} \tau_q(\vec{r}) + \sum_{qq'} \left[C_{qq'}^{\rho\rho} \rho_q(\vec{r}) \rho_{q'}(\vec{r}) + \dots + C_{qqq'}^{\rho\rho\rho} \rho_q^2(\vec{r}) \rho_{q'}(\vec{r}) + \dots \right]$$

Matrix elements of effective vertices

$$t_{\alpha\alpha} \equiv \int d\vec{r} \frac{\hbar^2}{2m} W^{\tau}_{\alpha\alpha}(\vec{r}q)$$

$$\bar{v}^{\rho\rho}_{\alpha\beta\alpha\beta} \equiv 2 \int d\vec{r} \sum_{ff'} C^{ff'}_{qq'} W^{f}_{\alpha\alpha}(\vec{r}q) W^{f'}_{\beta\beta}(\vec{r}q')$$

$$\bar{v}^{\rho\rho\rho}_{\alpha\beta\gamma\alpha\beta\gamma} \equiv 6 \int d\vec{r} \sum_{ff'f''} C^{ff'f''}_{qq'} W^{f}_{\alpha\alpha}(\vec{r}q) W^{f'}_{\beta\beta}(\vec{r}q') W^{f''}_{\gamma\gamma'}(\vec{r}q'')$$

Trilinear Skyrme EDF in canonical basis

$$\mathcal{E}[\rho] = \sum_{\alpha} t_{\alpha\alpha} \rho_{\alpha\alpha} + \frac{1}{2} \sum_{\alpha\beta} \bar{v}^{\rho\rho}_{\alpha\beta\alpha\beta} \rho_{\alpha\alpha} \rho_{\beta\beta} + \frac{1}{6} \sum_{\alpha\beta\gamma} \bar{v}^{\rho\rho\rho}_{\alpha\beta\gamma\alpha\beta\gamma} \rho_{\alpha\alpha} \rho_{\beta\beta} \rho_{\gamma\gamma}$$

MBPT

Bibliography

MBPT energy in canonical basis (no pairing, V^{NN} only)

MBPT energy at second order

$$E^{HF} + \Delta E^{HF}(2) = \sum_{\alpha} t_{\alpha\alpha} \rho_{\alpha\alpha} + \frac{1}{2} \sum_{\alpha\beta} \bar{V}^{NN}_{\alpha\beta\alpha\beta} \rho_{\alpha\alpha} \rho_{\beta\beta} + \frac{1}{4} \sum_{\alpha\beta\gamma\delta} \frac{|\bar{V}^{NN}_{\alpha\beta\gamma\delta}|^2}{\epsilon_{\alpha} + \epsilon_{\beta} - \epsilon_{\gamma} - \epsilon_{\delta}} \rho_{\alpha\alpha} \rho_{\beta\beta} (1 - \rho_{\gamma\gamma})(1 - \rho_{\delta\delta})$$

Non-empirical, generalized, nuclear EDF

- Defines an energy functional $\mathcal{E}[\rho; \{\epsilon_{\alpha}\}]$ of fourth order in ρ
 - \blacksquare Can introduce effective vertices $\bar{v}^{\rho\rho}$, $\bar{v}^{\rho\rho\rho}$ and $\bar{v}^{\rho\rho\rho\rho}$
- **②** Depends on $\{\epsilon_{\alpha}\}$ for $n_{\max} > 0 =$ traces back to non-locality in time
- Very non-local in space as n_{\max} increases

Quadruple $\int d\vec{r}$ at second order versus single $\int d\vec{r}$ for Skyrme

Choice made above

- Energy-independent
- \bullet ϵ_{α} has no meaning

As for EDF method

- Energy-dependent
- \bullet $\epsilon_{\alpha} \approx$ sep. energies

- Approach of DFT
- Energy-independent
- $\epsilon_F \approx \text{sep. energy}$

All the above can be repeated with pairing

■ MBPT with both normal (ρ) and anomalous (κ) contractions

Definition of the anomalous self-energy $\Delta_{\alpha\beta}$

 ntroduction
 MBPT

 00000
 0000000000

Bibliography

MBPT energy in canonical basis (no pairing, V^{NN} only)

Choice of the self-energy, i.e. of H_0

$$h_{\alpha\beta} \equiv t_{\alpha\beta} + \Sigma_{\alpha\beta} \equiv t_{\alpha\beta} + \sum_{\gamma\delta} \overline{v}^{ph}_{\alpha\gamma\beta\delta} \rho_{\delta\gamma}$$

$$h_{\alpha\beta} \equiv \frac{\delta \mathcal{E}}{\delta \rho_{\beta\alpha}}$$

- As for EDF method
- Energy-dependent
- $\epsilon_{\alpha} \approx \text{sep. energies}$

- Energy-independent
- $\epsilon_F \approx \text{sep. energy}$

MBPT

Bibliography

MBPT energy in canonical basis (no pairing, V^{NN} only)

Choice of the self-energy, i.e. of H_0

$$h_{\alpha\beta} \equiv t_{\alpha\beta} + \Sigma_{\alpha\beta} \equiv t_{\alpha\beta} + \sum_{\gamma\delta} \overline{v}^{ph}_{\alpha\gamma\beta\delta} \rho_{\delta\gamma}$$

Outline

Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods

Time-ordered many-body perturbation theory

- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei

Towards non-empirical energy functionals

- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional

Bibliography

 Introduction
 MBPT
 Non-empirical EDF
 Bibliography

 MBPT in coordinate representation (central V^{NN}, no spin, no isospin)

Zeroth-order (HF) energy

$$E^{HF} \subset \int \int d\vec{r}_1 \, d\vec{r}_2 \, V^{NN}(|\vec{r}_1 - \vec{r}_2|) \, \rho_{\vec{r}_1 \vec{r}_2} \, \rho_{\vec{r}_2 \vec{r}_1}$$

9 Non-local through functional of the non-local density matrix $\rho_{\vec{r}_1\vec{r}_2}$

Q Good starting point for the density matrix expansion (DME)

Second-order energy

$$\Delta E^{HF}(2) \subset \iiint d\vec{r}_{1234} \left[\sum_{\alpha\beta\gamma\delta} \psi^*_{\alpha}(\vec{r}_1) \psi^*_{\beta}(\vec{r}_2) V^{NN}(|\vec{r}_1 - \vec{r}_2|) \psi_{\gamma}(\vec{r}_1) \psi_{\delta}(\vec{r}_2) \right] \\ \psi^*_{\gamma}(\vec{r}_3) \psi^*_{\delta}(\vec{r}_4) V^{NN}(|\vec{r}_3 - \vec{r}_4|) \psi_{\alpha}(\vec{r}_3) \psi_{\delta}(\vec{r}_4) \left[\frac{\rho_{\alpha\alpha} \rho_{\beta\beta} (1 - \rho_{\gamma\gamma}) (1 - \rho_{\delta\delta})}{\epsilon_{\alpha} + \epsilon_{\beta} - \epsilon_{\gamma} - \epsilon_{\delta}} \right]$$

It is the Highly non-local + not even a functional of $\rho_{\vec{r}_1\vec{r}_2}$

Extension of the DME beyond HF needed [V. Rotival et al., unpublished]

Zeroth-order (HF) energy

$$E^{HF} \subset \int \!\!\!\int d\vec{r_1} \, d\vec{r_2} \, V^{NN}(|\vec{r_1} - \vec{r_2}|) \, \rho_{\vec{r_1}\vec{r_2}} \, \rho_{\vec{r_2}\vec{r_1}}$$

9 Non-local through functional of the non-local density matrix $\rho_{\vec{r}_1\vec{r}_2}$

② Good starting point for the density matrix expansion (DME)

Second-order energy

$$\Delta E^{HF}(2) \subset \iiint d\vec{r}_{1234} \left[\sum_{\alpha\beta\gamma\delta} \psi^*_{\alpha}(\vec{r}_1) \psi^*_{\beta}(\vec{r}_2) V^{NN}(|\vec{r}_1 - \vec{r}_2|) \psi_{\gamma}(\vec{r}_1) \psi_{\delta}(\vec{r}_2) \right] \\ \psi^*_{\gamma}(\vec{r}_3) \psi^*_{\delta}(\vec{r}_4) V^{NN}(|\vec{r}_3 - \vec{r}_4|) \psi_{\alpha}(\vec{r}_3) \psi_{\delta}(\vec{r}_4) \left[\frac{\rho_{\alpha\alpha} \rho_{\beta\beta} (1 - \rho_{\gamma\gamma}) (1 - \rho_{\delta\delta})}{\epsilon_{\alpha} + \epsilon_{\beta} - \epsilon_{\gamma} - \epsilon_{\delta}} \right]$$

• Highly non-local + not even a functional of $\rho_{\vec{r}_1\vec{r}_2}$

Stepsing States Stat

MBPT

Non-empirical EDF

Bibliography

Ideas underlying the DME for E^{HF}

Expand the density matrix in terms of local densities

I Look for separable expansion into relative \vec{r} and center of mass \vec{R} coordinates

$$\rho_{\vec{r}_1\vec{r}_2} \approx \sum_{k=0}^{k_{\text{max}}} \Pi_k^{\rho} (k_F(\vec{R})r) \, \mathcal{O}_k(\vec{R})$$

where $\mathcal{O}_k(\vec{R}) \in \{\rho_q(\vec{R}), \vec{\nabla}\rho_q(\vec{R}), \Delta\rho_q(\vec{R})\}$

Insert back into E^{HF} for $k_{\max} = 2$

 E^{HF} takes the form of a generalized Skyrme EDF

$$E^{HF} \subset \int d\vec{R} \Big[C^{\rho\rho}(\vec{R}) \rho(\vec{R}) \rho(\vec{R}) + C^{\rho\Delta\rho}(\vec{R}) \rho(\vec{R}) \Delta\rho(\vec{R}) + C^{\rho\tau}(\vec{R}) \rho(\vec{R}) \tau(\vec{R}) \Big]$$

■ Non-empirical, position/density dependent couplings $C^{ff'}(\vec{R})$, e.g.

$$C^{\rho\rho}(\vec{R}) \equiv 4\pi \int r^2 dr \ V^{NN}(r) \left[\Pi_0^{\rho}(k_F(\vec{R})r) \right]^2$$

MBPT

Non-empirical EDF

Bibliography

Ideas underlying the DME for E^{HF}

Expand the density matrix in terms of local densities

I Look for separable expansion into relative \vec{r} and center of mass \vec{R} coordinates

$$\rho_{\vec{r}_1\vec{r}_2} \approx \sum_{k=0}^{k_{\text{max}}} \Pi_k^{\rho} (k_F(\vec{R})r) \, \mathcal{O}_k(\vec{R})$$

where $\mathcal{O}_k(\vec{R}) \in \{\rho_q(\vec{R}), \vec{\nabla}\rho_q(\vec{R}), \Delta\rho_q(\vec{R})\}$

Insert back into E^{HF} for $k_{\max} = 2$

 $\blacksquare \ E^{HF}$ takes the form of a generalized Skyrme EDF

$$E^{HF} \subset \int d\vec{R} \Big[C^{\rho\rho}(\vec{R}) \,\rho(\vec{R}) \,\rho(\vec{R}) + C^{\rho\Delta\rho}(\vec{R}) \,\rho(\vec{R}) \,\Delta\rho(\vec{R}) + C^{\rho\tau}(\vec{R}) \,\rho(\vec{R}) \,\tau(\vec{R}) \Big]$$

■ Non-empirical, position/density dependent couplings $C^{ff'}(\vec{R})$, e.g.

$$C^{\rho\rho}(\vec{R}) \equiv 4\pi \int r^2 dr \ V^{NN}(r) \left[\Pi_0^{\rho}(k_F(\vec{R})r) \right]^2$$

Low-momentum interactions

MBPT

Non-empirical EDF

Bibliography

How to determine quantitative Π_k functions?

Expansion of $\rho_{\vec{r}_1 \vec{r}_2}$ [J. Negele, D. Vautherin, PRC5, 1472]

- Truncated Bessel expansion of non-locality operator $e^{\frac{1}{2}\vec{r}\cdot(\vec{\nabla}_1-\vec{\nabla}_2)}$
- **②** First term k = 0 provides exact limit in INM
- Sufficient for spin-saturated nuclei only
- Analytical expressions of $\Pi_k^{\rho}(k_F(\vec{R}))$

Expansion of $ec{s}_{ec{r}_1,ec{r}_2}$ [B. Gebremariam, T. D., S. Bogner, in preparation]

() Taylor expansion of non-locality operator and phase-space averaging of \vec{k}

$$\vec{s}_{\vec{R}+\frac{\vec{r}}{2}\vec{R}-\frac{\vec{r}}{2}} = e^{i\vec{r}\cdot\vec{k}} \left. e^{\frac{\vec{r}}{2}\cdot(\vec{\nabla}_1 - \vec{\nabla}_2) - i\vec{r}\cdot\vec{k}} \sum_{\alpha} \psi^{\dagger}_{\alpha}(\vec{r}_1) \,\vec{\sigma} \,\psi_{\alpha}(\vec{r}_2) \,\rho_{\alpha\alpha} \right|_{\vec{r}_1 = \vec{r}_2 = \vec{R}}$$

- Opens up DME for all spin-unsaturated nuclei!
- O Analytical expressions of $\Pi_k^s(k_F(\vec{R}))$
- Few % error on E^{HF} from full fledged $V^{NN}(\Lambda_{\text{low}})$ (central, tensor, spin-orbit)

MBPT

Non-empirical EDF

Bibliography

How to determine quantitative Π_k functions?

Expansion of $\rho_{\vec{r}_1\vec{r}_2}$ [J. Negele, D. Vautherin, PRC5, 1472]

- Truncated Bessel expansion of non-locality operator $e^{\frac{1}{2}\vec{r}\cdot(\vec{\nabla}_1-\vec{\nabla}_2)}$
- **②** First term k = 0 provides exact limit in INM
- Sufficient for spin-saturated nuclei only
- Analytical expressions of $\Pi_k^{\rho}(k_F(\vec{R}))$

Expansion of $\vec{s}_{\vec{r}_1 \vec{r}_2}$ [B. Gebremariam, T. D., S. Bogner, in preparation]

9 Taylor expansion of non-locality operator and phase-space averaging of \vec{k}

$$\vec{s}_{\vec{R}+\frac{\vec{r}}{2}\vec{R}-\frac{\vec{r}}{2}} = e^{i\vec{r}\cdot\vec{k}} \left. e^{\frac{\vec{r}}{2}\cdot(\vec{\nabla}_1-\vec{\nabla}_2)-i\vec{r}\cdot\vec{k}} \sum_{\alpha} \psi^{\dagger}_{\alpha}(\vec{r}_1) \,\vec{\sigma} \,\psi_{\alpha}(\vec{r}_2) \,\rho_{\alpha\alpha} \right|_{\vec{r}_1=\vec{r}_2=\vec{R}}$$

- Opens up DME for all spin-unsaturated nuclei!
- Analytical expressions of $\Pi_k^s(k_F(\vec{R}))$
- Few % error on E^{HF} from full fledged $V^{NN}(\Lambda_{low})$ (central, tensor, spin-orbit)

Non-empirical EDF

The density matrix expansion

Work under completion [B. Gebremariam, T. D., S. Bogner, in preparation]

- **Q** EDF at HF level from π -exchanges of χ -EFT $V^{NN} + V^{NNN}$ at N²LO
 - \blacksquare Automatized Mathematica derivation of coupling constants from V^{NNN}
 - Ready-to use Mathematica handbook for EDF solvers
- **②** Educated guess for empirical fitting (with UNEDF collaboration)
 - \blacksquare Add (quasi) density-independent Skyrme EDF to be fitted

Near future [B. Gebremariam, T. D., S. Bogner, in preparation]

- Empirical work
 - Systematic study of DME couplings and role of pion-physics/ V^{NNN}
 - Full fledged fitting of "augmented/educated" Skyrme-like EDF
- Formalism
 - Extend DME to non-locality in time and apply to second-order in MBPT
 - Extend DME to pairing channel including ultra-violet renormalization

Non-empirical EDF

The density matrix expansion

Work under completion [B. Gebremariam, T. D., S. Bogner, in preparation]

- **Q** EDF at HF level from π -exchanges of χ -EFT $V^{NN} + V^{NNN}$ at N²LO
 - \blacksquare Automatized Mathematica derivation of coupling constants from V^{NNN}
 - Ready-to use Mathematica handbook for EDF solvers
- Educated guess for empirical fitting (with UNEDF collaboration)
 - \blacksquare Add (quasi) density-independent Skyrme EDF to be fitted

Near future [B. Gebremariam, T. D., S. Bogner, in preparation]

- Empirical work
 - **\blacksquare** Systematic study of DME couplings and role of pion-physics/ V^{NNN}
 - Full fledged fitting of "augmented/educated" Skyrme-like EDF

Formalism

- Extend DME to non-locality in time and apply to second-order in MBPT
- Extend DME to pairing channel including ultra-violet renormalization

Outline

Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods

Time-ordered many-body perturbation theory

- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei

Towards non-empirical energy functionals

- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional

Bibliography

Bibliography

Pairing part of the EDF

Motivations

Ξ

- Empirical schemes lack predictive power
- Microscopic origin of (T = 1, J = 0) superfluidity in finite nuclei?
 - Direct term of V^{NN} (¹S₀, ³P₁, ¹D₂) and V^{NNN} ?
 - Coupling to density, spin, isospin fluctuations: 40%?

$$\Sigma_{\text{soft}}^{(1)} = -O \qquad \Delta_{\text{soft}}^{(1)} = -O \qquad \Delta_{\text{soft}}^{(1)} = -O \qquad \Delta_{\text{soft}}^{(2)} =$$

First step: v^{pp} built at 1st order in V^{NN} (nuclear + Coulomb) Starts with ${}^{1}S_{0}$ only as it dominates at sub-nuclear densities Virtual state at $E \simeq 0$ makes V^{NN} almost separable in ${}^{1}S_{0}$

Bibliography

Finite nuclei calculations

 $V_{\rm low\ k}$ is given as tables of numbers

Produce analytical operator representation

■ Why?

- Interest to understand encoded operator structure
- Perform integrals analytically in codes
- Which representation?
 - \blacksquare V_{NN} (quasi) separability in ${}^{1}S_{0}$ channel provides an incentive
 - Sum of separable terms is efficient for pairing part of the EDF

MBPT

Non-empirical EDF

Bibliography

Separable representation of $V_{\text{low k}}(\Lambda) + V_{\text{Coul}}$

High precision separable representation of rank n

$$V_n^{1}S_0(k,k',\Lambda) = \sum_{\alpha,\beta=1}^n g_\alpha(k) \ \lambda_{\alpha\beta} \ g_\beta(k')$$

Fit
$$g_{\alpha}(k)$$
 and $\lambda_{\alpha\beta}$ to $V_{\text{low }k}^{1}(k,k',\Lambda)$ and $\delta^{1}S_{0}(k)$

For $\Lambda = 1.8/4.0/$ " ∞ " fm⁻¹ (rank 3/4/15) and smooth cutoff

MBPT

Non-empirical EDF

Bibliography

Separable representation of $V_{\text{low k}}(\Lambda) + V_{\text{Coul}}$

High precision separable representation of rank n

$$V_n^{1}S_0(k,k',\Lambda) = \sum_{\alpha,\beta=1}^n g_\alpha(k) \ \lambda_{\alpha\beta} \ g_\beta(k')$$

Fit
$$g_{\alpha}(k)$$
 and $\lambda_{\alpha\beta}$ to $V_{\text{low }k}^{1}(k,k',\Lambda)$ and $\delta^{1}S_{0}(k)$

For $\Lambda = 1.8/4.0/$ " ∞ " fm⁻¹ (rank 3/4/15) and smooth cutoff

MBPT

Non-empirical EDF

Bibliography

Separable representation of $V_{\text{low k}}(\Lambda) + V_{\text{Coul}}$

High precision separable representation of rank n

$$V_n^{1}S_0(k,k',\Lambda) = \sum_{\alpha,\beta=1}^n g_\alpha(k) \lambda_{\alpha\beta} g_\beta(k')$$

Fit
$$g_{\alpha}(k)$$
 and $\lambda_{\alpha\beta}$ to $V_{\text{low }k}^{1}(k,k',\Lambda)$ and $\delta^{1}S_{0}(k)$

Non-empirical EDF

Coulomb interaction

Need to incorporate Coulomb effects on proton gaps

- Only one such published calculation so far: Madrid group (Gogny)
- Simplified treatment of e.m. interaction (Coulomb)

Truncated Coulomb interaction at $r = a > 2R_{nucleus}$

■ A separable expansion exists (S-wave part here)

$$\begin{aligned} W^{a}_{\text{Coul},\ell=0}(k,k') &= 4\pi e^{2} a^{2} \sum_{n=0}^{\infty} (2n+1) j_{n}^{2} \left(\frac{ak}{2}\right) j_{n}^{2} \left(\frac{ak'}{2}\right), \\ \lambda_{\alpha\beta} &= e^{2} a^{2} (2\alpha+1) \delta_{\alpha\beta} \\ g_{\alpha}(k) &= \sqrt{4\pi} j_{\alpha}^{2} \left(\frac{ak}{2}\right) \\ G_{\alpha}(r) &= \frac{1}{\sqrt{\pi} a^{2} r} P_{\alpha} \left(1-2(\frac{r}{a})^{2}\right) \text{ for } r \leq a \end{aligned}$$

 $\sim 15 \text{ terms needed (peanuts !)}$

The good method $\Delta^{(3)}_{expt}(N)$ VS $\Delta^{(3)}_{theory}(N)$ B.E. (regative) $A^{(3)}_{expt}(N)$ VS $\Delta^{(3)}_{theory}(N)$

$$\Delta_{\text{nexp/th}}^{(3)}(N) = \frac{(-1)^N}{2} \left[E_0(N+1) - 2E_0(N) - E_0(N-1) \right]$$

Low-momentum interactions

 $\Delta_{q,\exp}^{(3)}(\text{odd}) \quad \text{versus} \quad \Delta_{\text{LCS}}^{q}(\text{even}) = \Delta_{\epsilon_{F}}^{q} \text{ in even-} N \text{ nucleus}$

Non-empirical EDF

EDF calculations in spherical nuclei

Spherical code BSLHFB (T. Lesinski, unpublished)

- Handles highly non-local pairing EDF in systematic calculations
- Calculations almost as cheap as for a local pairing EDF
- Spherical Bessel basis $j_{\ell}(kr)$
- Well suited for drip-line physics

Calculations

- Results for 470 nuclei predicted spherical (Gogny-D1S)
- kmax ~ 4.0 fm⁻¹, $R_{box} = 20$ fm, $j_{max} = 45/2$
- Pairing complemented with (SLy4) Skyrme EDF : $m_0^* = 0.7m$
- ✓ Reminder: nothing in the pairing channel is adjusted in nuclei
- [T. D., T. Lesinski, Eur. Phys. J. Special Topics 156 (2008) 207]
- [T. Lesinski, T. D., K. Bennaceur, J. Meyer, EPJA 40 (2009) 121]
- [K. Hebeler, T. D., T. Lesinski, A. Schwenk, arXiv:0904.3152]
- [T. D., T. Lesinski, arXiv:0907.1043]
- [T. Lesinski, T. D., K. Bennaceur, J. Meyer, in preparation]

[T. D., T. Lesinski, arXiv:0907.1043]

 $\Delta_{n,\exp}^{(3)}(N)$ versus $\Delta_{n,\text{th}}^{(3)}(N)$ (self-consistent qp filling approximation)

Deepening around $N \approx 115$ arises from blocking of $\Delta_{LCS}(odd)$

■ $\Delta^{(3)}$ well described close to N = 82 without LN, proj. or pairing vib.

New masses towards or beyond shell closure very valuable to confront theory

Introduction MBPT Non-empirical EDF Bibliography occorrection correction $v^{pp} = V^{NN} + V_{Coul}$

[T. Lesinski, T. D., K. Bennaceur, J. Meyer, in preparation]

Neutron and proton gaps consistent with experiment
 Large oscillation of Δ⁽³⁾_p due to Coulomb in ph

Non-empirical EDF

Non-empirical pairing energy functional

Work under completion [T. Lesinski, T. D., K. Bennaceur, J. Meyer, in preparation]

- Addition of χ -EFT $V^{NN\langle N \rangle}(\Lambda)$ at N²LO
- **②** Set up of $v_{eff} ≈ V^{NN+NN\langle N \rangle}(\Lambda)$ for 3D code

Near future [S. Baroni, A. Pastore, T. D., A. Schwenk, in preparation]

- Add coupling to density, spin and isospin fluctuations
 - Self-energies at second order
 - Oupling to collective QRPA modes

Outline

Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods

2 Time-ordered many-body perturbation theory

- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei

3 Towards non-empirical energy functionals

- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional

Bibliography

Selected bibliography

P. Nozières,

Theory of interacting Fermi systems, 1964, Westview press, Advanced Book Classics

- R. Roth, P. Papakonstantinou, N. Paar, H. Hergert, T. Neff, H. Feldmeier, Phys. Rev. C73 (2006) 044312
- J. E. Drut, R. J. Furnstahl, L. Platter, arXiv:0906.1463
- J. Negele, D. Vautherin, Phys. Rev. C5 (1972) 1472

- B. Gebremariam, T. Duguet, S. Bogner, in preparation
- T. Lesinski, T. Duguet, K. Bennaceur, J. Meyer, Eur. Phys. J. A40 (2009) 121
- T. Duguet, T. Lesinski, arXiv:0907.1043
- K. Hebeler, T. Duguet, T. Lesinski, A. Schwenk, PRC, in press ; arXiv:0904.3152

Bibliography

HF single-particle energies

Doubly-magic nuclei

- Do not spontaneously break N, Z, J
- Good testing ground for symmetry conserving HF (except for \vec{P})

[R. Roth et al., PRC73 (2006) 044312]

Single-particle energies ϵ_k in ⁴⁰Ca

Ordering is correct but density of states is too low