Non-empirical energy functionals from low-momentum interactions III. Many-body perturbation theory and non-empirical energy functionals

T. Duguet ${ }^{1,2}$

${ }^{1}$ DSM/Irfu/SPhN, CEA Saclay, France
${ }^{2}$ National Superconducting Cyclotron Laboratory, Department of Physics and Astronomy, Michigan State University, USA

Ecole Joliot-Curie, Lacanau, Sept. $27^{\text {th }}-$ Oct $3^{\text {rd }}, 2009$

Outline

(3) Introduction to energy density functional methods
(3) Low-momentum interactions from renormalization group methods
(3) The building of non-empirical energy functionals

- Time-ordered Many-body perturbation theory (MBPT)
- Formal connection between single-reference EDF and MBPT
- The density matrix expansion
- First application to the pairing part of the EDF

Outline

(1) Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods
(2) Time-ordered many-body perturbation theory
- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei
(3) Towards non-empirical energy functionals
- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional
(4) Bibliography

Outline

(1) Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods

Time-ordered many-body perturbation theory

- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei
(3) Towards non-empirical energy functionals
- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional
(4) Bibliography

Constructing non-empirical EDFs for nuclei

Long term objective

Build non-empirical EDF in place of existing models

Empirical

Predictive?

Constructing non-empirical EDFs for nuclei

Long term objective

Build non-empirical EDF in place of existing models

[^0]
Outline

(1) Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods
(2) Time-ordered many-body perturbation theory
- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei
(3) Towards non-empirical energy functionals
- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional
(4) Bibliography

Energy Density Functional method: some relevant questions

Non empirical ?

- What form of vacuum H ?
- Can we relate $\mathcal{E}\left[\rho, \kappa, \kappa^{*}\right]$ to H ?
- Needed to go through $V_{e f f}$.
- Bulk ~ $800 \mathrm{Mev} \propto \mathrm{A}$
- Collective def. $\leq 20 \mathrm{Mev}=F\left(N_{v a l}, G_{\text {deg }}\right)$
Δ Collective fluct. $\leq 4 \mathrm{MeV}=G\left(N_{\text {val }}, G_{\text {deg }}\right)$
- Observables impacted by correlation
- Symmetry breaking
- Collective fluctuation

Take-away message

Time-ordered many-body perturbation theory

(1) Many-body problem (seems to) becomes perturbative with $H\left(\Lambda_{\text {low }}\right)$
(2) First applications in INM and doubly-magic nuclei confirm so
(3) MBPT with $H\left(\Lambda_{\text {low }}\right)=$ good ab-initio scheme to build non-empirical EDF

Towards (extended) energy functionals

(1) MBPT too expensive for heavy open-shell nuclei
(2) Approximate methods, e.g. the DME, to put it under a bearable form
(3) Controlled refit of Λ-dependent couplings to reach desired accuracy

Outline

(1) Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods
(2) Time-ordered many-body perturbation theory
- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei

3 Towards non-empirical energy functionals

- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional
(4) Bibliography

A-initio methods to solve the nuclear A-body problem

Currently used ab-initio methods

Solve the N-body problem in terms of point-like nucleons $+H(\Lambda)$

Name	Short description	Variational	Scale as	Up to
Few-body (Faddeev...)	$H \Psi=E \Psi$	Yes	$\mathrm{M}^{\text {A }}$	$\mathrm{A}=2-4$
Green-Function Monte-Carlo (GFMC)	$\Psi(\tau)=e^{-\left(H-E_{0}\right) \tau} \Psi_{T}$. $=\left[e^{-\left(H-E_{0}\right) \Delta}\right]^{n} \Psi_{T}$ + auxiliary field	Yes	$\frac{M!}{(M-A)!A!}$	A <12
No-core Shell Model	$H \Psi=E \Psi$	Yes	$4^{\text {A }}$	A <16
CoupledCluster (CC)	$\begin{gathered} \|\Psi\rangle=e^{S}\left\|\Psi_{0}\right\rangle \\ S=S_{1}+S_{2}+\cdots \end{gathered}$	No	$(M-A)^{4} A^{2}$	$\begin{aligned} & \text { A }<100 \\ & \text { Only } \\ & \text { doubly-magic } \\ & \text { for now } \end{aligned}$
M : configuration space size				

From D. Lacroix

- Many-body perturbation theory is missing; why!?

Outline

(1) Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods
(2) Time-ordered many-body perturbation theory
- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei

3 Towards non-empirical energy functionals

- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional
(4) Bibliography

Outline

(1) Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods
(2) Time-ordered many-body perturbation theory
- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei
(3) Towards non-empirical energy functionals
- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional
(4) Bibliography

Many-body perturbation theory (no pairing, $V^{N N}$ only)

Unperturbed (reference) vacuum

- Reference Slater determinant $|\Phi\rangle=\prod_{i=1}^{N} a_{i}^{+}|0\rangle$

■ Associated one-body density matrix $\rho_{\alpha \beta}=\delta_{\alpha i} \delta_{\beta i}$
(1) Greek indices $\alpha, \ldots=$ arbitrary s.p. states
(9) Roman indices $i, \ldots=$ occupied ("hole") s.p. states
(3) Roman indices $a, \ldots=$ empty ("particle") s.p. states

■ Excited Slater determinants $\left|\Phi_{i j \ldots}^{a b \ldots}\right\rangle$, e.g. $2 \mathrm{p}-2 \mathrm{~h}$ state $\left|\Phi_{i j}^{a b}\right\rangle=a_{a}^{+} a_{b}^{+} a_{j} a_{i}|\Phi\rangle$

Hartree-Fock energy from Wick theorem with respect to $|\Phi\rangle$

Many-body perturbation theory (no pairing, $V^{N N}$ only)

Unperturbed (reference) vacuum

■ Reference Slater determinant $|\Phi\rangle=\prod_{i=1}^{N} a_{i}^{+}|0\rangle$

- Associated one-body density matrix $\rho_{\alpha \beta}=\delta_{\alpha i} \delta_{\beta i}$
(1) Greek indices $\alpha, \ldots=$ arbitrary s.p. states
(2) Roman indices $i, \ldots=$ occupied ("hole") s.p. states
(3) Roman indices $a, \ldots=$ empty ("particle") s.p. states

■ Excited Slater determinants $\left|\Phi_{i j \ldots}^{a b \ldots}\right\rangle$, e.g. 2p-2h state $\left|\Phi_{i j}^{a b}\right\rangle=a_{a}^{+} a_{b}^{+} a_{j} a_{i}|\Phi\rangle$

Hartree-Fock s.p. basis $a_{\alpha}^{+} / \psi_{\alpha}$

- $h^{H F} \psi_{\alpha}=\epsilon_{\alpha} \psi_{\alpha}$
$\square h_{\alpha \gamma}^{H F} \equiv t_{\alpha \gamma}+\sum_{\beta \delta} \bar{V}_{\alpha \beta \gamma \delta}^{N N} \rho_{\delta \beta}$

Matrix elements of $V^{N N}$

$$
V_{\alpha \beta \gamma \delta}^{N N} \equiv\langle 1: \alpha ; 2: \beta| V^{N N}|1: \gamma ; 2: \delta\rangle
$$

$$
\bar{V}_{\alpha \beta \alpha \beta}^{N N} \equiv V_{\alpha \beta \gamma \delta}^{N N}-V_{\alpha \beta \delta \gamma}^{N N}
$$

Hartree-Fock energy from Wick theorem with respect to (क)

[^1]
Many-body perturbation theory (no pairing, $V^{N N}$ only)

Unperturbed (reference) vacuum

■ Reference Slater determinant $|\Phi\rangle=\prod_{i=1}^{N} a_{i}^{+}|0\rangle$
■ Associated one-body density matrix $\rho_{\alpha \beta}=\delta_{\alpha i} \delta_{\beta i}$
(1) Greek indices $\alpha, \ldots=$ arbitrary s.p. states
(2) Roman indices $i, \ldots=$ occupied ("hole") s.p. states
(3) Roman indices $a, \ldots=$ empty ("particle") s.p. states
\square Excited Slater determinants $\left|\Phi_{i j \ldots\rangle}^{a b \ldots}\right\rangle$, e.g. 2p-2h state $\left|\Phi_{i j}^{a b}\right\rangle=a_{a}^{+} a_{b}^{+} a_{j} a_{i}|\Phi\rangle$

Hartree-Fock s.p. basis $a_{\alpha}^{+} / \psi_{\alpha}$

- $h^{H F} \psi_{\alpha}=\epsilon_{\alpha} \psi_{\alpha}$
$\square h_{\alpha \gamma}^{H F} \equiv t_{\alpha \gamma}+\sum_{\beta \delta} \bar{V}_{\alpha \beta \gamma \delta}^{N N} \rho_{\delta \beta}$

Matrix elements of $V^{N N}$

- $V_{\alpha \beta \gamma \delta}^{N N} \equiv\langle 1: \alpha ; 2: \beta| V^{N N}|1: \gamma ; 2: \delta\rangle$
- $\bar{V}_{\alpha \beta \alpha \beta}^{N N} \equiv V_{\alpha \beta \gamma \delta}^{N N}-V_{\alpha \beta \delta \gamma}^{N N}$

Hartree-Fock energy from Wick theorem with respect to $|\Phi\rangle$

$$
E^{H F} \equiv\langle\Phi| H|\Phi\rangle=\sum_{i} t_{i i}+\frac{1}{2} \sum_{i j} \bar{V}_{i j i j}^{N N}
$$

[^2]
Many-body perturbation theory (no pairing, $V^{N N}$ only)

$H(\Lambda)$ in normal-ordered form

■ Using Wick's theorem with respect to $|\Phi\rangle$

$$
H(\Lambda)=E^{H F}+\sum_{\alpha} \epsilon_{\alpha}: a_{\alpha}^{+} a_{\alpha}:+\frac{1}{4} \sum_{\alpha \beta \gamma \delta} \bar{V}_{\alpha \beta \gamma \delta}^{N N}: a_{\alpha}^{+} a_{\beta}^{+} a_{\delta} a_{\gamma}: \equiv H_{0}+V_{\mathrm{res}}
$$

- H_{0} denotes the unperturbed Hamiltonian and $V_{\text {res }}$ the residual interaction

$$
\begin{aligned}
& \square H_{0}\left|\Phi_{i j \ldots}^{a b \ldots}\right\rangle=E_{i j \ldots}^{a b \ldots}\left|\Phi_{i j}^{a b \ldots}\right\rangle \text { with } E_{i j \ldots}^{a b \ldots}=E^{H F}+\left(\epsilon_{a}+\epsilon_{b}+\ldots-\epsilon_{i}-\epsilon_{j}-\ldots\right) \\
& \square\langle\Phi| V_{\mathrm{res}}|\Phi\rangle=\langle\Phi| V_{\mathrm{res}}\left|\Phi_{i}^{a}\right\rangle=0
\end{aligned}
$$

Correlations (always defined with respect to a given reference!)

- True ground-state energy
© Can minimize $\Delta E^{H F}$ through symmetry breaking (N, J, π
- Includes correlations with respect to symmetry restricted $E^{H F}$!
© Not enough as "bulk" correlations are missing in the first place
- Cf. Infinite Nuclear Matter and doubly magic nuclei below.

Many-body perturbation theory (no pairing, $V^{N N}$ only)

$H(\Lambda)$ in normal-ordered form

■ Using Wick's theorem with respect to $|\Phi\rangle$

$$
H(\Lambda)=E^{H F}+\sum_{\alpha} \epsilon_{\alpha}: a_{\alpha}^{+} a_{\alpha}:+\frac{1}{4} \sum_{\alpha \beta \gamma \delta} \bar{V}_{\alpha \beta \gamma \delta}^{N N}: a_{\alpha}^{+} a_{\beta}^{+} a_{\delta} a_{\gamma}: \equiv H_{0}+V_{\mathrm{res}}
$$

■ H_{0} denotes the unperturbed Hamiltonian and $V_{\text {res }}$ the residual interaction
$\square H_{0}\left|\Phi_{i j \ldots}^{a b \ldots}\right\rangle=E_{i j \ldots}^{a b \ldots}\left|\Phi_{i j \ldots}^{a b \ldots}\right\rangle$ with $E_{i j \ldots}^{a b \ldots}=E^{H F}+\left(\epsilon_{a}+\epsilon_{b}+\ldots-\epsilon_{i}-\epsilon_{j}-\ldots\right)$

- $\langle\Phi| V_{\mathrm{res}}|\Phi\rangle=\langle\Phi| V_{\mathrm{res}}\left|\Phi_{i}^{a}\right\rangle=0$

Correlations (always defined with respect to a given reference!)

- True ground-state energy of $|\Psi\rangle$ is $E \equiv E^{H F}+\Delta E^{H F}$
(9) Can minimize $\Delta E^{H F}$ through symmetry breaking ($N, J, \pi \ldots$)

■ Includes correlations with respect to symmetry restricted $E^{H F}$!
(3) Not enough as "bulk" correlations are missing in the first place

■ Cf. Infinite Nuclear Matter and doubly magic nuclei below...

Many-body perturbation theory (no pairing, $V^{N N}$ only)

Time-ordered (Goldstone) MBPT from Gell-Man Low theorem

$\square \Delta E^{H F}$ expanded as a power series in $V_{\text {res }}$

$$
\Delta E^{H F}=\sum_{n=0}\langle\Phi| V_{\mathrm{res}}\left(\frac{1}{E^{H F}-H_{0}} V_{\mathrm{res}}\right)^{n}|\Phi\rangle_{\text {connected }}
$$

- Summing all terms provides the exact ground-state energy

```
Perturbative approach
    \square If it makes sense
    (1) Meaningful answer obtained from a finite number of terms
    (3) Contributions decreases as n increases
    * May need to define }\mp@subsup{H}{0}{}(|\Phi\rangle)\mathrm{ differently to speed up convergence
    | Counter examples
    (1) Cooper instability = need to expand around a Bogoliubov vacuum
    (2)}H(\mp@subsup{\Lambda}{\mathrm{ high }}{})=\mathrm{ need to sum pp ladders and expand in (hole-lines)}\mp@subsup{}{}{n
```


Many-body perturbation theory (no pairing, $V^{N N}$ only)

Time-ordered (Goldstone) MBPT from Gell-Man Low theorem

$\square \Delta E^{H F}$ expanded as a power series in $V_{\text {res }}$

$$
\Delta E^{H F}=\sum_{n=0}\langle\Phi| V_{\mathrm{res}}\left(\frac{1}{E^{H F}-H_{0}} V_{\mathrm{res}}\right)^{n}|\Phi\rangle_{\text {connected }}
$$

■ Summing all terms provides the exact ground-state energy

Perturbative approach

If it makes sense
(1) Meaningful answer obtained from a finite number of terms
(2) Contributions decreases as n increases
(3) May need to define $H_{0}(|\Phi\rangle)$ differently to speed up convergence

- Counter examples
(1) Cooper instability $=$ need to expand around a Bogoliubov vacuum
(2) $H\left(\Lambda_{\text {high }}\right)=$ need to sum pp ladders and expand in (hole-lines) ${ }^{n}$
- What about using $H\left(\Lambda_{\text {low }}\right)$ rather than $H\left(\Lambda_{\text {high }}\right)$?

Many-body perturbation theory (no pairing, $V^{N N}$ only)

Computation procedure $=1^{\text {st }}$ version

(1) Truncate expansion to given order $n_{\max }$
(2) Insert (quasi) completeness relationship of \mathcal{H}_{N} in between each operator

$$
\mathbb{1}_{N}-|\Phi\rangle\langle\Phi|=\sum_{\substack{a \\ i}}\left|\Phi_{i}^{a}\right\rangle\left\langle\Phi_{i}^{a}\right|+\left(\frac{1}{2!}\right)^{2} \sum_{\substack{a, b \\ i, j}}\left|\Phi_{i j}^{a b}\right\rangle\left\langle\Phi_{i j}^{a b}\right|+\left(\frac{1}{3!}\right)^{2} \sum_{\substack{a, b, c \\ i, j, k}}\left|\Phi_{i j k}^{a b c}\right\rangle\left\langle\Phi_{i j k}^{a b c}\right|+\ldots
$$

(3) Apply each resolvent operator $\left(E^{H F}-H_{0}\right)^{-1}$ to extract energy denominators
(1) Compute each matrix elements of $V_{\text {res }}$

Many-body perturbation theory (no pairing, $V^{N N}$ only)

Computation procedure $=1^{\text {st }}$ version

(1) Truncate expansion to given order $n_{\text {max }}$
(2) Insert (quasi) completeness relationship of \mathcal{H}_{N} in between each operator

$$
\mathbb{1}_{N}-|\Phi\rangle\langle\Phi|=\sum_{\substack{a \\ i}}\left|\Phi_{i}^{a}\right\rangle\left\langle\Phi_{i}^{a}\right|+\left(\frac{1}{2!}\right)^{2} \sum_{\substack{a, b \\ i, j}}\left|\Phi_{i j}^{a b}\right\rangle\left\langle\Phi_{i j}^{a b}\right|+\left(\frac{1}{3!}\right)^{2} \sum_{\substack{a, b, c \\ i, j, k}}\left|\Phi_{i j k}^{a b c}\right\rangle\left\langle\Phi_{i j k}^{a b c}\right|+\ldots
$$

(3) Apply each resolvent operator $\left(E^{H F}-H_{0}\right)^{-1}$ to extract energy denominators
(1) Compute each matrix elements of $V_{\text {res }}$

Example: second order $\left(n_{\max }=1\right)$

$$
\begin{aligned}
\Delta E^{H F}(2) & =\frac{1}{4} \sum_{i, j, a, b} \frac{\left.\left|\langle\Phi| V_{\mathrm{res}}\right| \Phi_{i j}^{a b}\right\rangle\left.\right|^{2}}{E^{H F}-E_{i j}^{a b}} \\
& =\frac{1}{4} \sum_{i, j, a, b} \frac{\left|\bar{V}_{i j a b}^{N N}\right|^{2}}{\epsilon_{i}+\epsilon_{j}-\epsilon_{a}-\epsilon_{b}}<0
\end{aligned}
$$

Needed matrix elements

(1) $\langle\Phi| V_{\text {res }}\left|\Phi_{i}^{a}\right\rangle=0$
(2) $\langle\Phi| V_{\text {res }}\left|\Phi_{i j}^{a b}\right\rangle=\bar{V}_{i j a b}^{N N}$
(3) $\langle\Phi| V_{\text {res }}\left|\Phi_{i j k \ldots}^{a b c \ldots}\right\rangle=0$

Many-body perturbation theory (no pairing, $V^{N N}$ only)

Computation procedure $=2^{\text {nd }}$ version

(1) Matrix elements $\left\langle\Phi_{i^{\prime} j^{\prime} j^{\prime} k^{\prime} \ldots}^{a^{\prime} b^{\prime}{ }^{\prime} \ldots \mid}\right| V_{\text {res }}\left|\Phi_{i j k \ldots . .}^{a b c \ldots}\right\rangle$ cumbersome to compute
(9) Develop systematic approach $=$ diagrammatic techniques
© Rules to compute Hugenholtz/Golsdtone diagrams

Example: second order $\left(n_{\max }=1\right)$
$\Delta E^{H F}(2)=\frac{1}{4} \sum_{i, j, a, b} \frac{\left|\bar{V}_{i j a b}^{N N}\right|^{2}}{\epsilon_{i}+\epsilon_{j}-\epsilon_{a}-\epsilon_{b}}$

Remark

(1) Hole state \Leftrightarrow factor $\rho_{\alpha \alpha}$ in \sum
(2) Particle state \Leftrightarrow factor $1-\rho_{\alpha \alpha}$ in \sum

Diagram

Many-body perturbation theory (no pairing, $V^{N N}$ only)

Computation procedure $=2^{\text {nd }}$ version

(9) Matrix elements $\left\langle\Phi_{i^{\prime} j^{\prime} k^{\prime} \ldots}^{a^{\prime} b^{\prime} c^{\prime} \ldots}\right| V_{\text {res }}\left|\Phi_{i j k \ldots}^{a b c \ldots}\right\rangle$ cumbersome to compute
(2) Develop systematic approach $=$ diagrammatic techniques
(3) Rules to compute Hugenholtz/Golsdtone diagrams

Diagram

Energy denorminator

$$
\left(\epsilon_{i}+\epsilon_{j}-\epsilon_{a}-\epsilon_{b}\right)^{-1}
$$

Many-body perturbation theory (no pairing, $V^{N N}$ only)

Computation procedure $=2^{\text {nd }}$ version

(1) Matrix elements $\left\langle\Phi_{i^{\prime} j^{\prime} k^{\prime} \ldots}^{a^{\prime} b^{\prime} c^{\prime} \ldots}\right| V_{\text {res }}\left|\Phi_{i j k \ldots}^{a b c \ldots}\right\rangle$ cumbersome to compute
(2) Develop systematic approach $=$ diagrammatic techniques
(3) Rules to compute Hugenholtz/Golsdtone diagrams

$$
\begin{aligned}
& \text { Matrix elements } \\
& \qquad V_{i j a b}^{N N} \times V_{a b i j}^{N N}
\end{aligned}
$$

Diagram

Plus some extra rules

■ Sum over internal lines, pre-factor, sign...

Outline

(1) Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods
(2) Time-ordered many-body perturbation theory
- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei
(3) Towards non-empirical energy functionals
- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional
(4) Bibliography

Infinite nuclear matter

Is nuclear matter perturbative?

- Not with $H\left(\Lambda_{\text {high }}\right)$
- Seems to be with $H\left(\Lambda_{\text {low }}\right)$

■ New paradigm!?

Saturation mechanism

- TrNNT plays an essential

EOS of symmetric nuclear matter

[S. K. Bogner et al., NPA 763, 59]

Infinite nuclear matter

EOS of symmetric nuclear matter

[S. K. Bogner et al., arXiv:0903.3366]

MBPT with low-momentum interactions

How much goes into each order depends on (Λ of) H but not the full answer!

- EOS is converged at $2^{\text {nd }}$ order (at least in pp channel) for $\Lambda \in[1.8 ; 2.8] \mathrm{fm}^{-1}$
- Good reproduction of the empirical saturation point

Infinite nuclear matter

Is nuclear matter perturbative?

- Not with $H\left(\Lambda_{\text {high }}\right)$
- Seems to be with $H\left(\Lambda_{\text {low }}\right)$

■ New paradigm!?

Saturation mechanism

- $V^{N N N}$ plays an essential
- Coester line with $V^{N N}$ only

EOS of symmetric nuclear matter

[S. K. Bogner et al., arXiv:0903.3366]

Outline

(1) Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods
(2) Time-ordered many-body perturbation theory
- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei
(3) Towards non-empirical energy functionals
- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional
(4) Bibliography

Finite nuclei

Doubly-magic nuclei

■ Do not spontaneously break N, Z, J

- Good testing ground for symmetry conserving HF+MBPT (except for \vec{P})
- Performed with $V_{\mathrm{UCOM}}^{N N}$ and no $V^{N N N}$

[R. Roth et al., PRC73 (2006) 044312]

Binding energy (per particle)

- HF provides correct trend with A but underbinds tremendously

■ Second-order MBPT provides good account of missing bulk correlations

Finite nuclei

Doubly-magic nuclei

■ Do not spontaneously break N, Z, J
■ Good testing ground for symmetry conserving HF+MBPT (except for \vec{P})

- Performed with $V_{\mathrm{UCOM}}^{N N}$ and no $V^{N N N}$

[R. Roth et al., PRC73 (2006) 044312]

Charge radii

■ HF underestimates significantly in heavy nuclei
\square Second-order improves the situation but it is not enough ($V^{N N N}$?)

Heavy nuclei from $H(\Lambda)$ at $\Lambda \approx 2 \mathrm{fm}^{-1}$

Conclusions

(1) Doubly magic nuclei

- Second-order MBPT provides bulk of correlations $\approx-8 \mathrm{MeV} / A$
- Need to study effect of $V^{N N N}(\Lambda)$ on $r_{\text {ch }}$ and spin-orbit splittings
- Accuracy requires to add collective fluctuations (MR)
(2) Open-shell nuclei
- Should break N, Z, J^{2} to add about $f\left(N_{\text {val }}, \nu_{\text {val }}\right) \times 20 \mathrm{MeV}$ correlations
- Second-order MBPT very costly, i.e. scales as $N_{\text {basis }}^{5}$

Conclusions

(3) Doubly magic nuclei

- Second-order MBPT provides bulk of correlations $\approx-8 \mathrm{MeV} / A$
- Need to study effect of $V^{N N N}(\Lambda)$ on $r_{\text {ch }}$ and spin-orbit splittings
- Accuracy requires to add collective fluctuations (MR)
(2) Open-shell nuclei
- Should break N, Z, J^{2} to add about $f\left(N_{\text {val }}, \nu_{\text {val }}\right) \times 20 \mathrm{MeV}$ correlations
- Second-order MBPT very costly, i.e. scales as $N_{\text {basis }}^{5}$

What is the plan? Connect to EDF methods

(1) Controlled approximation to (second-order) MBPT

- A priori justification to empirical energy functionals
- Educated guess for extended energy functionals
- Estimates of coupling with uncertainty through Λ dependence
(2) Controlled refit of "educated couplings"

■ Compensates for missing accuracy (leaving out MR correlations)

Outline

(1) Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methodsTime-ordered many-body perturbation theory
- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei
(3) Towards non-empirical energy functionals
- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional

(4) Bibliography

Outline

(1) Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods
(2) Time-ordered many-body perturbation theory
- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei
(3) Towards non-empirical energy functionals
- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional
(4) Bibliography

Skyrme EDF in canonical basis $\left(\rho_{\alpha \beta}=\rho_{\alpha \alpha} \delta_{\alpha \beta}\right)$

Trilinear Skyrme EDF in coordinate space (no pairing)

$$
\mathcal{E}[\rho]=\int d \vec{r} \sum_{q} \frac{\hbar^{2}}{2 m} \tau_{q}(\vec{r})+\sum_{q q^{\prime}}\left[C_{q q^{\prime}}^{\rho \rho} \rho_{q}(\vec{r}) \rho_{q^{\prime}}(\vec{r})+\ldots+C_{q q q^{\prime}}^{\rho \rho \rho} \rho_{q}^{2}(\vec{r}) \rho_{q^{\prime}}(\vec{r})+\ldots\right]
$$

Local densities

- $f_{q}(\vec{r}) \equiv \sum_{\alpha} W_{\alpha \alpha}^{f}(\vec{r} q) \rho_{\alpha \alpha}$

Form factors for $f \in\{\rho, \tau, \vec{J}\}$
■ $W_{\alpha \alpha}^{\rho}(\vec{r} q)=\psi_{\alpha}^{\dagger}(\vec{r} q) \psi_{\alpha}(\vec{r} q)$

- $W_{\alpha \alpha}^{\tau}(\vec{r} q)=\nabla \psi_{\alpha}^{\dagger}(\vec{r} q) \cdot \nabla \psi_{\alpha}(\vec{r} q)$
- $W_{\alpha \alpha}^{J}(\vec{r} q)=-\frac{i}{2}\left\{\psi_{\alpha \mu}^{\dagger}(\vec{r} q)\left[\nabla \times \hat{\sigma} \psi_{\alpha}(\vec{r} q)\right]-\right.$ h.c. $\}$

Trilinear Skyrme EDF in canonical basis

$$
\mathcal{E}[\rho]=\sum_{\alpha} t_{\alpha \alpha} \rho_{\alpha \alpha}+\frac{1}{2} \sum_{\alpha \beta} \bar{v}_{\alpha \beta \alpha \beta}^{\rho \rho} \rho_{\alpha \alpha} \rho_{\beta \beta}+\frac{1}{6} \sum_{\alpha \beta \gamma} \bar{v}_{\alpha \beta \gamma \alpha \beta \gamma}^{\rho \rho \rho} \rho_{\alpha \alpha} \rho_{\beta \beta} \rho_{\gamma \gamma}
$$

[^3]
Skyrme EDF in canonical basis $\left(\rho_{\alpha \beta}=\rho_{\alpha \alpha} \delta_{\alpha \beta}\right)$

Trilinear Skyrme EDF in coordinate space (no pairing)

$$
\mathcal{E}[\rho]=\int d \vec{r} \sum_{q} \frac{\hbar^{2}}{2 m} \tau_{q}(\vec{r})+\sum_{q q^{\prime}}\left[C_{q q^{\prime}}^{\rho \rho} \rho_{q}(\vec{r}) \rho_{q^{\prime}}(\vec{r})+\ldots+C_{q q q^{\prime}}^{\rho \rho \rho} \rho_{q}^{2}(\vec{r}) \rho_{q^{\prime}}(\vec{r})+\ldots\right]
$$

Matrix elements of effective vertices

■ $t_{\alpha \alpha} \equiv \int d \vec{r} \frac{\hbar^{2}}{2 m} W_{\alpha \alpha}^{\tau}(\vec{r} q)$
■ $\bar{v}_{\alpha \beta \alpha \beta}^{\rho \rho} \equiv 2 \int d \vec{r} \sum_{f f^{\prime}} C_{q q^{\prime}}^{f f^{\prime}} W_{\alpha \alpha}^{f}(\vec{r} q) W_{\beta \beta}^{f^{\prime}}\left(\vec{r} q^{\prime}\right)$
$\square \bar{v}_{\alpha \beta \gamma \alpha \beta \gamma}^{\rho \rho \rho} \equiv 6 \int d \vec{r} \sum_{f f^{\prime} f^{\prime \prime}} C_{q q^{\prime}}^{f f^{\prime} f^{\prime \prime}} W_{\alpha \alpha}^{f}(\vec{r} q) W_{\beta \beta}^{f^{\prime}}\left(\vec{r} q^{\prime}\right) W_{\gamma \gamma}^{f^{\prime \prime}}\left(\vec{r} q^{\prime \prime}\right)$

Trilinear Skyrme EDF in canonical basis

$$
\mathcal{E}[\rho]=\sum_{\alpha} t_{\alpha \alpha} \rho_{\alpha \alpha}+\frac{1}{2} \sum_{\alpha \beta} \bar{v}_{\alpha \beta \alpha \beta}^{\rho \rho} \rho_{\alpha \alpha} \rho_{\beta \beta}+\frac{1}{6} \sum_{\alpha \beta \gamma} \bar{v}_{\alpha \beta \gamma \alpha \beta \gamma}^{\rho \rho \rho} \rho_{\alpha \alpha} \rho_{\beta \beta} \rho_{\gamma \gamma}
$$

[^4]
MBPT energy in canonical basis (no pairing, $V^{N N}$ only)

MBPT energy at second order

$$
\begin{aligned}
E^{H F}+\Delta E^{H F}(2) & =\sum_{\alpha} t_{\alpha \alpha} \rho_{\alpha \alpha} \\
& +\frac{1}{2} \sum_{\alpha \beta} \bar{V}_{\alpha \beta \alpha \beta}^{N N} \rho_{\alpha \alpha} \rho_{\beta \beta} \\
& +\frac{1}{4} \sum_{\alpha \beta \gamma \delta} \frac{\left|\bar{V}_{\alpha \beta \gamma \delta}^{N N}\right|^{2}}{\epsilon_{\alpha}+\epsilon_{\beta}-\epsilon_{\gamma}-\epsilon_{\delta}} \rho_{\alpha \alpha} \rho_{\beta \beta}\left(1-\rho_{\gamma \gamma}\right)\left(1-\rho_{\delta \delta}\right)
\end{aligned}
$$

Non-empirical, generalized, nuclear EDF

(1) Defines an energy functional $\mathcal{E}\left[\rho ;\left\{\epsilon_{\alpha}\right\}\right]$ of fourth order in ρ

■ Can introduce effective vertices $\bar{v}^{\rho \rho}, \bar{v}^{\rho \rho \rho}$ and $\bar{v}^{\rho \rho \rho \rho}$
(2) Depends on $\left\{\epsilon_{\alpha}\right\}$ for $n_{\max }>0=$ traces back to non-locality in time
(3) Very non-local in space as $n_{\text {max }}$ increases

■ Quadruple $\int d \vec{r}$ at second order versus single $\int d \vec{r}$ for Skyrme

MBPT energy in canonical basis (no pairing, $V^{N N}$ only)

Choice of the self-energy, i.e. of H_{0}

$$
h_{\alpha \beta} \equiv t_{\alpha \beta}+\Sigma_{\alpha \beta} \equiv t_{\alpha \beta}+\sum_{\gamma \delta} \bar{v}_{\alpha \gamma \beta \delta}^{p h} \rho_{\delta \gamma}
$$

II. Dress Σ according to \mathcal{E}

III. Local Σ through ODP

- As for EDF method
- Fnerov-denendent
$\square \epsilon_{\alpha} \approx$ sep. energies

- Approach of DFT
- Fneror-indenendent

All the above can be repeated with pairing

\square MBPT with both normal (ρ) and anomalous (k) contractions

- Definition of the anomalous self-energy $\Delta_{\alpha \beta}$

MBPT energy in canonical basis (no pairing, $V^{N N}$ only)

Choice of the self-energy, i.e. of H_{0}

$$
h_{\alpha \beta} \equiv t_{\alpha \beta}+\Sigma_{\alpha \beta} \equiv t_{\alpha \beta}+\sum_{\gamma \delta} \bar{v}_{\alpha \gamma \beta \delta}^{p h} \rho_{\delta \gamma}
$$

> I. Use $\Sigma^{H F}$ for all $n_{\max }$ $$
\bar{v}_{\alpha \gamma \beta \delta}^{p h}=\bar{V}_{\alpha \gamma \beta \delta}^{N N}
$$

■ Choice made above

- Energy-independent

■ ϵ_{α} has no meaning

II. Dress Σ according to \mathcal{E}

- As for EDF method
- Energy-dependent - $\epsilon_{\alpha} \approx$ sep. energies

II. Local Σ through ODP

> All the above can be repeated with pairing
> - MBPT with both normal (ρ) and anomalous (κ) contractions - Definition of the anomalous self-energy $\Delta_{\sim \beta}$

MBPT energy in canonical basis (no pairing, $V^{N N}$ only)

Choice of the self-energy, i.e. of H_{0}

$$
h_{\alpha \beta} \equiv t_{\alpha \beta}+\Sigma_{\alpha \beta} \equiv t_{\alpha \beta}+\sum_{\gamma \delta} \bar{v}_{\alpha \gamma \beta \delta}^{p h} \rho_{\delta \gamma}
$$

I. Use $\Sigma^{H F}$ for all $n_{\max }$
$\bar{v}_{\alpha \gamma \beta \delta}^{p h}=\bar{V}_{\alpha \gamma \beta \delta}^{N N}$
Choice made above
\square Energy-independent
\square
ϵ_{α} has no meaning

II. Dress Σ according to \mathcal{E}

$$
h_{\alpha \beta} \equiv \frac{\delta \mathcal{E}}{\delta \rho_{\beta \alpha}}
$$

- As for EDF method
- Energy-dependent
- $\epsilon_{\alpha} \approx$ sep. energies

TI. Local Σ through ODP

- Approach of DFT

- Energy-independent

All the above can be repeated with pairing

- MBPT with both normal (ρ) and anomalous (κ) contractions - Definition of the anomalous self-energy $\Delta_{\alpha \beta}$

MBPT energy in canonical basis (no pairing, $V^{N N}$ only)

Choice of the self-energy, i.e. of H_{0}

$$
h_{\alpha \beta} \equiv t_{\alpha \beta}+\Sigma_{\alpha \beta} \equiv t_{\alpha \beta}+\sum_{\gamma \delta} \bar{v}_{\alpha \gamma \beta \delta}^{p h} \rho_{\delta \gamma}
$$

III. Local Σ through OEP

$$
\Sigma(\vec{r}) \equiv \frac{\delta[\mathcal{E}-\mathcal{T}]}{\delta \rho(\vec{r})}
$$

- Approach of DFT
- Energy-independent
$\square \epsilon_{F} \approx$ sep. energy
All the above can be repeated with pairing
- MBPT with both normal (ρ) and anomalous (κ) contractions
- Definition of the anomalous self-energy $\Delta_{\alpha \beta}$

MBPT energy in canonical basis (no pairing, $V^{N N}$ only)

Choice of the self-energy, i.e. of H_{0}

$$
h_{\alpha \beta} \equiv t_{\alpha \beta}+\Sigma_{\alpha \beta} \equiv t_{\alpha \beta}+\sum_{\gamma \delta} \bar{v}_{\alpha \gamma \beta \delta}^{p h} \rho_{\delta \gamma}
$$

I. Use $\Sigma^{H F}$ for all $n_{\max }$

$$
\bar{v}_{\alpha \gamma \beta \delta}^{p h}=\bar{V}_{\alpha \gamma \beta \delta}^{N N}
$$

■ Choice made above

- Energy-independent
- ϵ_{α} has no meaning
II. Dress Σ according to \mathcal{E}

$$
h_{\alpha \beta} \equiv \frac{\delta \mathcal{E}}{\delta \rho_{\beta \alpha}}
$$

- As for EDF method
- Energy-dependent
- $\epsilon_{\alpha} \approx$ sep. energies
III. Local Σ through OEP

$$
\Sigma(\vec{r}) \equiv \frac{\delta[\mathcal{E}-\mathcal{T}]}{\delta \rho(\vec{r})}
$$

- Approach of DFT
- Energy-independent
$\square \epsilon_{F} \approx$ sep. energy

All the above can be repeated with pairing
MBPT with both normal (ρ) and anomalous (κ) contractions
■ Definition of the anomalous self-energy $\Delta_{\alpha \beta}$

Outline

(1) Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods
(2) Time-ordered many-body perturbation theory
- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei
(3) Towards non-empirical energy functionals
- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional
(4) Bibliography

MBPT in coordinate representation (central $V^{N N}$, no spin, no isospin)

Zeroth-order (HF) energy

$$
E^{H F} \subset \iint d \vec{r}_{1} d \vec{r}_{2} V^{N N}\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right) \rho_{\vec{r}_{1} \vec{r}_{2}} \rho_{\vec{r}_{2} \vec{r}_{1}}
$$

(1) Non-local through functional of the non-local density matrix $\rho_{\vec{r}_{1} \vec{r}_{2}}$
(2) Good starting point for the density matrix expansion (DME)

Second-order energy

$\Delta E^{H F}(2) \subset \iiint \int d \vec{r}_{1234}\left[\sum_{\alpha \beta \gamma \delta} \psi_{\alpha}^{*}\left(\vec{r}_{1}\right) \psi_{\beta}^{*}\left(\vec{r}_{2}\right) V^{N N}\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right) \psi_{\gamma}\left(\vec{r}_{1}\right) \psi_{\delta}\left(\vec{r}_{2}\right)\right.$
(1) Highly non-local + not even a functional of $\rho_{\vec{r}_{1} \vec{r}_{2}}$

- Extension of the DMM beyond ITT needed [V. Rotival et al., unpublished]

MBPT in coordinate representation (central $V^{N N}$, no spin, no isospin)

Zeroth-order (HF) energy

$$
E^{H F} \subset \iint d \vec{r}_{1} d \vec{r}_{2} V^{N N}\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right) \rho_{\vec{r}_{1} \vec{r}_{2}} \rho_{\vec{r}_{2} \vec{r}_{1}}
$$

(1) Non-local through functional of the non-local density matrix $\rho_{\vec{r}_{1}} \vec{r}_{2}$
(2) Good starting point for the density matrix expansion (DME)

Second-order energy

$$
\begin{aligned}
\Delta E^{H F}(2) & \subset \iiint \int d \vec{r}_{1234}\left[\sum_{\alpha \beta \gamma \delta} \psi_{\alpha}^{*}\left(\vec{r}_{1}\right) \psi_{\beta}^{*}\left(\vec{r}_{2}\right) V^{N N}\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right) \psi_{\gamma}\left(\vec{r}_{1}\right) \psi_{\delta}\left(\vec{r}_{2}\right)\right. \\
& \left.\psi_{\gamma}^{*}\left(\vec{r}_{3}\right) \psi_{\delta}^{*}\left(\vec{r}_{4}\right) V^{N N}\left(\left|\vec{r}_{3}-\vec{r}_{4}\right|\right) \psi_{\alpha}\left(\vec{r}_{3}\right) \psi_{\delta}\left(\vec{r}_{4}\right)\right] \frac{\rho_{\alpha \alpha} \rho_{\beta \beta}\left(1-\rho_{\gamma \gamma}\right)\left(1-\rho_{\delta \delta}\right)}{\epsilon_{\alpha}+\epsilon_{\beta}-\epsilon_{\gamma}-\epsilon_{\delta}}
\end{aligned}
$$

(1) Highly non-local + not even a functional of $\rho_{\vec{r}_{1} \vec{r}_{2}}$
(2) Extension of the DME beyond HF needed [V. Rotival et al., unpublished]

Ideas underlying the DME for $E^{H F}$

Expand the density matrix in terms of local densities

Look for separable expansion into relative \vec{r} and center of mass \vec{R} coordinates

$$
\rho_{\vec{r}_{1} \vec{r}_{2}} \approx \sum_{k=0}^{k_{\max }} \Pi_{k}^{\rho}\left(k_{F}(\vec{R}) r\right) \mathcal{O}_{k}(\vec{R})
$$

where $\mathcal{O}_{k}(\vec{R}) \in\left\{\rho_{q}(\vec{R}), \vec{\nabla} \rho_{q}(\vec{R}), \Delta \rho_{q}(\vec{R})\right\}$
\square

- Non-empirical, position/density dependent couplings $C^{f f^{\prime}}(\vec{R})$, e.g.

Ideas underlying the DME for $E^{H F}$

Expand the density matrix in terms of local densities

Look for separable expansion into relative \vec{r} and center of mass \vec{R} coordinates

$$
\rho_{\vec{r}_{1} \vec{r}_{2}} \approx \sum_{k=0}^{k_{\max }} \Pi_{k}^{\rho}\left(k_{F}(\vec{R}) r\right) \mathcal{O}_{k}(\vec{R})
$$

where $\mathcal{O}_{k}(\vec{R}) \in\left\{\rho_{q}(\vec{R}), \vec{\nabla} \rho_{q}(\vec{R}), \Delta \rho_{q}(\vec{R})\right\}$

Insert back into $E^{H F}$ for $k_{\max }=2$

- $E^{H F}$ takes the form of a generalized Skyrme EDF

$$
E^{H F} \subset \int d \vec{R}\left[C^{\rho \rho}(\vec{R}) \rho(\vec{R}) \rho(\vec{R})+C^{\rho \Delta \rho}(\vec{R}) \rho(\vec{R}) \Delta \rho(\vec{R})+C^{\rho \tau}(\vec{R}) \rho(\vec{R}) \tau(\vec{R})\right]
$$

■ Non-empirical, position/density dependent couplings $C^{f f^{\prime}}(\vec{R})$, e.g.

$$
C^{\rho \rho}(\vec{R}) \equiv 4 \pi \int r^{2} d r V^{N N}(r)\left[\Pi_{0}^{\rho}\left(k_{F}(\vec{R}) r\right)\right]^{2}
$$

How to determine quantitative Π_{k} functions?

Expansion of $\rho_{\vec{r}_{1} \vec{r}_{2}} \quad$ [J. Negele, D. Vautherin, PRC5, 1472]

(1) Truncated Bessel expansion of non-locality operator $e^{\frac{1}{2} \vec{r} \cdot\left(\vec{\nabla}_{1}-\vec{\nabla}_{2}\right)}$
(2) First term $k=0$ provides exact limit in INM
(3) Sufficient for spin-saturated nuclei only
(1) Analytical expressions of $\Pi_{k}^{\rho}\left(k_{F}(\vec{R})\right)$

How to determine quantitative Π_{k} functions?

Expansion of $\rho_{\vec{r}_{1} \vec{r}_{2}} \quad$ [J. Negele, D. Vautherin, PRC5, 1472]

(1) Truncated Bessel expansion of non-locality operator $e^{\frac{1}{2} \vec{r} \cdot\left(\vec{\nabla}_{1}-\vec{\nabla}_{2}\right)}$
(2) First term $k=0$ provides exact limit in INM
(3) Sufficient for spin-saturated nuclei only
(1) Analytical expressions of $\Pi_{k}^{\rho}\left(k_{F}(\vec{R})\right)$

Expansion of $\vec{s}_{\vec{r}_{1}} \vec{r}_{2} \quad$ [B. Gebremariam, T. D., S. Bogner, in preparation]

(1) Taylor expansion of non-locality operator and phase-space averaging of \vec{k}

$$
\vec{s}_{\vec{R}+\frac{\vec{r}}{2} \vec{R}-\frac{\vec{r}}{2}}=\left.e^{i \vec{r} \cdot \vec{k}} e^{\frac{\vec{r}}{2} \cdot\left(\vec{\nabla}_{1}-\vec{\nabla}_{2}\right)-i \vec{r} \cdot \vec{k}} \sum_{\alpha} \psi_{\alpha}^{\dagger}\left(\vec{r}_{1}\right) \vec{\sigma} \psi_{\alpha}\left(\vec{r}_{2}\right) \rho_{\alpha \alpha}\right|_{\vec{r}_{1}=\vec{r}_{2}=\vec{R}}
$$

(2) Opens up DME for all spin-unsaturated nuclei!
(3) Analytical expressions of $\Pi_{k}^{s}\left(k_{F}(\vec{R})\right)$
(1) Few $\%$ error on $E^{H F}$ from full fledged $V^{N N}\left(\Lambda_{\text {low }}\right)$ (central, tensor, spin-orbit)

The density matrix expansion

Work under completion [B. Gebremariam, T. D., S. Bogner, in preparation]

(1) EDF at HF level from π-exchanges of χ-EFT $V^{N N}+V^{N N N}$ at $\mathrm{N}^{2} \mathrm{LO}$

■ Automatized Mathematica derivation of coupling constants from $V^{N N N}$

- Ready-to use Mathematica handbook for EDF solvers
(2) Educated guess for empirical fitting (with UNEDF collaboration)

■ Add (quasi) density-independent Skyrme EDF to be fitted

The density matrix expansion

Work under completion [B. Gebremariam, T. D., S. Bogner, in preparation]

(1) EDF at HF level from π-exchanges of χ-EFT $V^{N N}+V^{N N N}$ at $\mathrm{N}^{2} \mathrm{LO}$

- Automatized Mathematica derivation of coupling constants from $V^{N N N}$
- Ready-to use Mathematica handbook for EDF solvers
(2) Educated guess for empirical fitting (with UNEDF collaboration)

■ Add (quasi) density-independent Skyrme EDF to be fitted

Near future [B. Gebremariam, T. D., S. Bogner, in preparation]

(1) Empirical work

- Systematic study of DME couplings and role of pion-physics/ $V^{N N N}$

■ Full fledged fitting of "augmented/educated" Skyrme-like EDF
(2) Formalism

- Extend DME to non-locality in time and apply to second-order in MBPT

■ Extend DME to pairing channel including ultra-violet renormalization

Outline

(1) Introduction

- Some questions raised about EDF methods
- Ab-initio many-body methods
(2) Time-ordered many-body perturbation theory
- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei
(3) Towards non-empirical energy functionals
- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional
(4) Bibliography

Pairing part of the EDF

Motivations

- Empirical schemes lack predictive power
- Microscopic origin of $(T=1, J=0)$ superfluidity in finite nuclei?

Direct term of $V^{N N}\left({ }^{1} S_{0},{ }^{3} P_{1},{ }^{1} D_{2}\right)$ and $V^{N N N}$?

- Coupling to density, spin, isospin fluctuations: 40% ?

First step: $v^{p p}$ built at $1^{\text {st }}$ order in $V^{N N}$ (nuclear + Coulomb)

- Starts with ${ }^{1} S_{0}$ only as it dominates at sub-nuclear densities
\square Virtual state at $E \simeq 0$ makes $V^{N N}$ almost separable in ${ }^{1} S_{0}$

Finite nuclei calculations

$V_{\text {low } \mathrm{k}}$ is given as tables of numbers

Produce analytical operator representation

■ Why?

- Interest to understand encoded operator structurePerform integrals analytically in codes
- Which representation?
- $V_{N N}$ (quasi) separability in ${ }^{1} S_{0}$ channel provides an incentive
- Sum of separable terms is efficient for pairing part of the EDF

Separable representation of $V_{\text {low } k}(\Lambda)+V_{\text {Coul }}$

High precision separable representation of rank n

$$
V_{n}^{1} S_{0}\left(k, k^{\prime}, \Lambda\right)=\sum_{\alpha, \beta=1}^{n} g_{\alpha}(k) \lambda_{\alpha \beta} g_{\beta}\left(k^{\prime}\right)
$$

Fit $g_{\alpha}(k)$ and $\lambda_{\alpha \beta}$ to $V_{\text {low }}{ }^{1} S_{0}\left(k, k^{\prime}, \Lambda\right)$ and $\delta^{1} S_{0}(k)$

For $\Lambda=1.8 / 4.0 / " \infty{ }^{\prime} \mathrm{fm}^{-1}(\mathrm{rank} 3 / 4 / 15)$ and smooth cutoff

Separable representation of $V_{\text {low } k}(\Lambda)+V_{\text {Coul }}$

High precision separable representation of rank n

$$
V_{n}^{1} S_{0}\left(k, k^{\prime}, \Lambda\right)=\sum_{\alpha, \beta=1}^{n} g_{\alpha}(k) \lambda_{\alpha \beta} g_{\beta}\left(k^{\prime}\right)
$$

Fit $g_{\alpha}(k)$ and $\lambda_{\alpha \beta}$ to $V_{\text {low }}{ }^{1} S_{0}\left(k, k^{\prime}, \Lambda\right)$ and $\delta^{1} S_{0}(k)$

For $\Lambda=1.8 / .0 / " \infty{ }^{\prime \prime} \mathrm{fm}^{-1}($ rank $3 / / 15)$ and smooth cutoff

Separable representation of $V_{\text {low } k}(\Lambda)+V_{\text {Coul }}$

High precision separable representation of rank n

$$
V_{n}^{1} S_{0}\left(k, k^{\prime}, \Lambda\right)=\sum_{\alpha, \beta=1}^{n} g_{\alpha}(k) \lambda_{\alpha \beta} g_{\beta}\left(k^{\prime}\right)
$$

Fit $g_{\alpha}(k)$ and $\lambda_{\alpha \beta}$ to $V_{\text {low }}{ }^{1} S_{0}\left(k, k^{\prime}, \Lambda\right)$ and $\delta^{1} S_{0}(k)$

For $\Lambda=1.8 / 4.0 / \quad \mathrm{fm}^{-1}(\operatorname{rank} 3 / 4 / 15)$ and smooth cutoff

Coulomb interaction

Need to incorporate Coulomb effects on proton gaps

■ Only one such published calculation so far: Madrid group (Gogny)

- Simplified treatment of e.m. interaction (Coulomb)

Truncated Coulomb interaction at $r=a>2 R_{\text {nucleus }}$

■ A separable expansion exists (S-wave part here)

$$
\begin{aligned}
V_{\mathrm{Coul}, \ell=0}^{a}\left(k, k^{\prime}\right) & =4 \pi e^{2} a^{2} \sum_{n=0}^{\infty}(2 n+1) j_{n}^{2}\left(\frac{a k}{2}\right) j_{n}^{2}\left(\frac{a k^{\prime}}{2}\right) \\
\lambda_{\alpha \beta} & =e^{2} a^{2}(2 \alpha+1) \delta_{\alpha \beta} \\
g_{\alpha}(k) & =\sqrt{4 \pi} j_{\alpha}^{2}\left(\frac{a k}{2}\right) \\
G_{\alpha}(r) & =\frac{1}{\sqrt{\pi} a^{2} r} P_{\alpha}\left(1-2\left(\frac{r}{a}\right)^{2}\right) \text { for } r \leq a
\end{aligned}
$$

■ ~ 15 terms needed (peanuts !)

Comparing theoretical and experimental "pairing gaps"

\& The good method

$$
\Delta_{\mathrm{nexp} / \mathrm{th}}^{(3)}(N)=\frac{(-1)^{N}}{2}\left[E_{0}(N+1)-2 E_{0}(N)-E_{0}(N-1)\right]
$$

Comparing theoretical and experimental "pairing gaps"

\% The good method

\& The actual method

$\Delta_{q, \exp }^{(3)}($ odd $) \quad$ versus $\quad \Delta_{\mathrm{LCS}}^{\mathrm{q}}($ even $)=\Delta_{\epsilon_{F}}^{q}$ in even- N nucleus

EDF calculations in spherical nuclei

Spherical code BSLHFB (T. Lesinski, unpublished)

■ Handles highly non-local pairing EDF in systematic calculations

- Calculations almost as cheap as for a local pairing EDF
- Spherical Bessel basis $j_{\ell}(k r)$
- Well suited for drip-line physics

Calculations

Results for 470 nuclei predicted spherical (Gogny-D1S)
$\square k_{\max } \sim 4.0 \mathrm{fm}^{-1}, R_{\text {box }}=20 \mathrm{fm}, j_{\max }=45 / 2$

- Pairing complemented with (SLy4) Skyrme EDF : $m_{0}^{*}=0.7 m$
\checkmark Reminder: nothing in the pairing channel is adjusted in nuclei
[T. D., T. Lesinski, Eur. Phys. J. Special Topics 156 (2008) 207]
[T. Lesinski, T. D., K. Bennaceur, J. Meyer, EPJA 40 (2009) 121]
[K. Hebeler, T. D., T. Lesinski, A. Schwenk, arXiv:0904.3152]
[T. D., T. Lesinski, arXiv:0907.1043]
[T. Lesinski, T. D., K. Bennaceur, J. Meyer, in preparation]

Pairing gaps $\left({ }^{1} S_{0}\right)$ from $v^{p p}=V^{N N}+V_{\text {Coul }}$

[T. D., T. Lesinski, arXiv:0907.1043]
$\Delta_{n, \exp }^{(3)}(N)$ versus $\Delta_{n, \text { th }}^{(3)}(N)$ (self-consistent qp filling approximation)

- Deepening around $N \approx 115$ arises from blocking of Δ_{LCS} (odd)

■ $\Delta^{(3)}$ well described close to $N=82$ without LN, proj. or pairing vib.
■ New masses towards or beyond shell closure very valuable to confront theory

Pairing gaps $\left({ }^{1} S_{0}\right)$ from $v^{p p}=V^{N N}+V_{\text {Coul }}$

[T. Lesinski, T. D., K. Bennaceur, J. Meyer, in preparation]

$\Delta_{q, \exp }^{(3)} \operatorname{versus} \Delta_{q, \text { th }}^{(3)}$ (self-consistent qp filling approximation)

Neutron and proton gaps consistent with experiment
■ Large oscillation of $\Delta_{p}^{(3)}$ due to Coulomb in ph

Non-empirical pairing energy functional

Work under completion [T. Lesinski, T. D., K. Bennaceur, J. Meyer, in preparation]
(1) Addition of χ-EFT $V^{N N\langle N\rangle}(\Lambda)$ at $\mathrm{N}^{2} \mathrm{LO}$
(2) Set up of $v_{\text {eff }} \approx V^{N N+N N\langle N\rangle}(\Lambda)$ for 3 D code
Near future [S. Baroni, A. Pastore, T. D., A. Schwenk, in preparation]

■ Add coupling to density, spin and isospin fluctuations
(1) Self-energies at second order
(2) Coupling to collective QRPA modes

Outline

Introduction- Some questions raised about EDF methods
- Ab-initio many-body methods

Time-ordered many-body perturbation theory

- Elements of formalism
- Application to symmetric nuclear matter
- Application to doubly-magic nuclei

Towards non-empirical energy functionals

- Comparison between Skyrme EDF and MBPT expressions
- Basics of the density matrix expansion
- First calculations with non-empirical pairing energy functional
(4) Bibliography

Selected bibliography

Q P．Nozières，
Theory of interacting Fermi systems，1964，Westview press，Advanced Book Classics國

R．Roth，P．Papakonstantinou，N．Paar，H．Hergert，T．Neff，H．Feldmeier， Phys．Rev．C73（2006） 044312

宣
J．E．Drut，R．J．Furnstahl，L．Platter， arXiv：0906．1463J．Negele，D．Vautherin，
Phys．Rev．C5（1972） 1472B．Gebremariam，T．Duguet，S．Bogner， in preparation

T．Lesinski，T．Duguet，K．Bennaceur，J．Meyer， Eur．Phys．J．A40（2009） 121

T．Duguet，T．Lesinski， arXiv：0907．1043

亩 K．Hebeler，T．Duguet，T．Lesinski，A．Schwenk， PRC，in press ；arXiv：0904．3152

HF single-particle energies

Doubly-magic nuclei

■ Do not spontaneously break N, Z, J
■ Good testing ground for symmetry conserving HF (except for \vec{P})

[R. Roth et al., PRC73 (2006) 044312]

Single-particle energies ϵ_{k} in ${ }^{40} \mathrm{Ca}$

- Ordering is correct but density of states is too low

[^0]: Low-momentum interactions

[^1]: Low-momentum interactions

[^2]: Low-momentum interactions

[^3]: Low-momentum interactions

[^4]: Low-momentum interactions

