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Lecture series

0utline

1 Introduction to energy density functional methods

2 Low-momentum interactions from renormalization group methods

3 The building of non-empirical energy functionals

■ Time-ordered Many-body perturbation theory (MBPT)

■ Formal connection between single-reference EDF and MBPT

■ The density matrix expansion

■ First application to the pairing part of the EDF
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Constructing non-empirical EDFs for nuclei

Long term objective

Build non-empirical EDF in place of existing models

Empirical

Predictive?

Finite nuclei and extended nuclear matter

Low-momentum interactions
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Energy Density Functional method: some relevant questions

Low-momentum interactions
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Take-away message

Time-ordered many-body perturbation theory

1 Many-body problem (seems to) becomes perturbative with H (Λlow)

2 First applications in INM and doubly-magic nuclei confirm so

3 MBPT with H (Λlow) = good ab-initio scheme to build non-empirical EDF

Towards (extended) energy functionals

1 MBPT too expensive for heavy open-shell nuclei

2 Approximate methods, e.g. the DME, to put it under a bearable form

3 Controlled refit of Λ-dependent couplings to reach desired accuracy

Low-momentum interactions
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A-initio methods to solve the nuclear A-body problem

Currently used ab-initio methods

■ Solve the N-body problem in terms of point-like nucleons+H (Λ)

From D. Lacroix

■ Many-body perturbation theory is missing; why!?

Low-momentum interactions
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Many-body perturbation theory (no pairing, V NN only)

Unperturbed (reference) vacuum

■ Reference Slater determinant |Φ〉 =
∏N

i=1 a+
i |0〉

■ Associated one-body density matrix ραβ = δαi δβi

1 Greek indices α, . . . = arbitrary s.p. states
2 Roman indices i , . . . = occupied ("hole") s.p. states
3 Roman indices a, . . . = empty ("particle") s.p. states

■ Excited Slater determinants |Φab...
ĳ... 〉, e.g. 2p-2h state |Φab

ĳ 〉= a+
a a+

b
ajai |Φ〉

Hartree-Fock s.p. basis a+
α /ψα

■ hHF ψα = ǫαψα

■ hHF
αγ ≡ tαγ +

∑

βδ V̄ NN
αβγδ ρδβ

Matrix elements of V NN

■ V NN
αβγδ ≡ 〈1 : α ;2 : β|V NN |1 : γ ;2 : δ〉

■ V̄ NN
αβαβ ≡ V NN

αβγδ−V NN
αβδγ

Hartree-Fock energy from Wick theorem with respect to |Φ〉

E
HF ≡ 〈Φ|H |Φ〉 =

∑

i

tii +
1

2

∑

ĳ

V̄
NN
ĳĳ

Low-momentum interactions
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Many-body perturbation theory (no pairing, V NN only)

H (Λ) in normal-ordered form

■ Using Wick’s theorem with respect to |Φ〉

H (Λ) = E
HF +
∑

α

ǫα : a
+
α aα : +

1

4

∑

αβγδ

V̄
NN
αβγδ : a

+
α a

+
β aδaγ : ≡ H0 + Vres

■ H0 denotes the unperturbed Hamiltonian and Vres the residual interaction

■ H0|Φab...
ĳ... 〉= Eab...

ĳ... |Φab...
ĳ... 〉 with Eab...

ĳ... = EHF +(ǫa + ǫb + . . .− ǫi− ǫj− . . .)
■ 〈Φ|Vres|Φ〉 = 〈Φ|Vres|Φa

i 〉= 0

Correlations (always defined with respect to a given reference!)

■ True ground-state energy of |Ψ〉 is E ≡ EHF + ∆EHF

1 Can minimize ∆EHF through symmetry breaking (N , J , π. . . )

■ Includes correlations with respect to symmetry restricted EHF !

2 Not enough as "bulk" correlations are missing in the first place

■ Cf. Infinite Nuclear Matter and doubly magic nuclei below...

Low-momentum interactions
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Many-body perturbation theory (no pairing, V NN only)

Time-ordered (Goldstone) MBPT from Gell-Man Low theorem

■ ∆EHF expanded as a power series in Vres

∆E
HF =

∑

n=0

〈Φ|Vres

(

1

EHF −H0
Vres

)n

|Φ〉connected

■ Summing all terms provides the exact ground-state energy

Perturbative approach

■ If it makes sense

1 Meaningful answer obtained from a finite number of terms
2 Contributions decreases as n increases
3 May need to define H0 (|Φ〉) differently to speed up convergence

■ Counter examples

1 Cooper instability = need to expand around a Bogoliubov vacuum
2 H (Λhigh) = need to sum pp ladders and expand in (hole-lines)n

■ What about using H (Λlow) rather than H (Λhigh)?

Low-momentum interactions
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Many-body perturbation theory (no pairing, V NN only)

Computation procedure = 1st version

1 Truncate expansion to given order nmax

2 Insert (quasi) completeness relationship of HN in between each operator1N−|Φ〉〈Φ|=
∑

a
i

|Φa
i 〉〈Φa

i |+
(

1
2!

)2∑

a,b
i,j

|Φab
ĳ 〉〈Φab

ĳ |+
(

1
3!

)2∑

a,b,c
i,j,k

|Φabc
ĳk 〉〈Φabc

ĳk |+ . . .

3 Apply each resolvent operator (EHF −H0)−1 to extract energy denominators

4 Compute each matrix elements of Vres

Example: second order (nmax = 1)

∆E
HF(2) =

1

4

∑

i,j,a,b

|〈Φ|Vres|Φab
ĳ 〉|2

EHF −Eab
ĳ

=
1

4

∑

i,j,a,b

|V̄ NN
ĳab |2

ǫi + ǫj− ǫa− ǫb
< 0

Needed matrix elements

1 〈Φ|Vres|Φa
i 〉= 0

2 〈Φ|Vres|Φab
ĳ 〉= V̄ NN

ĳab

3 〈Φ|Vres|Φabc...
ĳk... 〉= 0

Low-momentum interactions
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Many-body perturbation theory (no pairing, V NN only)

Computation procedure = 2nd version

1 Matrix elements 〈Φa′b′c′...
i′j′k′... |Vres|Φabc...

ĳk... 〉 cumbersome to compute

2 Develop systematic approach = diagrammatic techniques

3 Rules to compute Hugenholtz/Golsdtone diagrams

Example: second order (nmax = 1)

∆E
HF(2) =

1

4

∑

i,j,a,b

|V̄ NN
ĳab |2

ǫi + ǫj− ǫa− ǫb

Remark

1 Hole state ⇔ factor ραα in
∑

2 Particle state ⇔ factor 1−ραα in
∑

Diagram

Low-momentum interactions
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Many-body perturbation theory (no pairing, V NN only)

Computation procedure = 2nd version

1 Matrix elements 〈Φa′b′c′...
i′j′k′... |Vres|Φabc...

ĳk... 〉 cumbersome to compute

2 Develop systematic approach = diagrammatic techniques

3 Rules to compute Hugenholtz/Golsdtone diagrams

Energy denorminator

(ǫi + ǫj− ǫa− ǫb)−1

Diagram
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Many-body perturbation theory (no pairing, V NN only)

Computation procedure = 2nd version

1 Matrix elements 〈Φa′b′c′...
i′j′k′... |Vres|Φabc...

ĳk... 〉 cumbersome to compute

2 Develop systematic approach = diagrammatic techniques

3 Rules to compute Hugenholtz/Golsdtone diagrams

Matrix elements

V NN
ĳab ×V NN

abĳ

Diagram

Plus some extra rules

■ Sum over internal lines, pre-factor, sign. . .

Low-momentum interactions
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Infinite nuclear matter

Is nuclear matter perturbative?

■ Not with H (Λhigh)

■ Seems to be with H (Λlow)

■ New paradigm!?

Saturation mechanism

■ V NNN plays an essential

■ Coester line with V NN only

EOS of symmetric nuclear matter

[S. K. Bogner et al., NPA 763, 59]

Low-momentum interactions
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Infinite nuclear matter

EOS of symmetric nuclear matter

[S. K. Bogner et al., arXiv:0903.3366]

MBPT with low-momentum interactions

■ How much goes into each order depends on (Λ of) H but not the full answer!

■ EOS is converged at 2nd order (at least in pp channel) for Λ ∈ [1.8;2.8] fm−1

■ Good reproduction of the empirical saturation point

Low-momentum interactions
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Finite nuclei

Doubly-magic nuclei

■ Do not spontaneously break N ,Z ,J

■ Good testing ground for symmetry conserving HF+MBPT (except for ~P)

■ Performed with V NN
UCOM and no V NNN

4He
16O

24O
34Si

40Ca
48Ca

48Ni
56Ni

78Ni
88Sr

90Zr
100Sn

114Sn
132Sn

146Gd
208Pb

-8

-6

-4

-2

0

.

E
/A

[M
eV

]

EHF
EHF + E(2)

EHF + E(2)
+ E(3)

[R. Roth et al., PRC73 (2006) 044312]

Binding energy (per particle)

■ HF provides correct trend with A but underbinds tremendously

■ Second-order MBPT provides good account of missing bulk correlations

Low-momentum interactions
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Finite nuclei

Doubly-magic nuclei

■ Do not spontaneously break N ,Z ,J

■ Good testing ground for symmetry conserving HF+MBPT (except for ~P)

■ Performed with V NN
UCOM and no V NNN

4He
16O

24O
34Si

40Ca
48Ca

48Ni
56Ni

78Ni
88Sr

90Zr
100Sn

114Sn
132Sn

146Gd
208Pb

1

2

3

4

5

6

.

R
ch

[f
m

]

RHF

RHF+PT2

[R. Roth et al., PRC73 (2006) 044312]

Charge radii

■ HF underestimates significantly in heavy nuclei

■ Second-order improves the situation but it is not enough (V NNN ?)

Low-momentum interactions
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Heavy nuclei from H (Λ) at Λ≈ 2 fm−1

Conclusions

1 Doubly magic nuclei

■ Second-order MBPT provides bulk of correlations ≈−8 MeV/A
■ Need to study effect of V NNN (Λ) on rch and spin-orbit splittings
■ Accuracy requires to add collective fluctuations (MR)

2 Open-shell nuclei

■ Should break N ,Z ,J2 to add about f (Nval,νval)×20 MeV correlations
■ Second-order MBPT very costly, i.e. scales as N 5

basis

What is the plan? Connect to EDF methods

1 Controlled approximation to (second-order) MBPT

■ A priori justification to empirical energy functionals
■ Educated guess for extended energy functionals
■ Estimates of coupling with uncertainty through Λ dependence

2 Controlled refit of "educated couplings"

■ Compensates for missing accuracy (leaving out MR correlations)

Low-momentum interactions
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Skyrme EDF in canonical basis (ραβ = ραα δαβ)

Trilinear Skyrme EDF in coordinate space (no pairing)

E [ρ] =

∫

d~r
∑

q

h̄2

2m
τq(~r) +

∑

qq′

[

C
ρρ
qq′

ρq(~r)ρq′(~r) + . . .+ C
ρρρ
qqq′

ρ2
q(~r)ρq′(~r) + . . .

]

Local densities

■ fq(~r)≡
∑

αW
f
αα(~rq)ραα

Form factors for f ∈ {ρ,τ,~J}

■ W
ρ
αα(~rq) = ψ

†
α(~rq)ψα(~rq)

■ W τ
αα(~rq) =∇ψ†α(~rq) ·∇ψα(~rq)

■ W J
αα(~rq) =− i

2{ψ
†
αµ(~rq)

[

∇× σ̂ ψα(~rq)
]

−h.c.}

Trilinear Skyrme EDF in canonical basis

E [ρ] =
∑

α

tαα ραα+
1

2

∑

αβ

v̄
ρρ
αβαβ ραα ρββ+

1

6

∑

αβγ

v̄
ρρρ
αβγαβγ ραα ρββ ργγ

Low-momentum interactions
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Matrix elements of effective vertices

■ tαα ≡
∫

d~r h̄2

2m W τ
αα(~rq)

■ v̄
ρρ
αβαβ ≡ 2

∫

d~r
∑

ff ′
C

ff ′

qq′
W

f
αα(~rq)W

f ′

ββ(~rq′)

■ v̄
ρρρ
αβγαβγ ≡ 6

∫

d~r
∑

ff ′f ′′
C

ff ′f ′′

qq′
W

f
αα(~rq)W

f ′

ββ(~rq′)W
f ′′

γγ (~rq′′)

Trilinear Skyrme EDF in canonical basis

E [ρ] =
∑

α

tαα ραα+
1

2

∑

αβ

v̄
ρρ
αβαβ ραα ρββ+

1

6

∑

αβγ

v̄
ρρρ
αβγαβγ ραα ρββ ργγ
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MBPT energy in canonical basis (no pairing, V NN only)

MBPT energy at second order

E
HF + ∆E

HF(2) =
∑

α

tαα ραα

+
1

2

∑

αβ

V̄
NN
αβαβ ρααρββ

+
1

4

∑

αβγδ

|V̄ NN
αβγδ|2

ǫα+ ǫβ− ǫγ − ǫδ
ραα ρββ (1−ργγ)(1−ρδδ)

Non-empirical, generalized, nuclear EDF

1 Defines an energy functional E [ρ;{ǫα}] of fourth order in ρ

■ Can introduce effective vertices v̄ρρ, v̄ρρρ and v̄ρρρρ

2 Depends on {ǫα} for nmax > 0 = traces back to non-locality in time

3 Very non-local in space as nmax increases

■ Quadruple
∫

d~r at second order versus single
∫

d~r for Skyrme

Low-momentum interactions
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MBPT energy in canonical basis (no pairing, V NN only)

Choice of the self-energy, i.e. of H0

hαβ ≡ tαβ + Σαβ ≡ tαβ +
∑

γδ

v
ph
αγβδ ρδγ

I. Use ΣHF for all nmax

v
ph
αγβδ = V̄

NN
αγβδ

■ Choice made above

■ Energy-independent

■ ǫα has no meaning

II. Dress Σ according to E

hαβ ≡ δE
δρβα

■ As for EDF method

■ Energy-dependent

■ ǫα ≈ sep. energies

III. Local Σ through OEP

Σ(~r) ≡ δ[E−T ]

δρ(~r)

■ Approach of DFT

■ Energy-independent

■ ǫF ≈ sep. energy

All the above can be repeated with pairing

■ MBPT with both normal (ρ) and anomalous (κ) contractions

■ Definition of the anomalous self-energy ∆αβ

Low-momentum interactions
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Outline

1 Introduction
Some questions raised about EDF methods
Ab-initio many-body methods

2 Time-ordered many-body perturbation theory
Elements of formalism
Application to symmetric nuclear matter
Application to doubly-magic nuclei

3 Towards non-empirical energy functionals
Comparison between Skyrme EDF and MBPT expressions
Basics of the density matrix expansion
First calculations with non-empirical pairing energy functional
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MBPT in coordinate representation (central V NN , no spin, no isospin)

Zeroth-order (HF) energy

E
HF ⊂

∫ ∫

d~r1d~r2 V
NN (|~r1−~r2|)ρ~r1~r2

ρ~r2~r1

1 Non-local through functional of the non-local density matrix ρ~r1~r2

2 Good starting point for the density matrix expansion (DME)

Second-order energy

∆E
HF(2) ⊂

∫ ∫ ∫ ∫

d~r1234

[

∑

αβγδ

ψ∗α(~r1)ψ∗β(~r2)V NN (|~r1−~r2|)ψγ(~r1)ψδ(~r2)

ψ∗γ(~r3)ψ∗δ (~r4)V NN (|~r3−~r4|)ψα(~r3)ψδ(~r4)

]

ρααρββ (1−ργγ) (1−ρδδ)
ǫα+ ǫβ− ǫγ − ǫδ

1 Highly non-local + not even a functional of ρ~r1~r2

2 Extension of the DME beyond HF needed [V. Rotival et al., unpublished]

Low-momentum interactions
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Ideas underlying the DME for EHF

Expand the density matrix in terms of local densities

■ Look for separable expansion into relative ~r and center of mass ~R coordinates

ρ~r1~r2
≈

kmax
∑

k=0

Πρ
k

(

kF (~R
)

r)Ok(~R)

where Ok(~R) ∈ {ρq(~R), ~∇ρq(~R),∆ρq(~R)}

Insert back into EHF for kmax = 2

■ EHF takes the form of a generalized Skyrme EDF

E
HF ⊂

∫

d~R
[

C
ρρ(~R)ρ(~R)ρ(~R) + C

ρ∆ρ(~R)ρ(~R)∆ρ(~R) + C
ρτ (~R)ρ(~R)τ (~R)

]

■ Non-empirical, position/density dependent couplings Cff ′(~R), e.g.

C
ρρ(~R)≡ 4π

∫

r
2
dr V

NN (r)
[

Πρ0(kF(~R)r)
]2
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How to determine quantitative Πk functions?

Expansion of ρ~r1~r2
[J. Negele, D. Vautherin, PRC5, 1472]

1 Truncated Bessel expansion of non-locality operator e
1
2
~r·(~∇1−~∇2)

2 First term k = 0 provides exact limit in INM

3 Sufficient for spin-saturated nuclei only

4 Analytical expressions of Πρ
k
(kF (~R))

Expansion of ~s~r1~r2
[B. Gebremariam, T. D., S. Bogner, in preparation]

1 Taylor expansion of non-locality operator and phase-space averaging of ~k

~s~R+~r
2
~R−~r

2

= e
i~r ·~k

e
~r
2
·(~∇1−~∇2)−i~r ·~k

∑

α

ψ†α(~r1)~σψα(~r2)ραα

∣

∣

∣

∣

~r1=~r2=~R

2 Opens up DME for all spin-unsaturated nuclei!

3 Analytical expressions of Πs
k(kF (~R))

4 Few % error on EHF from full fledged V NN (Λlow) (central, tensor, spin-orbit)

Low-momentum interactions
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The density matrix expansion

Work under completion [B. Gebremariam, T. D., S. Bogner, in preparation]

1 EDF at HF level from π-exchanges of χ-EFT V NN + V NNN at N2LO

■ Automatized Mathematica derivation of coupling constants from V NNN

■ Ready-to use Mathematica handbook for EDF solvers

2 Educated guess for empirical fitting (with UNEDF collaboration)

■ Add (quasi) density-independent Skyrme EDF to be fitted

Near future [B. Gebremariam, T. D., S. Bogner, in preparation]

1 Empirical work

■ Systematic study of DME couplings and role of pion-physics/V NNN

■ Full fledged fitting of "augmented/educated" Skyrme-like EDF

2 Formalism

■ Extend DME to non-locality in time and apply to second-order in MBPT

■ Extend DME to pairing channel including ultra-violet renormalization

Low-momentum interactions
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Pairing part of the EDF

Motivations

■ Empirical schemes lack predictive power

■ Microscopic origin of (T = 1,J = 0) superfluidity in finite nuclei?

■ Direct term of V NN (1S0, 3P1, 1D2) and V NNN ?

■ Coupling to density, spin, isospin fluctuations: 40%?

Σ
(1)
soft = ∆

(1)
soft =

Σ
(2)
soft = + + ∆

(2)
soft = +

First step: vpp built at 1st order in V NN (nuclear + Coulomb)

■ Starts with 1S0 only as it dominates at sub-nuclear densities

■ Virtual state at E ≃ 0 makes V NN almost separable in 1S0

Low-momentum interactions



Introduction MBPT Non-empirical EDF Bibliography

Finite nuclei calculations

Vlow k is given as tables of numbers

Produce analytical operator representation

■ Why?

■ Interest to understand encoded operator structure
■ Perform integrals analytically in codes

■ Which representation?

■ VNN (quasi) separability in 1S0 channel provides an incentive
■ Sum of separable terms is efficient for pairing part of the EDF

Low-momentum interactions
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Separable representation of Vlow k(Λ)+ VCoul

High precision separable representation of rank n

V
1S0
n (k,k′,Λ) =

n
∑

α,β=1

gα(k) λαβ gβ(k′)

■ Fit gα(k) and λαβ to V
1S0

low k(k,k′,Λ) and δ
1S0 (k)

For Λ = 1.8/4.0/”∞” fm−1 (rank 3/4/15) and smooth cutoff
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Coulomb interaction

Need to incorporate Coulomb effects on proton gaps

■ Only one such published calculation so far: Madrid group (Gogny)

■ Simplified treatment of e.m. interaction (Coulomb)

Truncated Coulomb interaction at r = a > 2Rnucleus

■ A separable expansion exists (S-wave part here)

V
a
Coul,ℓ=0(k,k′) = 4πe

2
a

2
∞
∑

n=0

(2n + 1) j
2
n

(

ak

2

)

j
2
n

(

ak′

2

)

,

λαβ = e
2
a

2 (2α+ 1)δαβ

gα(k) =
√

4π j
2
α

(

ak

2

)

Gα(r) =
1√
πa2r

Pα
(

1−2( r
a )2) for r ≤ a

■ ∼ 15 terms needed (peanuts !)
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Comparing theoretical and experimental "pairing gaps"

∆
(3)
nexp/th

(N ) =
(−1)N

2 [E0(N +1)−2E0(N )−E0(N−1)]

Low-momentum interactions
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Comparing theoretical and experimental "pairing gaps"

∆
(3)
q,exp(odd) versus ∆q

LCS(even) = ∆q
ǫF in even-N nucleus

Low-momentum interactions
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EDF calculations in spherical nuclei

Spherical code BSLHFB (T. Lesinski, unpublished)

■ Handles highly non-local pairing EDF in systematic calculations

■ Calculations almost as cheap as for a local pairing EDF

■ Spherical Bessel basis jℓ(kr)

■ Well suited for drip-line physics

Calculations

■ Results for 470 nuclei predicted spherical (Gogny-D1S)

■ kmax ∼ 4.0 fm−1, Rbox = 20 fm, jmax = 45/2

■ Pairing complemented with (SLy4) Skyrme EDF : m∗0 = 0.7m

✔ Reminder: nothing in the pairing channel is adjusted in nuclei

[T. D., T. Lesinski, Eur. Phys. J. Special Topics 156 (2008) 207]

[T. Lesinski, T. D., K. Bennaceur, J. Meyer, EPJA 40 (2009) 121]

[K. Hebeler, T. D., T. Lesinski, A. Schwenk, arXiv:0904.3152]

[T. D., T. Lesinski, arXiv:0907.1043]

[T. Lesinski, T. D., K. Bennaceur, J. Meyer, in preparation]

Low-momentum interactions
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Pairing gaps (1S0) from vpp = V NN + VCoul

[T. D., T. Lesinski, arXiv:0907.1043]

∆
(3)
n,exp(N ) versus ∆

(3)
n, th(N ) (self-consistent qp filling approximation)
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■ Deepening around N ≈ 115 arises from blocking of ∆LCS(odd)

■ ∆(3) well described close to N = 82 without LN, proj. or pairing vib.

■ New masses towards or beyond shell closure very valuable to confront theory
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Pairing gaps (1S0) from vpp = V NN + VCoul

[T. Lesinski, T. D., K. Bennaceur, J. Meyer, in preparation]

∆
(3)
q,exp versus ∆

(3)
q, th (self-consistent qp filling approximation)

■ Neutron and proton gaps consistent with experiment

■ Large oscillation of ∆
(3)
p due to Coulomb in ph

Low-momentum interactions
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Non-empirical pairing energy functional

Work under completion [T. Lesinski, T. D., K. Bennaceur, J. Meyer, in preparation]

1 Addition of χ-EFT V NN〈N〉(Λ) at N2LO

2 Set up of veff ≈ V NN+NN〈N〉(Λ) for 3D code

Near future [S. Baroni, A. Pastore, T. D., A. Schwenk, in preparation]

■ Add coupling to density, spin and isospin fluctuations

1 Self-energies at second order

2 Coupling to collective QRPA modes

Low-momentum interactions
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HF single-particle energies

Doubly-magic nuclei

■ Do not spontaneously break N ,Z ,J

■ Good testing ground for symmetry conserving HF (except for ~P)
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Single-particle energies ǫk in 40Ca

■ Ordering is correct but density of states is too low
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