Nucleons in Nuclei: Interactions, Geometry, Symmetries

Department of Subatomic Research, CNRS/IN $\mathrm{N}_{2} \mathrm{P}_{3}$ and
University of Strasbourg, F-67037 Strasbourg, FRANCE

Nuclear Pairing: Exact Symmetries, Exact Solutions, Pairing as a Stochastic Process

Mathematics of the Effective Hamiltonian

The Global Structure of the N-Body Effective Hamiltonians

- The unknown 'true' Hamiltonian is replaced by two effective ones

Mathematics of the Effective Hamiltonian

The Global Structure of the N-Body Effective Hamiltonians

- The unknown 'true' Hamiltonian is replaced by two effective ones

$$
\hat{\mathbf{H}}=\sum_{\alpha \beta} \mathbf{h}_{\alpha \beta} \hat{\mathrm{c}}_{\alpha}^{+} \hat{\mathbf{c}}_{\beta}+\frac{1}{2} \sum_{\alpha \beta=1}^{N} \sum_{\gamma \delta=1}^{N} \mathbf{v}_{\alpha \beta ; \gamma \delta} \hat{\mathbf{c}}_{\alpha}^{+} \hat{\boldsymbol{c}}_{\beta}^{+} \hat{\mathrm{c}}_{\delta} \hat{\mathbf{c}}_{\gamma}
$$

Mathematics of the Effective Hamiltonian

The Global Structure of the N -Body Effective Hamiltonians

- The unknown 'true' Hamiltonian is replaced by two effective ones

$$
\hat{\mathbf{H}}=\sum_{\alpha \beta} \mathbf{h}_{\alpha \beta} \hat{\mathbf{c}}_{\alpha}^{+} \hat{\boldsymbol{c}}_{\beta}+\frac{1}{2} \sum_{\alpha \beta=1}^{\mathrm{N}} \sum_{\gamma \delta=1}^{\mathrm{N}} \mathbf{v}_{\alpha \beta ; \gamma \delta} \hat{\mathbf{c}}_{\alpha}^{+} \hat{\mathbf{c}}_{\beta}^{+} \hat{\mathbf{c}}_{\delta} \hat{\mathbf{c}}_{\gamma}
$$

- In low-energy sub-atomic physics the theory calculations without considering the residual pairing are considered not realistic

Pairing: $\quad \leftrightarrow \quad v_{\alpha \beta ; \gamma \delta}^{\text {pairing }} \leftarrow$ to be defined

Comment about Irreducible Representations

- Gelfand and Zetlin (1950) also obtain the matrix elements of the generators $\hat{N}_{\alpha \beta}$ within their space of $\mathrm{U}(\mathrm{n})$ irreducible representations

Comment about Irreducible Representations

- Gelfand and Zetlin (1950) also obtain the matrix elements of the generators $\hat{N}_{\alpha \beta}$ within their space of $\mathrm{U}(\mathrm{n})$ irreducible representations
- Thus for known 'physical' matrices $h_{\alpha \beta}$ and $v_{\alpha \beta ; \gamma \delta}$ the Hamiltonian below can be seen as a known matrix

$$
\hat{H}=\sum_{\alpha \beta} h_{\alpha \beta} \hat{N}_{\alpha \beta}+\frac{1}{2} \sum_{\alpha \beta} \sum_{\gamma \delta} v_{\alpha \beta ; \gamma \delta} \hat{N}_{\alpha \gamma} \hat{N}_{\beta \delta}
$$

Comment about Irreducible Representations

- Gelfand and Zetlin (1950) also obtain the matrix elements of the generators $\hat{N}_{\alpha \beta}$ within their space of $\mathrm{U}(\mathrm{n})$ irreducible representations
- Thus for known 'physical' matrices $h_{\alpha \beta}$ and $v_{\alpha \beta ; \gamma \delta}$ the Hamiltonian below can be seen as a known matrix

$$
\hat{H}=\sum_{\alpha \beta} h_{\alpha \beta} \hat{N}_{\alpha \beta}+\frac{1}{2} \sum_{\alpha \beta} \sum_{\gamma \delta} v_{\alpha \beta ; \gamma \delta} \hat{N}_{\alpha \gamma} \hat{N}_{\beta \delta}
$$

- Moreover, under the condition:

$$
\sum_{j} n_{j}=p, \text { for } n_{j}=0 \text { or } 1
$$

each state can be seen as an integer corresponding to its binary representation
$E=\sum_{k=1}^{n} b_{k} 2^{k-1} \rightarrow|0010101100010111\rangle$

N-Body Hamiltonians and U_{n}-Group Generators

- N-Body Hamiltonians are functions of U_{n}-group generators

$$
\hat{\mathrm{H}}=\sum_{\alpha \beta} h_{\alpha \beta} \hat{N}_{\alpha \beta}+\frac{1}{2} \sum_{\alpha \beta} \sum_{\gamma \delta} v_{\alpha \beta ; \gamma \delta} \hat{N}_{\alpha \gamma} \hat{N}_{\beta \delta}
$$

- Two-body interactions lead to quadratic forms of $\hat{N}_{\alpha \beta}=c_{\alpha}^{+} c_{\beta}$, three-body interactions to the cubic forms of $\hat{\mathrm{N}}_{\alpha \beta}$, etc.
- Hamiltonians of the N -body systems can be diagonalised within bases of the irreducible representations of unitary groups
- Solutions can be constructed that transform as the U_{n}-group representations thus establishing a link $\mathrm{H} \leftrightarrow \mathrm{U}_{n}$-formalism

N-Body Hamiltonians and U_{n}-Group Generators

- N-Body Hamiltonians are functions of U_{n}-group generators

$$
\hat{\mathrm{H}}=\sum_{\alpha \beta} h_{\alpha \beta} \hat{N}_{\alpha \beta}+\frac{1}{2} \sum_{\alpha \beta} \sum_{\gamma \delta} v_{\alpha \beta ; \gamma \delta} \hat{N}_{\alpha \gamma} \hat{N}_{\beta \delta}
$$

- Two-body interactions lead to quadratic forms of $\hat{\mathrm{N}}_{\alpha \beta}=c_{\alpha}^{+} c_{\beta}$, three-body interactions to the cubic forms of $\hat{\mathrm{N}}_{\alpha \beta}$, etc.
- Hamiltonians of the N -body systems can be diagonalised within bases of the irreducible representations of unitary groups
- Solutions can be constructed that transform as the U_{n}-group representations thus establishing a link $\mathrm{H} \leftrightarrow \mathrm{U}_{n}$-formalism

N-Body Hamiltonians and U_{n}-Group Generators

- N-Body Hamiltonians are functions of U_{n}-group generators

$$
\hat{\mathrm{H}}=\sum_{\alpha \beta} h_{\alpha \beta} \hat{N}_{\alpha \beta}+\frac{1}{2} \sum_{\alpha \beta} \sum_{\gamma \delta} v_{\alpha \beta i \gamma \delta} \hat{N}_{\alpha \gamma} \hat{N}_{\beta \delta}
$$

- Two-body interactions lead to quadratic forms of $\hat{\mathrm{N}}_{\alpha \beta}=c_{\alpha}^{+} c_{\beta}$, three-body interactions to the cubic forms of $\hat{\mathrm{N}}_{\alpha \beta}$, etc.
- Hamiltonians of the N -body systems can be diagonalised within bases of the irreducible representations of unitary groups
- Solutions can be constructed that transform as the U_{n}-group representations thus establishing a link $\mathrm{H} \leftrightarrow \mathrm{U}_{n}$-formalism

N-Body Hamiltonians and U_{n}-Group Generators

- N-Body Hamiltonians are functions of U_{n}-group generators

$$
\hat{\mathrm{H}}=\sum_{\alpha \beta} h_{\alpha \beta} \hat{N}_{\alpha \beta}+\frac{1}{2} \sum_{\alpha \beta} \sum_{\gamma \delta} v_{\alpha \beta ; \gamma \delta} \hat{N}_{\alpha \gamma} \hat{N}_{\beta \delta}
$$

- Two-body interactions lead to quadratic forms of $\hat{\mathrm{N}}_{\alpha \beta}=c_{\alpha}^{+} c_{\beta}$, three-body interactions to the cubic forms of $\hat{\mathrm{N}}_{\alpha \beta}$, etc.
- Hamiltonians of the N -body systems can be diagonalised within bases of the irreducible representations of unitary groups
- Solutions can be constructed that transform as the U_{n}-group representations thus establishing a link $\mathrm{H} \leftrightarrow \mathrm{U}_{n}$-formalism

Physics of Nuclear Pairing and Nuclear Superfluidity

First Steps: Pairing on Top of the Mean Field

- The first step: to solve the nuclear (HF) mean-field problem
- Nucleons move in a deformed one-body potential representing an everage interaction among them
- The one-body potentials are either parametrised or calculated using Hartree-Fock method and the single nucleon levels obtained

$$
\left\{\mathrm{e}_{\alpha}: \alpha=1, \ldots, \mathrm{n}\right\}
$$

Time-Independent Hamiltonians: Kramers Degeneracy

- We explicitly introduce the time-reversal degeneracy

$$
\hat{\mathbf{\top}} \hat{\mathrm{H}} \hat{\mathbf{\top}}^{-1}=\hat{\mathrm{H}} \quad \rightarrow \quad \mathrm{e}_{\alpha}=\mathrm{e}_{\bar{\alpha}} \quad \leftrightarrow \quad|\bar{\alpha}\rangle \equiv \hat{\mathbf{\top}}|\bar{\alpha}\rangle
$$

Time-Independent Hamiltonians: Kramers Degeneracy

- We explicitly introduce the time-reversal degeneracy

$$
\hat{\mathbf{\top}} \hat{\mathbf{H}} \hat{\boldsymbol{\top}}^{-1}=\hat{\mathbf{H}} \quad \rightarrow \quad \mathbf{e}_{\alpha}=\mathrm{e}_{\bar{\alpha}} \quad \leftrightarrow \quad|\bar{\alpha}\rangle \equiv \hat{\mathbf{\top}}|\bar{\alpha}\rangle
$$

- 'Time-up' states denoted by

$$
\{|\alpha\rangle\}
$$

- Time-reversed states by

$$
\{|\bar{\alpha}\rangle\}
$$

Pairing Hamiltonian: Its Experimental Background

- All the experiments show that, with no exception, all the even-even nuclei have spin zero in their ground states
- This implies the existence of the universal short range interaction that couples the time-reversed orbitals

Pairing Scheme

Pairing Hamiltonian: Its Experimental Background

- All the experiments show that, with no exception, all the even-even nuclei have spin zero in their ground states
- This implies the existence of the universal short range interaction that couples the time-reversed orbitals

Pairing Scheme

- Implied Many-Body Hamiltonian

$$
\hat{H}=\sum_{\alpha} \mathbf{c}_{\alpha}\left(\mathbf{c}_{\alpha}^{+} \mathbf{c}_{\alpha}+\mathbf{c}_{\bar{\alpha}}^{+} \mathbf{c}_{\bar{\alpha}}\right)+\overbrace{\frac{1}{2} \sum_{\alpha \beta} \underbrace{v_{\alpha \bar{\alpha} ; \beta \overline{\boldsymbol{\beta}}}}_{\equiv \mathbf{G}_{\alpha \beta}} \mathbf{c}_{\alpha}^{+} \mathbf{c}_{\bar{\alpha}}^{+} \mathbf{c}_{\bar{\beta}} \mathbf{c}_{\boldsymbol{\beta}}}^{\text {Generalized Pairing }}
$$

Realistic Nucleonic Orbitals in the Mean-Field: A Few Examples of the Spatial Structure

Spatial Structure of Orbitals (Spherical $\left.{ }^{132} \mathrm{Sn}\right)\left(|\psi(\vec{r})|^{2}\right)$

Density distribution $\left|\psi_{\pi}(\vec{r})\right|^{2} \geq$ Limit, for $\pi=[2,0,2] 1 / 2$ orbital

Spatial Structure of Orbitals (Spherical $\left.{ }^{132} \mathrm{Sn}\right)\left(|\psi(\vec{r})|^{2}\right)$

Density distribution $\left|\psi_{\pi}(\vec{r})\right|^{2} \geq$ Limit, for $\pi=[2,0,2] 1 / 2$ orbital

Spatial Structure of Orbitals (Spherical $\left.{ }^{132} \mathrm{Sn}\right)\left(|\psi(\vec{r})|^{2}\right)$

Density distribution $\left|\psi_{\pi}(\vec{r})\right|^{2} \geq$ Limit, for $\pi=[2,0,2] 1 / 2$ orbital

Spatial Structure of Orbitals (Spherical $\left.{ }^{132} \mathrm{Sn}\right)\left(|\psi(\vec{r})|^{2}\right)$

Limit 3\% Limit ??\%

Density distribution $\left|\psi_{\pi}(\vec{r})\right|^{2} \geq$ Limit, for $\pi=[2,0,2] 1 / 2$ orbital

Spatial Structure of Orbitals (Spherical $\left.{ }^{132} \mathrm{Sn}\right)\left(|\psi(\vec{r})|^{2}\right)$

Density distribution $\left|\psi_{\pi}(\vec{r})\right|^{2} \geq$ Limit, for $\pi=[2,0,2] 1 / 2$ orbital

Spatial Structure of Orbitals (Spherical $\left.{ }^{132} \mathrm{Sn}\right)\left(|\psi(\vec{r})|^{2}\right)$

Bottom: $\mathrm{N}=3$ shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2

Spatial Structure of Orbitals (Spherical $\left.{ }^{132} \mathrm{Sn}\right)\left(|\psi(\vec{r})|^{2}\right)$

Bottom: $\mathrm{N}=3$ shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2

Spatial Structure of Orbitals (Spherical $\left.{ }^{132} \mathrm{Sn}\right)\left(|\psi(\vec{r})|^{2}\right)$

Limit 80\% Limit 50\% Limit 10\% Limit 3\% Limit 1\%

Limit ??\%

Limit 15\%
Limit 12\%
Limit ??\%

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2

Spatial Structure of Orbitals (Spherical $\left.{ }^{132} \mathrm{Sn}\right)\left(|\psi(\vec{r})|^{2}\right)$

Bottom: $\mathrm{N}=3$ shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2

Spatial Structure of Orbitals (Spherical $\left.{ }^{132} \mathrm{Sn}\right)\left(|\psi(\vec{r})|^{2}\right)$

Bottom: $\mathrm{N}=3$ shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2

Spatial Structure of $N=3$ Spherical Shell $\left(\left|\psi_{\nu}(\vec{r})\right|^{2}\right)$

${ }^{132} \mathrm{Sn}$: Distributions $\left|\psi_{\nu}(\vec{r})\right|^{2}$ for single proton orbitals. Top $\mathcal{O}_{x z}$, bottom $\mathcal{O}_{y z}$. Proton $e_{\nu} \leftrightarrow[\nu=30,32, \ldots 38]$ for spherical shell

Spatial Structure of $N=3$ Spherical Shell $\left(\left|\psi_{\nu}(\vec{r})\right|^{2}\right)$

${ }^{132} \mathrm{Sn}$: Distributions $\left|\psi_{\nu}(\vec{r})\right|^{2}$ for single proton orbitals. Top $\mathcal{O}_{x z}$, bottom $\mathcal{O}_{y z}$. Proton $e_{\nu} \leftrightarrow[\nu=40,42, \ldots 48]$ for spherical shell

Spatial Structure of $\mathrm{N}=3$ Spherical Shell $\left(\left|\psi_{\nu}(\vec{r})\right|^{2}\right)$

${ }^{132} \mathrm{Sn}$: distributions $\left|\psi_{\nu}(\vec{r})\right|^{2}$ for consecutive pairs of orbitals. Top $\mathcal{O}_{x z}$, bottom $\mathcal{O}_{y z}$. Proton $e_{\nu} \leftrightarrow[\mathrm{n}=30: 32, \ldots 38: 40]$, spherical shell

Spatial Structure of $N=3$ Spherical Shell $\left(\left|\psi_{\nu}(\vec{r})\right|^{2}\right)$

${ }^{132} \mathrm{Sn}$: distributions $\left|\psi_{\nu}(\vec{r})\right|^{2}$ for consecutive pairs of orbitals. Top $\mathcal{O}_{x z}$, bottom $\mathcal{O}_{y z}$. Proton $e_{\nu} \leftrightarrow[n=40: 42, \ldots 48: 50]$, spherical shell

Dichotomic Symmetries of Pairing

Natural Dichotomic Symmetries: Time Reversal...

- There exist one-body dichotomic symmetries $\hat{S}_{1} \equiv \hat{T}, \hat{R}_{x}, \hat{S}_{x}, \ldots$ where the subscript " 1 " refers to the one-body interaction

$$
\hat{\mathbf{H}}_{1}=\sum_{\alpha \beta}\langle\alpha| \hat{\mathrm{h}}_{1}|\beta\rangle \mathrm{c}_{\alpha}^{+} \mathbf{c}_{\beta} \text { and }\left[\hat{\mathbf{S}}_{1}, \hat{\mathrm{~h}}_{1}\right]=\mathbf{0}
$$

Natural Dichotomic Symmetries: Time Reversal...

- There exist one-body dichotomic symmetries $\hat{S}_{1} \equiv \hat{T}, \hat{R}_{x}, \hat{S}_{x}, \ldots$ where the subscript " 1 " refers to the one-body interaction

$$
\hat{\mathbf{H}}_{1}=\sum_{\alpha \beta}\langle\alpha| \hat{h}_{1}|\beta\rangle \mathrm{c}_{\alpha}^{+} \mathbf{c}_{\beta} \text { and }\left[\hat{\mathbf{S}}_{1}, \hat{\mathrm{~h}}_{1}\right]=0
$$

- For Fermions

$$
\hat{S}_{1}^{2}=-1 \rightarrow s_{\alpha}= \pm i
$$

Natural Dichotomic Symmetries: Time Reversal...

- There exist one-body dichotomic symmetries $\hat{S}_{1} \equiv \hat{T}, \hat{R}_{x}, \hat{S}_{x}, \ldots$ where the subscript " 1 " refers to the one-body interaction

$$
\hat{\mathbf{H}}_{1}=\sum_{\alpha \beta}\langle\alpha| \hat{\mathbf{h}}_{1}|\beta\rangle \mathrm{c}_{\alpha}^{+} \mathbf{c}_{\beta} \text { and }\left[\hat{\mathbf{S}}_{1}, \hat{\mathbf{h}}_{1}\right]=\mathbf{0}
$$

- For Fermions

$$
\hat{S}_{1}^{2}=-1 \rightarrow s_{\alpha}= \pm i
$$

- This allows to introduce the basis $\left\{\left|\alpha, s_{\alpha}\right\rangle\right\}$ (and the labelling):

Natural Dichotomic Symmetries: Time Reversal...

- There exist one-body dichotomic symmetries $\hat{S}_{1} \equiv \hat{T}, \hat{R}_{x}, \hat{S}_{x}, \ldots$ where the subscript " 1 " refers to the one-body interaction

$$
\hat{\mathbf{H}}_{1}=\sum_{\alpha \beta}\langle\alpha| \hat{\mathbf{h}}_{1}|\beta\rangle \mathrm{c}_{\alpha}^{+} \mathbf{c}_{\beta} \text { and }\left[\hat{\mathbf{S}}_{1}, \hat{\mathbf{h}}_{1}\right]=\mathbf{0}
$$

- For Fermions

$$
\hat{S}_{1}^{2}=-1 \rightarrow s_{\alpha}= \pm i
$$

- This allows to introduce the basis $\left\{\left|\alpha, s_{\alpha}\right\rangle\right\}$ (and the labelling):

$$
\hat{\mathbf{h}}_{1}\left|\alpha, \mathbf{s}_{\alpha}\right\rangle=\mathrm{e}_{\alpha, \mathrm{s}_{\alpha}}\left|\alpha, \mathrm{s}_{\alpha}\right\rangle, \quad \leftrightarrow \quad \hat{\mathrm{s}}_{1}\left|\alpha, \mathrm{~s}_{\alpha}\right\rangle=\mathrm{s}_{\alpha}\left|\alpha, \mathrm{s}_{\alpha}\right\rangle
$$

Exploiting the Natural Dichotomic Symmetries

- Therefore, there are 16 types of the two-body matrix elements, distinguished by the eigenvalues $s_{\alpha}= \pm i$

$$
\hat{H}=\sum_{\alpha} \varepsilon_{\alpha}\left(c_{\alpha+}^{+} c_{\alpha+}+c_{\alpha-}^{+} c_{\alpha-}\right)+\frac{1}{2} \sum_{\alpha \beta} \sum_{\gamma \delta} \underbrace{\langle\alpha \pm, \beta \pm| \hat{h}_{2}|\gamma \pm, \delta \pm\rangle}_{16 \text { families }} c_{\alpha \pm}^{+} c_{\beta \pm}^{+} c_{\delta \pm} c_{\gamma \pm}
$$

- Since the residual two-body interactions are often assumed scalar, it follows that for the two-body operator \hat{S}_{2}, the analogue of \hat{S}_{1}

$$
\hat{S}_{2} \equiv \hat{S}_{1} \otimes \hat{S}_{1} \quad \rightarrow \quad\left[\hat{h}_{2}, \hat{S}_{2}\right]=0
$$

- This implies that half of the matrix elements above simply vanish

$$
\langle\alpha \pm, \beta \pm| \hat{h}_{2}|\gamma \pm, \delta \pm\rangle \sim \delta_{s_{\alpha} \cdot s_{\beta}}, s_{\gamma} \cdot s_{\delta}
$$

Exploiting Dichotomic Symmetries and Pairing

- Furthermore, because of the specific form of the nuclear pairing Hamiltonian half of the above 8 types of matrix elements are absent

$$
\begin{aligned}
& \langle\alpha+, \beta+| \hat{h}_{2}|\gamma-, \delta-\rangle=0 \\
& \langle\alpha-, \beta-| \hat{h}_{2}|\gamma+, \delta+\rangle=0 \\
& \langle\alpha+, \beta+| \hat{h}_{2}|\gamma+, \delta+\rangle=0 \\
& \langle\alpha-, \beta-| \hat{h}_{2}|\gamma-, \delta-\rangle=0
\end{aligned}
$$

Exploiting Dichotomic Symmetries and Pairing

- Examples of the vanishing matrix elements

$$
\begin{aligned}
& \langle\alpha+, \beta+| \hat{h}_{2}|\gamma-, \delta-\rangle=0 \\
& \langle\alpha-, \beta-| \hat{h}_{2}|\gamma+, \delta+\rangle=0 \\
& \langle\alpha+, \beta+| \hat{h}_{2}|\gamma+, \delta+\rangle=0 \\
& \langle\alpha-, \beta-| \hat{h}_{2}|\gamma-, \delta-\rangle=0
\end{aligned}
$$

Exploiting Dichotomic Symmetries and Pairing

- Examples of the vanishing matrix elements

$$
\begin{aligned}
& \langle\alpha+, \beta+| \hat{h}_{2}|\gamma-, \delta-\rangle=0 \\
& \langle\alpha-, \beta-| \hat{h}_{2}|\gamma+, \delta+\rangle=0 \\
& \langle\alpha+, \beta+| \hat{h}_{2}|\gamma+, \delta+\rangle=0 \\
& \langle\alpha-, \beta-| \hat{h}_{2}|\gamma-, \delta-\rangle=0
\end{aligned}
$$

Exploiting Dichotomic Symmetries and Pairing

- Examples of the vanishing matrix elements

$$
\begin{aligned}
& \langle\alpha+, \beta+| \hat{h}_{2}|\gamma-, \delta-\rangle=0 \\
& \langle\alpha-, \beta-| \hat{h}_{2}|\gamma+, \delta+\rangle=0 \\
& \langle\alpha+, \beta+| \hat{h}_{2}|\gamma+, \delta+\rangle=0 \\
& \langle\alpha-, \beta-| \hat{h}_{2}|\gamma-, \delta-\rangle=0
\end{aligned}
$$

Exploiting Dichotomic Symmetries and Pairing

- Examples of the vanishing matrix elements

$$
\begin{aligned}
& \langle\alpha+, \beta+| \hat{h}_{2}|\gamma-, \delta-\rangle=0 \\
& \langle\alpha-, \beta-| \hat{h}_{2}|\gamma+, \delta+\rangle=0 \\
& \langle\alpha+, \beta+| \hat{h}_{2}|\gamma+, \delta+\rangle=0 \\
& \langle\alpha-, \beta-| \hat{h}_{2}|\gamma-, \delta-\rangle=0
\end{aligned}
$$

Final Structure of the Nuclear Pairing Hamiltonian

- Then the non-vanishing terms can be divided into four families

$$
\begin{aligned}
\hat{H}_{2} & =\frac{1}{2} \sum_{\alpha+\beta-} \sum_{\gamma-\delta+}\langle\alpha+, \beta-| \hat{h}_{2}|\gamma-, \delta+\rangle c_{\alpha+}^{+} c_{\beta}^{+} \quad c_{\delta+} c_{\gamma} \\
& +\frac{1}{2} \sum_{\alpha+\beta-} \sum_{\gamma+\delta-}\langle\alpha+, \beta-| \hat{h}_{2}|\gamma+, \delta-\rangle c_{\alpha+}^{+} c_{\beta}^{+} \quad c_{\delta} \quad c_{\gamma+} \\
& +\frac{1}{2} \sum_{\alpha-\beta+} \sum_{\gamma-\delta+}\langle\alpha-, \beta+| \hat{h}_{2}|\gamma-, \delta+\rangle c_{\alpha}^{+} c_{\beta+}^{+} c_{\delta+} c_{\gamma} \\
& +\frac{1}{2} \sum_{\alpha-\beta+} \sum_{\gamma+\delta-}\langle\alpha-, \beta+| \hat{h}_{2}|\gamma+, \delta-\rangle c_{\alpha}^{\dagger} c_{\beta+}^{\dagger} c_{\delta} c_{\gamma+}
\end{aligned}
$$

- It turns out that the full Hamiltonian

$$
\hat{H} \equiv \sum_{\alpha} e_{\alpha}\left(\hat{c}_{\alpha}^{+} \hat{c}_{\alpha}+\hat{c}_{\bar{\alpha}}^{+} \hat{c}_{\bar{\alpha}}\right)+\hat{H}_{2}
$$

cannot connect the states that differ in terms of occupation of the "+" and "-" family states

We have just obtained the modern version of the
 Nuclear Pairing Hamiltonian

We have just obtained the modern version of the
 Nuclear Pairing Hamiltonian

In what sense are the paired-nuclei super-fluid?

Collective Rotation, Moments of Inertia

- The first rotational transition energies are very low; for very heavy nuclei such energies $\Delta e_{R} \sim 10^{-2} \mathrm{MeV}$. This energy is contributed by all the nucleons; a contribution per nucleon, is

$$
\delta e_{R} \equiv \Delta e_{R} / A \sim 10^{-2} \mathrm{MeV} / A \sim 10^{-4} \mathrm{MeV}
$$

Collective Rotation, Moments of Inertia

- These energies should be compared to the average kinetic energies of nucleons in the mean-field potential of the typical depth of $V_{0} \sim-60 \mathrm{MeV}$
- A nucleon of, say, $e_{\alpha} \approx-25 \mathrm{MeV}$, has the kinetic energy of the order of

$$
\langle\hat{t}\rangle \sim t_{\alpha} \sim 35 \mathrm{MeV} \quad \text { so that } V_{0}+\langle\hat{t}\rangle \sim e_{\nu} \approx-25 \mathrm{MeV}
$$

Collective Rotation, Moments of Inertia

- Consider explicitly a one-dimensional rotation about \mathcal{O}_{x}-axis. One may show that the perturbation is $\delta v=\hbar \omega_{x} \cdot \hat{\jmath}_{x}$
- Consequently the second order energy contribution is

$$
E_{0}^{(2)}=\left(\hbar \omega_{x}\right)^{2} \sum_{m i} \frac{\left|\left(m\left|\hat{j}_{x}\right| i\right)\right|^{2}}{e_{i}^{(0)}-e_{m}^{(0)}} \text { compared to } E_{0}^{(2)}=\frac{1}{2} \mathcal{J}_{x} \omega_{x}^{2}
$$

- Comparison gives

$$
\mathcal{J}_{x}=2 \hbar^{2} \sum_{m i} \frac{\left|\left(m\left|\hat{j}_{x}\right| i\right)\right|^{2}}{e_{i}^{(0)}-e_{m}^{(0)}} \approx \mathcal{J}_{x}^{r i g .}=\int_{V}\left[y^{2}+z^{2}\right] \rho(\vec{r}) d^{3} \vec{r} \neq \mathcal{J}_{x}^{\text {exp. }}
$$

Collective Rotation, Moments of Inertia

- Repeating the $2^{\text {nd }}$-order perturbation calculation with pairing we obtain

$$
\left.\mathcal{J}_{x}^{\text {pair }}=2 \hbar^{2} \sum_{\mu \nu}\left|\langle\mu| \hat{j}_{x}\right| \nu\right\rangle\left.\right|^{2} \frac{\left(u_{\mu} v_{\nu}-u_{\nu} v_{\mu}\right)^{2}}{E_{\mu}+E_{\nu}} \approx 0.5 \cdot \mathcal{J}_{x}^{\text {rig. }} \approx \mathcal{J}_{x}^{\text {exp. }}
$$

- By definition, within the nuclear Bardeen-Cooper-Schrieffer approach

$$
E_{\mu}=\sqrt{\left(e_{\mu}-\lambda\right)^{2}+\Delta^{2}}, \quad v_{\mu}^{2}=\frac{1}{2}\left[1-\left(e_{\mu}-\lambda\right) / E_{\mu}\right] \text { and } v_{\mu}^{2}+u_{\mu}^{2}=1
$$

- As the pairing gap $\Delta \rightarrow \infty$ we find

$$
f_{\mu \nu} \equiv \frac{\left(u_{\mu} v_{\nu}-u_{\nu} v_{\mu}\right)^{2}}{E_{\mu}+E_{\nu}} \stackrel{\Delta \rightarrow \infty}{\rightarrow} 0 \leftrightarrow \mathcal{J}_{x}^{\text {pair }} \rightarrow 0
$$

- When this happens we say that system approaches the super-fluid regime

A Lesson on the Exact Solutions of the Realistic Pairing Problem

Pairing, Fock-Space and Associated Notation

- Nuclear wave functions must be totally anti-symmetrised
- We formulate the problem of the motion in the Fock space
- We use the many-body occupation-number representation

$$
\left.\Psi_{m b}=\left(c_{\alpha_{1}}^{+}\right)^{p_{\alpha_{1}}}\left(c_{\alpha_{2}}^{+}\right)^{p_{\alpha_{2}}} \ldots\left(c_{\alpha_{n}}^{+}\right)^{p_{\alpha_{n}}}|0>\leftrightarrow| p_{\alpha_{1}}, p_{\alpha_{2}}, \ldots p_{\alpha_{n}}\right\rangle
$$

- Computer algorithm is constructed using bit-manipulations

Particular Symmetries of the Pairing Hamiltonian

- \hat{H} does not couple states differing in particle-hole structure
- \hat{H} does not couple states differing by 2 or more excited pairs

$$
\hat{\mathbf{H}}=\sum_{\alpha} \mathrm{e}_{\alpha} \mathrm{c}_{\alpha}^{+} \mathrm{c}_{\alpha}+\sum_{\alpha, \beta>0} \mathrm{G}_{\alpha, \beta} \mathrm{c}_{\beta}^{+} \mathrm{c}_{\bar{\beta}}^{+} \mathrm{c}_{\bar{\alpha}} \mathrm{c}_{\alpha}
$$

$$
\langle\mathrm{J}|=<\text { configuration } 1|\quad| \text { configuration } 2\rangle=|\mathrm{K}\rangle
$$

Pairing Hamiltonian and the U(n)-Generators

- It follows that upon identifying $\hat{n}_{\alpha \beta} \equiv \hat{c}_{\alpha}^{+} \hat{c}_{\beta} \leftrightarrow \hat{g}_{\alpha \beta}$

$$
\hat{H}=\sum_{\alpha>0}^{n} e_{\alpha}^{\prime}\left(\hat{\mathrm{g}}_{\alpha, \alpha}+\hat{g}_{\bar{\alpha}, \bar{\alpha}}\right)-\frac{1}{2} \sum_{\alpha, \beta>0}^{n} G_{\alpha, \beta} \hat{\mathrm{g}}_{\beta, \bar{\alpha}} \hat{\mathrm{g}}_{\bar{\beta}, \alpha}
$$

- Introduce linear Casimir operator

$$
\begin{gathered}
\text { Particle No. Operator } \rightarrow \hat{N}=\sum_{\alpha}^{n} \hat{n}_{\alpha \alpha} \\
\mathrm{U}(\mathrm{n}) \text { Casimir Operator } \rightarrow \hat{C}=\sum_{\alpha}^{n} \hat{\mathrm{~g}}_{\alpha \alpha} \\
\hat{C} \equiv \sum_{\alpha}^{n} \hat{\mathrm{~g}}_{\alpha \alpha}=\sum_{\alpha+}^{N_{+}} \hat{\mathrm{g}}_{\alpha+, \alpha+}+\sum_{\alpha-}^{N_{-}} \hat{\mathrm{g}}_{\alpha-, \alpha-} \equiv \hat{\mathcal{N}}_{1}^{+}+\hat{\mathcal{N}}_{1}^{-}
\end{gathered}
$$

New Particle-Like Operators: $\hat{\mathcal{N}}_{1}^{+}$and $\hat{\mathcal{N}}_{1}^{-}$

- One verifies that operators $\hat{\mathcal{N}}_{1}^{+}$and $\hat{\mathcal{N}}_{1}^{-}$are linearly independent

$$
\left[\hat{H}, \hat{\mathcal{N}}_{1}^{+}\right]=0, \quad\left[\hat{H}, \hat{\mathcal{N}}_{1}^{-}\right]=0, \quad\left[\hat{\mathcal{N}}_{1}^{+}, \hat{\mathcal{N}}_{1}^{-}\right]=0
$$

- Introduce two linear combinations

$$
\hat{\mathcal{N}}_{1} \equiv \hat{\mathcal{N}}_{1}^{+}+\hat{\mathcal{N}}_{1}^{-} \quad \text { and } \quad \hat{\mathcal{P}}_{1} \equiv \hat{\mathcal{N}}_{1}^{+}-\hat{\mathcal{N}}_{1}^{-}
$$

- We show straightforwardly that

$$
\left[\hat{H}, \hat{\mathbb{N}}_{1}\right]=0, \quad\left[\hat{H}, \hat{\mathcal{P}}_{1}\right]=0
$$

- The Hamiltonian \hat{H} is said to be $\hat{\mathcal{P}}_{1}$-symmetric

New Particle-Like Operators: $\hat{\mathcal{N}}_{1}^{+}$and $\hat{\mathcal{N}}_{1}^{-}$

- Recall: Operator $\hat{\mathcal{P}}_{1} \equiv \hat{\mathcal{N}}_{1}^{+}-\hat{\mathcal{N}}_{1}^{-}$gives the difference between the occupation of states $s_{\alpha}=+i$ and $s_{\alpha}=-i$
- It follows that the possible eigenvalues of \mathcal{P}_{1} are

$$
\mathcal{P}_{1}=p, p-2, p-4, \ldots,-p
$$

for a system of p particles on n levels with $p \leq n / 2$, and

$$
\mathcal{P}_{1}=(n-p),(n-p-2),(n-p-4), \ldots,-(n-p)
$$

for a system for which $n / 2 \leq p \leq n$

- Hamiltonian matrix splits into blocks with eigenvalues \mathcal{P}_{1}; one shows that

$$
\operatorname{dim}\left(\mathcal{P}_{1}\right)=C_{\frac{p+\mathcal{P}_{1}}{2}}^{n} C_{\frac{p-\mathcal{P}_{1}}{2}}^{n}
$$

Illustration of the Effect of the \mathcal{P}_{1}-Symmetry

- Example of Fock-space dimensions for $p=16$ particles on $n=32$ levels; the dimension of the full space is $C_{16}^{32}=601080390$

\mathcal{P}_{1}-value	Dimension
0	165636900
± 2	130873600
± 4	64128064
± 6	19079424
± 8	3312400
± 10	313600
± 12	14400
± 14	256
± 16	1

New Particle-Pair-Like Operators: $\hat{\mathcal{N}}_{2}^{+}$and $\hat{\mathcal{N}}_{2}^{-}$

- Our Hamiltonian does not couple states that differ in terms of the numbers of pairs; the number of broken pairs (seniority) is conserved
- In analogy with the previous case we define two-body operators

$$
\hat{\mathcal{N}}_{2}^{+} \equiv \sum_{i=1}^{N} c_{\alpha_{i}}^{+} c_{\bar{\alpha}_{i}}^{+} c_{\bar{\alpha}_{i}} c_{\alpha_{i}} \quad \text { and } \quad \hat{\mathcal{N}}_{2}^{-} \equiv \sum_{i=1}^{N}\left(1-c_{\alpha_{i}}^{+} c_{\bar{\alpha}_{i}}^{+} c_{\bar{\alpha}_{i}} c_{\alpha_{i}}\right)
$$

- Following the same analogy we also define the linear combinations

$$
\hat{\mathcal{N}}_{2}=\hat{\mathcal{N}}_{2}^{+}+\hat{\mathcal{N}}_{2}^{-} \quad \text { and } \quad \hat{\mathcal{P}}_{2}=\hat{\mathcal{N}}_{2}^{+}-\hat{\mathcal{N}}_{2}^{-}
$$

New Particle-Pair-Like Operators: $\hat{\mathcal{N}}_{2}^{+}$and $\hat{\mathcal{N}}_{2}^{-}$

- One can verify straightforwardly that

$$
\left[\hat{H}, \hat{\mathcal{N}}_{2}^{+}\right]=0 \quad \text { and } \quad\left[\hat{H}, \hat{\mathcal{N}}_{2}^{-}\right]=0 \quad \text { and } \quad\left[\hat{\mathcal{N}}_{2}^{+}, \hat{\mathcal{N}}_{2}^{-}\right]=0
$$

- It then follows immediately that

$$
\left[\hat{H}, \hat{\mathcal{N}}_{2}\right]=0 \text { and }\left[\hat{H}, \hat{\mathcal{P}}_{2}\right]=0 \text { while }\left[\hat{\mathcal{P}}_{1}, \hat{\mathcal{P}}_{2}\right]=0
$$

- The Hamiltonian \hat{H} is said to be $\hat{\mathcal{P}}_{2}$-symmetric

New Particle-Pair-Like Operators: $\hat{\mathcal{N}}_{2}^{+}$and $\hat{\mathcal{N}}_{2}^{-}$

- By counting numbers of pairs we obtain eigen-values of $\hat{\mathcal{P}}_{2}$-operator
- For p particles on n levels, and $p \leq n / 2$:

$$
\mathcal{P}_{2}=p-n, p-2-n, \ldots,-n
$$

- For p particles on n levels, and $n / 2 \leq p \leq n$:

$$
\mathcal{P}_{2}=p-n, p-2-n, \ldots, 2(p-n)-n
$$

- The dimensions of a given block characterized by the quantum numbers \mathcal{P}_{1} and \mathcal{P}_{2} are given by:

$$
\operatorname{dim}\left(\mathcal{P}_{2}, \mathcal{P}_{1}\right)=C_{\frac{p-n-\mathcal{P}_{2}+\mathcal{P}_{1}}{2}}^{n} C_{\frac{p-n-\mathcal{P}_{2}-\mathcal{P}_{1}}{2}}^{n-\frac{p-n-\mathcal{P}_{2}+\mathcal{P}_{1}}{2}} C_{\frac{n+\mathcal{P}_{2}}{2}}^{2 n-p+\mathcal{P}_{2}}
$$

New Particle-Pair-Like Operators: $\hat{\mathcal{N}}_{2}^{+}$and $\hat{\mathcal{N}}_{2}^{-}$

- The Hamiltonian blocks for $p=16$ particles on $n=32$ levels; the dimension of the full space is $C_{16}^{32}=601080390$

Seniority	\mathcal{P}_{2}	Dimension	\mathcal{P}_{1}-values	Dimension
0	0	12870	0	12870
2	-2	1647360	0	823680
			± 2	411840
4	-4	26906880	0	10090080
			± 2	6726720
			± 4	1681680
6	-6	129153024	0	40360320
			± 2	30270240
			± 4	12108096
	-8	230630400	± 6	2018016
8			± 2	504063000
			± 4	25225200
			± 6	7207200
			± 8	900900

Yet Another Symmetry: \mathcal{P}_{12}-Symmetry

- Define $\mu_{i} \equiv 2 i-2$ associated with doubly-degenerate levels ε_{i}
- Define the weight factors: $\alpha_{i} \rightarrow 2^{\mu_{i}}$ and $\bar{\alpha}_{i} \rightarrow 2^{\mu_{i}+1}$
- Define operators

$$
\begin{gathered}
\hat{\mathcal{N}}_{12}^{+} \equiv \sum_{i=1}^{n}\left(2^{\mu_{i}} c_{\alpha_{i}}^{+} c_{\alpha_{i}}+2^{\mu_{i}+1} c_{\bar{\alpha}_{i}}^{+} c_{\bar{\alpha}_{i}}\right) \\
\hat{\mathcal{N}}_{12}^{-} \equiv \sum_{i=1}^{n}\left(2^{\mu_{i}}+2^{\mu_{i}+1}\right) c_{\alpha_{i}}^{+} c_{\bar{\alpha}_{i}}^{+} c_{\bar{\alpha}_{i}} c_{\alpha_{i}} \\
\hat{\mathcal{P}}_{12} \equiv \hat{\mathcal{N}}_{12}^{+}-\hat{\mathcal{N}}_{12}^{-}
\end{gathered}
$$

Yet Another Symmetry: \mathcal{P}_{12}-Symmetry

- One can show that

$$
\left[\hat{\mathcal{P}}_{1}, \hat{\mathcal{P}}_{2}\right]=0 \quad \text { and } \quad\left[\hat{\mathcal{P}}_{1}, \hat{\mathcal{P}}_{12}\right]=0 \quad \text { and } \quad\left[\hat{\mathcal{P}}_{2}, \hat{\mathcal{P}}_{12}\right]=0
$$

- ... and that for our general pairing Hamiltonian \hat{H} we have

$$
\left[\hat{H}, \hat{\mathcal{P}}_{1}\right]=0 \quad \text { and } \quad\left[\hat{H}, \hat{\mathcal{P}}_{2}\right]=0 \quad \text { and } \quad\left[\hat{H}, \hat{\mathcal{P}}_{12}\right]=0
$$

- The Hamiltonian \hat{H} is said to be $\hat{\mathcal{P}}_{12}$-symmetric

How Powerful This Approach Is Shows an Example:

- The property just observed allows for significant simplifications Example: 16 particles on 32 levels

$$
\text { Total dimension of } H \Rightarrow 601080390 \times 601080390
$$

Seniority	P_{2}	Total Dimension	Nb. of sub-blocs	Sub-bloc dimension
0	0	12870	1	12870
2	-2	1647360	480	3432
4	-4	26906880	29120	924
6	-6	129153024	512512	252
8	-8	230630400	3294720	70
10	-10	164003840	8200192	20
12	-12	44728320	7454720	6
14	-14	3932160	1966080	2
16	-16	65536	65536	1

Details in: H. Molique and J. Dudek, Phys. Rev. C56, 1795 (1997)

Cooper-Pairs as Brownian Particles

From Quantum Mechanics to Stochastic Processes

- Consider a system composed of p-particles on n nucleonic levels
- The implied Fock space contains $\mathcal{N}=C_{p}^{n}$ many-body states

$$
\left\{\mid \Phi_{K}>; K=1,2, \ldots \mathcal{N}\right\}
$$

- The symbols represent \mathcal{N} physical configurations $\left\{\mathcal{C}_{K}\right\}$ of the type

$$
\left\{\mathcal{C}_{K}\right\} \leftrightarrow\left\{\mid 11100001 \ldots>_{K} ; K=1,2, \ldots \mathcal{N}\right\}
$$

- The use of the P-symmetries allows to diagonalize exactly and easily, with the help of the Lanczos method, the Hamiltonian matrices

$$
<\Phi_{K}|\hat{H}| \Phi_{M}>\text { of dimensions } \mathcal{N}_{b} \sim 10^{9} \text { to } 10^{(12 \rightarrow 15)}
$$

An alternative, stochastic method is free from the disc-space limitations

An alternative, stochastic method is free from the disc-space limitations

This Stochastic Method is based on fundamentally different concepts

Nuclear Pairing as a Stochastic Process

- Starting from now on we assume that the system evolves under the influence of Hamiltonian \hat{H} in terms of the single-pair transitions

- We suggest that there exist a universal probability distribution depending on the transition energy only

$$
P_{K \rightarrow K^{\prime}}=P\left(\Delta E_{K, K^{\prime}}\right) ; \quad \Delta E_{K, K^{\prime}}=\left|E_{K}-E_{K^{\prime}}\right|
$$

In other words: we assume that single-pair transition probabilities are neither dependent on the particular configuration nor on the history of the process

Nuclear Pairing as a Stochastic Process

- The just formulated assumptions reduce the evolution of such a system to that of the Markov process

- Consequently we are going to consider the underlying physical process in terms of the random walk through the Fock space

Nuclear Pairing as a Stochastic Process

- An example of Fock space corresponding to 4 particles on 8 levels

$$
\left\{\left|\Phi_{K}\right\rangle\right\}=\{|1100\rangle,|1010\rangle,|1001\rangle,|0110\rangle,|0101\rangle,|0011\rangle\}
$$

- We have the following possible transitions:

- To simplify the illustration we use the compact notation:
$1 \rightarrow$ one pair present; $0 \rightarrow$ one pair absent

Fock-State Occupation Probabilities

- Suppose Hamiltonian \hat{H} has been diagonalised in the Fock space

$$
\hat{H}\left|\Psi_{K}\right\rangle=E_{K}\left|\Psi_{K}\right\rangle \rightarrow\left|\Psi_{K}\right\rangle=\sum_{L=1}^{\mathcal{N}_{b}} C_{K, L}\left|\Phi_{L}\right\rangle
$$

- The quantum probability of finding $\left|\Psi_{K}\right\rangle$ in one of its Fock-basis states $\left|\Phi_{L}\right\rangle$ is

$$
\mathcal{P}_{L}^{q}=\left|C_{K, L}\right|^{2} \quad\left(\text { for a given }\left|\Psi_{K}\right\rangle\right)
$$

- The stochastic probability of finding $\left|\Psi_{K}\right\rangle$ in one of its Fock-basis states $\left|\Phi_{L}\right\rangle$ is

$$
\mathcal{P}_{L}^{S}=\mathcal{N}_{L} / \mathcal{N}_{\text {total }} \quad\left(\text { for a given }\left|\Psi_{K}\right\rangle\right)
$$

where $\mathcal{N}_{L} \rightarrow$ the number of occurrences of $\left|\Phi_{K}\right\rangle$ along the random walk and $\mathcal{N}_{\text {total }}=$ the total 'length' of the random walk

Example: Exact Quantum Occupation Probabilities

- $p=8$ particles on $n=16$ levels $\left\{\mathcal{N}_{b}=70\right.$ Fock $\left|\Phi_{K}\right\rangle$ states $\}$ on an equidistant model spectrum: the ground-state wave-function

Stochastic vs. Quantum Occupation Probabilities

- 8 particles on 16 levels ($\mathcal{N}_{\text {it }}=10000$ iterations)

Stochastic vs. Quantum Occupation Probabilities

- 8 particles on 16 levels ($\mathcal{N}_{i t}=10000$ iterations) - Case 2

Stochastic vs. Quantum Occupation Probabilities

- 8 particles on 16 levels ($\mathcal{N}_{i t}=10000$ iterations) - Case 3

Stochastic vs. Quantum Occupation Probabilities

- 8 particles on 16 levels $\left(\mathcal{N}_{i t}=10000\right.$ iterations $)$ - Case 4

Stochastic vs. Quantum Occupation Probabilities

- 12 particles on 24 levels ($\mathcal{N}_{\text {it }}=50000$ iterations) Fock space dimension $\mathcal{N}(24 / 12)=2704156$

Stochastic vs. Quantum Occupation Probabilities

- Zooming in the previous spectrum for $p=12$ and $n=24$

Stochastic vs. Quantum Occupation Probabilities

- 16 particles on 32 levels ($\mathcal{N}_{\text {it }}=300000$ iterations)

Fock space dimension $\mathcal{N}(32 / 16)=601080390$

Stochastic vs. Quantum Occupation Probabilities

- 16 particles on 32 levels; ground-state wave-function $\rightarrow L=1$

Stochastic Approach: Problem with Excited States?

- So far we have considered the ground-state wave functions

Stochastic Approach: Problem with Excited States?

- So far we have considered the ground-state wave functions
- All $C_{L, K}$ coefficients of the ground-state wave functions ($L=1$) are known to be of the same sign

Stochastic Approach: Problem with Excited States?

- So far we have considered the ground-state wave functions
- All $C_{L, K}$ coefficients of the ground-state wave functions $(L=1)$ are known to be of the same sign
- The stochastic approach may only give the probabilities:

$$
\mathcal{P} \sim|C|^{2} \leftrightarrow|C|
$$

so there was no problem to obtain the wave-function out of $\left|C_{1, K}\right|^{2}$

Stochastic Approach: Problem with Excited States?

- So far we have considered the ground-state wave functions
- All $C_{L, K}$ coefficients of the ground-state wave functions $(L=1)$ are known to be of the same sign
- The stochastic approach may only give the probabilities:

$$
\mathcal{P} \sim|C|^{2} \leftrightarrow|C|
$$

so there was no problem to obtain the wave-function out of $\left|C_{1, K}\right|^{2}$

- We arrive at the problem: The wave-function of the excited states cannot be obtained in the same way ...

Extending the Random Walk: Excited States

- We consider again the full ensemble of the Fock-basis vectors

$$
\left\{\left|\phi_{K}\right\rangle ; K=1,2,3, \ldots \mathcal{N}_{b}\right\}
$$

Extending the Random Walk: Excited States

- We consider again the full ensemble of the Fock-basis vectors

$$
\left\{\left|\phi_{K}\right\rangle ; K=1,2,3, \ldots \mathcal{N}_{b}\right\}
$$

- We begin the random walk starting with $\mid \Phi_{1}>$; calculations show that in this way we obtain always the ground-state configuration

Extending the Random Walk: Excited States

- We consider again the full ensemble of the Fock-basis vectors

$$
\left\{\left|\phi_{K}\right\rangle ; K=1,2,3, \ldots \mathcal{N}_{b}\right\}
$$

- We begin the random walk starting with $\mid \Phi_{1}>$; calculations show that in this way we obtain always the ground-state configuration
- Next we construct the whole series of the random walk processes by beginning with $\left|\Phi_{2}\right\rangle,\left|\Phi_{3}\right\rangle, \ldots$

Extending the Random Walk: Excited States

- We consider again the full ensemble of the Fock-basis vectors

$$
\left\{\left|\phi_{K}\right\rangle ; K=1,2,3, \ldots \mathcal{N}_{b}\right\}
$$

- We begin the random walk starting with $\mid \Phi_{1}>$; calculations show that in this way we obtain always the ground-state configuration
- Next we construct the whole series of the random walk processes by beginning with $\left|\Phi_{2}\right\rangle,\left|\Phi_{3}\right\rangle, \ldots$
- ... but now: how should we compare the stochastic results with the quantum case?

Extending the Random Walk: Excited States

- We consider again the full ensemble of the Fock-basis vectors

$$
\left\{\left|\phi_{K}\right\rangle ; K=1,2,3, \ldots \mathcal{N}_{b}\right\}
$$

- We begin the random walk starting with $\mid \Phi_{1}>$; calculations show that in this way we obtain always the ground-state configuration
- Next we construct the whole series of the random walk processes by beginning with $\left|\Phi_{2}\right\rangle,\left|\Phi_{3}\right\rangle, \ldots$
- ... but now: how should we compare the stochastic results with the quantum case?
- The random walk algorithm provides neither the signs of the C-coefficients - nor the energies ...

Extending the Random Walk: Excited States (II)

- Consider a set of linearly independent vectors $\left\{\left|\Psi_{L}\right\rangle\right\}$. We will orthonormalise them, beginning with $\left|\Psi_{1}\right\rangle$ as follows:
- We normalise $\left|\Psi_{1}\right\rangle:\left|\Psi_{1}\right\rangle \rightarrow\left|\Theta_{1}\right\rangle=\frac{1}{\left\|\Psi_{1}\right\|}\left|\Psi_{1}\right\rangle$
- We subtract the parallel part of $\mid \Psi_{2}>$ from $\mid \Theta_{1}>$

$$
\left|\Psi_{2}\right\rangle \rightarrow\left|\Psi_{2}^{\prime}\right\rangle=\left|\Psi_{2}\right\rangle-\left(<\Theta_{1} \mid \Psi_{2}>\right)\left|\Theta_{1}\right\rangle
$$

- We normalise this last vector:

$$
\left|\Psi_{2}^{\prime}\right\rangle \rightarrow\left|\Theta_{2}\right\rangle=\frac{1}{\left\|\Psi_{2}\right\|}\left|\Psi_{2}\right\rangle
$$

- We subtract the parallel part of $\mid \Psi_{2}>$ from $\left|\Theta_{1}\right\rangle$ and $\left|\Theta_{2}\right\rangle$

$$
\left|\Psi_{3}^{\prime}\right\rangle \rightarrow\left|\Psi_{3}\right\rangle-\left\langle\Theta_{1}\right| \Psi_{3}>\left|\Theta_{1}\right\rangle-\left\langle\Theta_{2}\right| \Psi_{3}>\mid \Theta_{2}>
$$

Orthonormalisation Scheme - Illustration

- 8 particles on 16 levels - $1^{\text {rst }}$ excited state

... and apparently we are able to obtain the wave function of an excited state. However:

Orthonormalisation Scheme - Illustration

- 8 particles on 16 levels $-2^{\text {nd }}$ excited state

... and apparently the scheme does not seem to perform well for yet another excited state ... Is it a real problem?

Overlaps: Stochastic vs. Exact

Observations, Interpretation, Partial Conclusions

- We just have observed that the quantum and stochastic Fock-basis vectors are similar - but not identical
- More precisely: some stochastic vectors have more than 99% of overlap with one of their quantum partners ...
- ... some others have a strong overlap with ~ 2 quantum partners, and several 'tiny' overlaps with the others
- Observation: the stochastic basis vectors seem to be often nearly parallel to their quantum partners; sometimes they rather lie in a two-dimensional hyperplane
- Clearly the stochastic and quantum Fock bases are not identical;

Are they equivalent i.e. differing by an orthogonal transformation?

Certain Property of Eigenvectors

- Let us consider again a Fock basis $\left\{\left|\Phi_{K}\right\rangle ; K=1 \ldots N_{b}\right\}$
- Eigenvalues and eigenvectors of \hat{H}_{1} in the Fock space obey:

$$
\hat{H}_{1}\left|\Phi_{N}\right\rangle=\mathcal{E}_{N}\left|\Phi_{N}\right\rangle \quad \text { with } \quad \mathcal{E}_{N}=\sum_{\alpha \in\{\text { Conf }\}_{N}} e_{\alpha}
$$

- Eigenvectors $\left|\Psi_{J}\right\rangle$ satisfy: $\left|\Psi_{J}\right\rangle=\sum_{K=1}^{N_{b}} C_{J K}\left|\Phi_{K}\right\rangle$
- Eigenvalues of \hat{H} can be calculated knowing the $\left\{\mathcal{E}_{L}\right\}$ energies:

$$
E_{J}=\sum_{L=1}^{N_{b}} C_{J L}^{2} \mathcal{E}_{L}+\sum_{L, M=1}^{N_{b}} C_{J L} C_{J M}\left\langle\Phi_{L}\right| \hat{H}_{2}\left|\Phi_{M}\right\rangle
$$

- Knowing coefficients $C_{J L}$ from the stochastic simulation, we orthonormalise the vectors \rightarrow verify whether they give eigenenergies!

The Eigenvalues of \hat{H} and Stochastic Features

- Denoting by n the number of nucleons, we have

$$
\left\langle\Phi_{L}\right| \hat{H}(2)\left|\Phi_{M}\right\rangle= \begin{cases}-\frac{1}{2} n|G| & \text { if } M=L, \\
-|G| & \text { if } M \neq L, \text { but }\left|\Phi_{M}\right\rangle \text { and }\left|\Phi_{L}\right\rangle \\
0 & \begin{array}{l}
\text { differ by one exited pair, } \\
\text { otherwise }
\end{array}\end{cases}
$$

- We express unknown eigenenergies by stochastic coefficients

$$
E_{J}=\sum_{L}\left[C_{J L}^{2}\left(\mathcal{E}_{L}-\frac{1}{2} n|G|\right)-C_{J L}|G| \sum_{\delta L} C_{J, L+\delta L}\right] ;
$$

the symbol $\{L+\delta L\}$ refers to configurations that differ from those denoted $\{L\}$ by one excited pair

The Eigenvalues of \hat{H} and Stochastic Features

$$
\mathrm{p}=8 \text { particles on } \mathrm{n}=16 \text { levels - Error }
$$

Fock space $\mathcal{N}=12870$

EXACT [MeV]	RANDOM WALK [MeV]	RELATIVE ERROR
16.8891704	16.9120315	0.14%
19.4809456	19.5437517	0.32%
21.4463235	21.5163029	0.33%
21.4463235	21.5187773	0.34%
23.4307457	23.4899241	0.25%
23.4307457	23.4963815	0.28%
23.7797130	23.9403046	0.67%
25.4418890	25.4581811	0.06%
25.4418890	25.4605459	0.07%
25.6148968	25.6849886	0.27%
25.8221082	25.9242843	0.40%
25.8221082	25.9578009	0.52%
27.8143803	27.8793481	0.23%
27.8143803	27.8875293	0.26%
\ldots	\ldots	\cdots

The Eigenvalues of \hat{H} and Stochastic Features

12 particles on 24 levels - Error

Fock space $\mathcal{N}=2704156$

EXACT [MeV]	RANDOM WALK [MeV]	RELATIVE ERROR
36.8391727	36.8981242	0.16%
39.9047355	40.0512103	0.37%
41.7482282	41.8456965	0.23%
41.7482282	41.8521919	0.25%
43.6532878	43.7391981	0.20%
43.6532878	43.7438472	0.21%
44.3047857	44.4975191	0.43%
45.5945444	45.6720849	0.17%
45.5945444	45.6788884	0.18%
45.9368443	46.0291365	0.20%
46.3210968	46.4902340	0.37%
46.3210968	46.5009797	0.40%
47.5618469	47.6218935	0.13%
\ldots	\ldots	\cdots

The Eigenvalues of $\hat{\mathrm{H}}$ and Stochastic Features

8 particles on 16 levels - the first 11 levels

The Eigenvalues of $\hat{\mathrm{H}}$ and Stochastic Features

8 particles on 16 levels - the first 33 levels

The Eigenvalues of $\hat{\mathrm{H}}$ and Stochastic Features

8 particles on 16 levels - All levels

The Eigenvalues of \hat{H} and Stochastic Features

12 particles on 24 levels - the first 25 levels

Question of the 'Universal Probability Distribution'

- The results presented above were obtained by using, as a working hypothesis, the following form of the parametrisation of the transition probability:

$$
\mathrm{P}_{\alpha \rightarrow \beta}=\frac{\mathrm{K}_{\alpha}}{\mathrm{a}\left(\Delta \mathcal{E}_{\alpha \beta}\right)^{2}+\mathrm{b} \Delta \mathcal{E}_{\alpha \beta}+\mathrm{c}}
$$

where

$$
\Delta \mathcal{E}_{\alpha \beta}=\left|\mathcal{E}_{\alpha}-\mathcal{E}_{\beta}\right|
$$

and where K_{α} is a normalisation constant; a, b and c are adjustable parameters.

Summary

- We discussed the problem of the nuclear pairing Hamiltonian written down in the Fock space representation (for $\mathcal{N} \sim 10^{40}$ spaces)

Summary

- We discussed the problem of the nuclear pairing Hamiltonian written down in the Fock space representation (for $\mathcal{N} \sim 10^{40}$ spaces)
- We obtained the exact results using the so-called P_{1}, P_{2} and P_{12} symmetries and the Lanczos diagonalisation technique

Summary

- We discussed the problem of the nuclear pairing Hamiltonian written down in the Fock space representation (for $\mathcal{N} \sim 10^{40}$ spaces)
- We obtained the exact results using the so-called P_{1}, P_{2} and P_{12} symmetries and the Lanczos diagonalisation technique
- We have constructed the solutions to the Schrödinger equation by using the totally independent random walk (Markov chain) concepts

Summary

- We discussed the problem of the nuclear pairing Hamiltonian written down in the Fock space representation (for $\mathcal{N} \sim 10^{40}$ spaces)
- We obtained the exact results using the so-called P_{1}, P_{2} and P_{12} symmetries and the Lanczos diagonalisation technique
- We have constructed the solutions to the Schrödinger equation by using the totally independent random walk (Markov chain) concepts
- The eigen-energies constructed using the random walk simulations agree within a few permille level with the exact ones

Summary

- We discussed the problem of the nuclear pairing Hamiltonian written down in the Fock space representation (for $\mathcal{N} \sim 10^{40}$ spaces)
- We obtained the exact results using the so-called P_{1}, P_{2} and P_{12} symmetries and the Lanczos diagonalisation technique
- We have constructed the solutions to the Schrödinger equation by using the totally independent random walk (Markov chain) concepts
- The eigen-energies constructed using the random walk simulations agree within a few permille level with the exact ones
- Stochastic solutions are systematically higher than the exact ones

Summary

- We discussed the problem of the nuclear pairing Hamiltonian written down in the Fock space representation (for $\mathcal{N} \sim 10^{40}$ spaces)
- We obtained the exact results using the so-called P_{1}, P_{2} and P_{12} symmetries and the Lanczos diagonalisation technique
- We have constructed the solutions to the Schrödinger equation by using the totally independent random walk (Markov chain) concepts
- The eigen-energies constructed using the random walk simulations agree within a few permille level with the exact ones
- Stochastic solutions are systematically higher than the exact ones
- The Lanczos approach has a natural limitations related to the present-day computer memory; the stochastic simulation is extremely fast and can go in principle 'up to infinity'

Comments and Conclusions

- The Lanczos approach has a natural limitations related to the present-day computer memory; the stochastic simulation is extremely fast and can go in principle 'up to infinity'
- We would like to perform more detailed tests of the structure of the 'universal probability' distribution
- The fact that such a probability distribution seems to exist, acting the same way independently of the structure of the Fock-space states looks to us of extreme importance
- The (small) discrepancies with respect to the exact solutions can be due to the inaccuracies of the elementary probability distribution and/or to a 'small non-Markovian corrections'

