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Mathematial Structure of the Effective Hamiltonian

Part I

Nuclear Pairing: Exact Symmetries, Exact
Solutions, Pairing as a Stochastic Process
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Mathematial Structure of the Effective Hamiltonian

Mathematics of the Effective Hamiltonian

The Global Structure of the N-Body Effective Hamiltonians

• The unknown ‘true’ Hamiltonian is replaced by two effective ones

Ĥ =
∑
αβ

hαβ ĉ+
α ĉβ + 1

2

N∑
αβ=1

N∑
γδ=1

vαβ;γδ ĉ+
α ĉ+

β ĉδ ĉγ

• In low-energy sub-atomic physics the theory calculations without
considering the residual pairing are considered not realistic

Pairing: ↔ vpairing
αβ;γδ ← to be defined
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β ĉδ ĉγ
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Mathematial Structure of the Effective Hamiltonian

Comment about Irreducible Representations

• Gelfand and Zetlin (1950) also obtain the matrix elements of the
generators N̂αβ within their space of U(n) irreducible representations

• Thus for known ‘physical’ matrices hαβ and vαβ;γδ the Hamiltonian
below can be seen as a known matrix

Ĥ =
∑
αβ

hαβ N̂αβ + 1
2

∑
αβ

∑
γδ

vαβ;γδ N̂αγN̂βδ

• Moreover, under the condition:P
j nj = p, for nj = 0 or 1

each state can be seen as an integer cor-
responding to its binary representation

E =
nX

k=1

bk2k−1 → |0010101100010111〉
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Mathematial Structure of the Effective Hamiltonian

N-Body Hamiltonians and Un-Group Generators

N-Body Hamiltonians are functions of Un-group generators

Ĥ =
∑
αβ

hαβ N̂αβ + 1
2

∑
αβ

∑
γδ

vαβ;γδ N̂αγN̂βδ

Two-body interactions lead to quadratic forms of N̂αβ = c+
α cβ,

three-body interactions to the cubic forms of N̂αβ, etc.

Hamiltonians of the N-body systems can be diagonalised within
bases of the irreducible representations of unitary groups

Solutions can be constructed that transform as the Un-group
representations thus establishing a link H ↔ Un-formalism
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From Many-Body - to Pairing Many-Body Problem

Part II

Physics of Nuclear Pairing
and Nuclear Superfluidity
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From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

First Steps: Pairing on Top of the Mean Field

• The first step: to solve the nuclear (HF) mean-field problem

• Nucleons move in a deformed
one-body potential representing
an everage interaction among
them

• The one-body potentials are ei-
ther parametrised or calculated
using Hartree-Fock method and
the single nucleon levels obtained

{eα : α = 1, ... , n}

V(3D−Space)

3D−Space

NUCLEONS

NUCLEUS
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From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Time-Independent Hamiltonians: Kramers Degeneracy

• We explicitly introduce the time-reversal degeneracy

T̂ Ĥ T̂−1 = Ĥ → eα = eᾱ ↔ |ᾱ〉 ≡ T̂ |ᾱ〉

• ‘Time-up’ states denoted by

{|α〉}

• Time-reversed states by

{|ᾱ〉}

α α
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From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Pairing Hamiltonian: Its Experimental Background

• All the experiments show that, with
no exception, all the even-even nuclei
have spin zero in their ground states

• This implies the existence of the
universal short range interaction that
couples the time-reversed orbitals

α
_

|   >|   >α

Pairing  Scheme

• Implied Many-Body Hamiltonian

Ĥ =
∑
α

eα (c+
αcα + c+

ᾱcᾱ) +

Generalized Pairing︷ ︸︸ ︷
1
2

∑
αβ

vαᾱ;ββ̄︸ ︷︷ ︸
≡Gαβ

c+
αc+
ᾱ c

β̄
cβ

|ᾱ〉 ≡ T̂|α〉
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From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Realistic Nucleonic Orbitals in the Mean-Field:

A Few Examples of the Spatial Structure
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From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Spatial Structure of Orbitals (Spherical 132Sn) (|ψ(~r )| 2)

Limit 80% Limit ??% Limit ??% Limit ??% Limit ??%

Density distribution |ψπ(~r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital
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Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Spatial Structure of Orbitals (Spherical 132Sn) (|ψ(~r )| 2)

Limit 80% Limit 50% Limit 10% Limit ??% Limit ??%

Density distribution |ψπ(~r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital
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From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Spatial Structure of Orbitals (Spherical 132Sn) (|ψ(~r )| 2)

Limit 80% Limit 50% Limit 10% Limit 3% Limit ??%

Density distribution |ψπ(~r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital
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Spatial Structure of Orbitals (Spherical 132Sn) (|ψ(~r )| 2)

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%

Density distribution |ψπ(~r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital
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Spatial Structure of Orbitals (Spherical 132Sn) (|ψ(~r )| 2)

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%

Limit 20% Limit 15% Limit 12% Limit ??% Limit ??%

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2
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From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Spatial Structure of N=3 Spherical Shell (|ψν(~r )| 2)

132Sn: Distributions |ψν(~r )| 2 for single proton orbitals. Top Oxz ,
bottom Oyz . Proton eν ↔ [ν=30, 32, ... 38] for spherical shell
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From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Spatial Structure of N=3 Spherical Shell (|ψν(~r )| 2)

132Sn: Distributions |ψν(~r )| 2 for single proton orbitals. Top Oxz ,
bottom Oyz . Proton eν ↔ [ν=40, 42, ... 48] for spherical shell
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From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Spatial Structure of N=3 Spherical Shell (|ψν(~r )| 2)

132Sn: distributions |ψν(~r )| 2 for consecutive pairs of orbitals. Top
Oxz , bottom Oyz . Proton eν ↔ [n=30:32, ... 38:40], spherical shell
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From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Spatial Structure of N=3 Spherical Shell (|ψν(~r )| 2)

132Sn: distributions |ψν(~r )| 2 for consecutive pairs of orbitals. Top
Oxz , bottom Oyz . Proton eν ↔ [n=40:42, ... 48:50], spherical shell
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From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Dichotomic Symmetries of Pairing
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From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Natural Dichotomic Symmetries: Time Reversal...

• There exist one-body dichotomic symmetries Ŝ1 ≡ T̂ , R̂x , Ŝx , . . .
where the subscript “1” refers to the one-body interaction

Ĥ1 =
∑
αβ

〈α|ĥ1|β〉 c+
αcβ and [Ŝ1, ĥ1] = 0

• For Fermions

Ŝ2
1 = −1→ sα = ±i

• This allows to introduce the basis {|α, sα〉} (and the labelling):

ĥ1|α, sα〉 = eα, sα|α, sα〉, ↔ Ŝ1|α, sα〉 = sα|α, sα〉
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From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Exploiting the Natural Dichotomic Symmetries

• Therefore, there are 16 types of the two-body matrix elements,
distinguished by the eigenvalues sα = ±i

Ĥ =
X
α

εα(c+
α+cα+ + c+

α−cα−) + 1
2

X
αβ

X
γδ

〈α±, β±|ĥ2|γ±, δ±〉| {z }
16 families

c+
α±c+

β±cδ±cγ±

• Since the residual two-body interactions are often assumed scalar,
it follows that for the two-body operator Ŝ2, the analogue of Ŝ1

Ŝ2 ≡ Ŝ1 ⊗ Ŝ1 → [ĥ2, Ŝ2] = 0

• This implies that half of the matrix elements above simply vanish

〈α±, β±|ĥ2|γ±, δ±〉 ∼ δsα·sβ , sγ ·sδ
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From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Exploiting Dichotomic Symmetries and Pairing

• Furthermore, because of the specific form of the nuclear pairing
Hamiltonian half of the above 8 types of matrix elements are absent

〈α+, β + |ĥ2|γ−, δ−〉 = 0

〈α−, β − |ĥ2|γ+, δ+〉 = 0

〈α+, β + |ĥ2|γ+, δ+〉 = 0

〈α−, β − |ĥ2|γ−, δ−〉 = 0

λ

α α|   −>|   +>
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From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Exploiting Dichotomic Symmetries and Pairing

• Examples of the vanishing matrix elements

〈α+, β + |ĥ2|γ−, δ−〉 = 0

〈α−, β − |ĥ2|γ+, δ+〉 = 0

〈α+, β + |ĥ2|γ+, δ+〉 = 0

〈α−, β − |ĥ2|γ−, δ−〉 = 0

λ

α α|   −>|   +>
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Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Exploiting Dichotomic Symmetries and Pairing

• Examples of the vanishing matrix elements

〈α+, β + |ĥ2|γ−, δ−〉 = 0

〈α−, β − |ĥ2|γ+, δ+〉 = 0

〈α+, β + |ĥ2|γ+, δ+〉 = 0

〈α−, β − |ĥ2|γ−, δ−〉 = 0

λ

α α|   −>|   +>
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From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Final Structure of the Nuclear Pairing Hamiltonian

• Then the non-vanishing terms can be divided into four families

Ĥ2 = 1
2

∑
α+β−

∑
γ−δ+ 〈α+, β − |ĥ2|γ−, δ+〉 c+

α+c+
β− cδ+cγ−

+ 1
2

∑
α+β−

∑
γ+δ− 〈α+, β − |ĥ2|γ+, δ−〉 c+

α+c+
β− cδ−cγ+

+ 1
2

∑
α−β+

∑
γ−δ+ 〈α−, β + |ĥ2|γ−, δ+〉 c+

α−c+
β+ cδ+cγ−

+ 1
2

∑
α−β+

∑
γ+δ− 〈α−, β + |ĥ2|γ+, δ−〉 c†α−c†β+ cδ−cγ+

• It turns out that the full Hamiltonian

Ĥ ≡
∑
α

eα(ĉ+
α ĉα + ĉ+

ᾱ ĉᾱ) + Ĥ2

cannot connect the states that differ in terms of occupation of the
”+” and ”-” family states
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From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

We have just obtained the modern version
of the

Nuclear Pairing Hamiltonian

In what sense are the paired-nuclei super-fluid?

Jerzy DUDEK, University of Strasbourg, France Pairing, Its Fundamental Properties, Stochastic Features



From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

We have just obtained the modern version
of the

Nuclear Pairing Hamiltonian

In what sense are the paired-nuclei super-fluid?

Jerzy DUDEK, University of Strasbourg, France Pairing, Its Fundamental Properties, Stochastic Features



From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Collective Rotation, Moments of Inertia

• The first rotational transition energies are very low; for very heavy
nuclei such energies ∆eR ∼ 10−2 MeV. This energy is contributed
by all the nucleons; a contribution per nucleon, is

δeR ≡ ∆eR/A ∼ 10−2 MeV/A ∼ 10−4 MeV

Static Rotating
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From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Collective Rotation, Moments of Inertia

• These energies should be compared to the average kinetic energies of
nucleons in the mean-field potential of the typical depth of V0 ∼ −60 MeV

• A nucleon of, say, eα ≈ −25 MeV, has the kinetic energy of the order of

〈t̂ 〉 ∼ tα ∼ 35 MeV so that V0 + 〈t̂ 〉 ∼ eν ≈ −25 MeV

∆Eγ ~R
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From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Collective Rotation, Moments of Inertia

• Consider explicitly a one-dimensional rotation about Ox -axis. One may
show that the perturbation is δv = ~ωx · ̂x
• Consequently the second order energy contribution is

E
(2)
0 = (~ωx) 2

∑
mi

|(m|̂jx |i)| 2

e
(0)
i − e

(0)
m

compared to E
(2)
0 =

1

2
Jx ω

2
x

• Comparison gives

Jx = 2 ~ 2
∑
mi

|(m|̂jx |i)| 2

e
(0)
i − e

(0)
m

≈ J rig .
x =

∫
V

[y 2 + z2]ρ(~r )d3~r 6= J exp.
x
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From Many-Body - to Pairing Many-Body Problem
Pairing Hamiltonian from the Experimental Evidence
Spherical Mean-Field: Illustrations
Why Nuclear Superfluidity?

Collective Rotation, Moments of Inertia

• Repeating the 2nd -order perturbation calculation with pairing we obtain

J pair
x = 2 ~ 2

∑
µν

|〈µ|̂jx |ν〉| 2
(uµvν − uνvµ) 2

Eµ + Eν
≈ 0.5 · J rig .

x ≈ J exp.
x

• By definition, within the nuclear Bardeen-Cooper-Schrieffer approach

Eµ =
√

(eµ − λ)2 + ∆2, v 2
µ = 1

2

[
1− (eµ − λ)/Eµ

]
and v 2

µ + u2
µ = 1

• As the pairing gap ∆→∞ we find

fµν ≡
(uµvν − uνvµ) 2

Eµ + Eν

∆→∞→ 0 ↔ J pair
x → 0

•When this happens we say that system approaches the super-fluid regime
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Exact Solution of Pairing Many-Body Problem

Part III

A Lesson on the Exact Solutions
of the Realistic Pairing Problem
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Exact Solution of Pairing Many-Body Problem
Introductory Explorations
P1-, P2-, P12-Symmetries

Pairing, Fock-Space and Associated Notation

• Nuclear wave functions must be totally anti-symmetrised

• We formulate the problem of the motion in the Fock space

• We use the many-body occupation-number representation

Ψmb = (c+
α1

)pα1 (c+
α2

)pα2 . . . (c+
αn

)pαn |0 > ↔ |pα1 , pα2 , . . . pαn〉

pα = 0 or 1,
n∑

j=1

pαj = p

p

n |11 11 11 10 00 01 00 00 >

• Computer algorithm is constructed using bit-manipulations

Jerzy DUDEK, University of Strasbourg, France Pairing, Its Fundamental Properties, Stochastic Features



Exact Solution of Pairing Many-Body Problem
Introductory Explorations
P1-, P2-, P12-Symmetries

Particular Symmetries of the Pairing Hamiltonian

• Ĥ does not couple states differing in particle-hole structure

• Ĥ does not couple states differing by 2 or more excited pairs

Ĥ =
∑
α

eαc+
αcα +

∑
α,β>0

Gα,β c+
β c+

β̄
cᾱcα

<J| = < configuration 1| | configuration 2> = |K>

λ λ

〈J|Ĥ|K〉 = 0
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Exact Solution of Pairing Many-Body Problem
Introductory Explorations
P1-, P2-, P12-Symmetries

Pairing Hamiltonian and the U(n)-Generators

• It follows that upon identifying n̂αβ ≡ ĉ+
α ĉβ ↔ ĝαβ

Ĥ =
n∑

α>0

e ′α (ĝα,α + ĝᾱ,ᾱ)− 1
2

n∑
α,β>0

Gα,β ĝβ,ᾱ ĝβ̄,α

• Introduce linear Casimir operator

Particle No. Operator → N̂ =
∑n

α n̂αα

U(n) Casimir Operator→ Ĉ =
∑n

α ĝαα

Ĉ ≡
n∑
α

ĝαα =

N+∑
α+

ĝα+,α+ +

N−∑
α−

ĝα−,α− ≡ N̂+
1 + N̂−1
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Exact Solution of Pairing Many-Body Problem
Introductory Explorations
P1-, P2-, P12-Symmetries

New Particle-Like Operators: N̂+
1 and N̂−1

• One verifies that operators N̂+
1 and N̂−1 are linearly independent

[Ĥ, N̂+
1 ] = 0, [Ĥ, N̂−1 ] = 0, [N̂+

1 , N̂
−
1 ] = 0

• Introduce two linear combinations

N̂1 ≡ N̂
+
1 + N̂−1 and P̂1 ≡ N̂

+
1 − N̂

−
1

• We show straightforwardly that

[Ĥ, N̂1] = 0, [Ĥ, P̂1] = 0

• The Hamiltonian Ĥ is said to be P̂1-symmetric
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Exact Solution of Pairing Many-Body Problem
Introductory Explorations
P1-, P2-, P12-Symmetries

New Particle-Like Operators: N̂+
1 and N̂−1

• Recall: Operator P̂1 ≡ N̂+
1 − N̂

−
1 gives the difference between

the occupation of states sα = +i and sα = −i

• It follows that the possible eigenvalues of P1 are

P1 = p, p − 2, p − 4, . . . , −p

for a system of p particles on n levels with p ≤ n/2, and

P1 = (n − p), (n − p − 2), (n − p − 4), . . . , −(n − p)

for a system for which n/2 ≤ p ≤ n

• Hamiltonian matrix splits into blocks with eigenvalues P1; one
shows that

dim(P1) = Cn
p+P1

2

Cn
p−P1

2
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Exact Solution of Pairing Many-Body Problem
Introductory Explorations
P1-, P2-, P12-Symmetries

Illustration of the Effect of the P1-Symmetry

• Example of Fock-space dimensions for p = 16 particles on n = 32
levels; the dimension of the full space is C 32

16 = 601 080 390

P1-value Dimension

0 165 636 900
± 2 130 873 600
± 4 64 128 064
± 6 19 079 424
± 8 3 312 400
± 10 313 600
± 12 14 400
± 14 256
± 16 1
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Exact Solution of Pairing Many-Body Problem
Introductory Explorations
P1-, P2-, P12-Symmetries

New Particle-Pair-Like Operators: N̂+
2 and N̂−2

• Our Hamiltonian does not couple states that differ in terms of the
numbers of pairs; the number of broken pairs (seniority) is conserved

• In analogy with the previous case we define two-body operators

N̂+
2 ≡

N∑
i=1

c+
αi

c+
ᾱi

cᾱi
cαi

and N̂−2 ≡
N∑

i=1

(1− c+
αi

c+
ᾱi

cᾱi
cαi

)

• Following the same analogy we also define the linear combinations

N̂2 = N̂+
2 + N̂−2 and P̂2 = N̂+

2 − N̂
−
2
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Exact Solution of Pairing Many-Body Problem
Introductory Explorations
P1-, P2-, P12-Symmetries

New Particle-Pair-Like Operators: N̂+
2 and N̂−2

• One can verify straightforwardly that

[Ĥ, N̂+
2 ] = 0 and [Ĥ, N̂−2 ] = 0 and [N̂+

2 , N̂
−
2 ] = 0

• It then follows immediately that

[Ĥ, N̂2] = 0 and [Ĥ, P̂2] = 0 while [P̂1, P̂2] = 0

• The Hamiltonian Ĥ is said to be P̂2-symmetric
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Exact Solution of Pairing Many-Body Problem
Introductory Explorations
P1-, P2-, P12-Symmetries

New Particle-Pair-Like Operators: N̂+
2 and N̂−2

• By counting numbers of pairs we obtain eigen-values of P̂2-operator

• For p particles on n levels, and p ≤ n/2:

P2 = p − n, p − 2− n, . . . , −n

• For p particles on n levels, and n/2 ≤ p ≤ n:

P2 = p − n, p − 2− n, . . . , 2(p − n)− n

• The dimensions of a given block characterized by the quantum
numbers P1 and P2 are given by:

dim(P2,P1) = Cn
p−n−P2+P1

2

C
n− p−n−P2+P1

2
p−n−P2−P1

2

C 2n−p+P2
n+P2

2
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Exact Solution of Pairing Many-Body Problem
Introductory Explorations
P1-, P2-, P12-Symmetries

New Particle-Pair-Like Operators: N̂+
2 and N̂−2

• The Hamiltonian blocks for p = 16 particles on n = 32 levels;
the dimension of the full space is C 32

16 = 601 080 390

Seniority P2 Dimension P1-values Dimension
0 0 12 870 0 12 870
2 −2 1 647 360 0 823 680

± 2 411 840
4 −4 26 906 880 0 10 090 080

± 2 6 726 720
± 4 1 681 680

6 −6 129 153 024 0 40 360 320
± 2 30 270 240
± 4 12 108 096
± 6 2 018 016

8 −8 230 630 400 0 63 063 000
± 2 50 450 400
± 4 25 225 200
± 6 7 207 200
± 8 900 900

... ... ... ... ...
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Exact Solution of Pairing Many-Body Problem
Introductory Explorations
P1-, P2-, P12-Symmetries

Yet Another Symmetry: P12-Symmetry

• Define µi ≡ 2i − 2 associated with doubly-degenerate levels εi

• Define the weight factors: αi → 2µi and ᾱi → 2µi +1

• Define operators

N̂+
12 ≡

n∑
i=1

(2µi c+
αi

cαi
+ 2µi +1c+

ᾱi
cᾱi

)

N̂−12 ≡
n∑

i=1

(2µi + 2µi +1)c+
αi

c+
ᾱi

cᾱi
cαi

P̂12 ≡ N̂+
12 − N̂

−
12
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Exact Solution of Pairing Many-Body Problem
Introductory Explorations
P1-, P2-, P12-Symmetries

Yet Another Symmetry: P12-Symmetry

• One can show that

[P̂1, P̂2] = 0 and [P̂1, P̂12] = 0 and [P̂2, P̂12] = 0

• ... and that for our general pairing Hamiltonian Ĥ we have

[Ĥ, P̂1] = 0 and [Ĥ, P̂2] = 0 and [Ĥ, P̂12] = 0

• The Hamiltonian Ĥ is said to be P̂12-symmetric
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Exact Solution of Pairing Many-Body Problem
Introductory Explorations
P1-, P2-, P12-Symmetries

How Powerful This Approach Is Shows an Example:

• The property just observed allows for significant simplifications

Example: 16 particles on 32 levels

Total dimension of H ⇒ 601 080 390 × 601 080 390

Seniority P2 Total Dimension Nb. of sub-blocs Sub-bloc dimension

0 0 12 870 1 12 870
2 -2 1 647 360 480 3 432
4 -4 26 906 880 29 120 924
6 -6 129 153 024 512 512 252
8 -8 230 630 400 3 294 720 70

10 -10 164 003 840 8 200 192 20
12 -12 44 728 320 7 454 720 6
14 -14 3 932 160 1 966 080 2
16 -16 65 536 65 536 1

Details in: H. Molique and J. Dudek, Phys. Rev. C56, 1795 (1997)
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About the Stochastic Approach

Part IV

Cooper-Pairs as Brownian Particles

Jerzy DUDEK, University of Strasbourg, France Pairing, Its Fundamental Properties, Stochastic Features



About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

From Quantum Mechanics to Stochastic Processes

• Consider a system composed of p-particles on n nucleonic levels

• The implied Fock space contains N = Cn
p many-body states

{|ΦK >; K = 1, 2, . . . N}

• The symbols represent N physical configurations {CK} of the type

{CK} ↔ {|11 10 00 01 . . . >K ; K = 1, 2, . . . N}

• The use of the P-symmetries allows to diagonalize exactly and easily,
with the help of the Lanczos method, the Hamiltonian matrices

< ΦK | Ĥ |ΦM > of dimensions Nb ∼ 10 9 to 10(12→15)
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About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

An alternative, stochastic method is free from the
disc-space limitations

This Stochastic Method is based
on fundamentally different concepts
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About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Nuclear Pairing as a Stochastic Process

• Starting from now on we assume that the system evolves under
the influence of Hamiltonian Ĥ in terms of the single-pair transitions

K

K’
L

L’

• We suggest that there exist a universal probability distribution
depending on the transition energy only

PK→K ′ = P(∆EK ,K ′); ∆EK ,K ′ = |EK − EK ′ |

In other words: we assume that single-pair transition probabilities
are neither dependent on the particular configuration nor on the
history of the process
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About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Nuclear Pairing as a Stochastic Process

• The just formulated assumptions reduce the evolution of such a
system to that of the Markov process

space

etc.
ect. / ETC*

Fock

• Consequently we are going to consider the underlying physical
process in terms of the random walk through the Fock space

Jerzy DUDEK, University of Strasbourg, France Pairing, Its Fundamental Properties, Stochastic Features



About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Nuclear Pairing as a Stochastic Process

• An example of Fock space corresponding to 4 particles on 8 levels

{|ΦK 〉} = {|1100〉, |1010〉, |1001〉, |0110〉, |0101〉, |0011〉}

• We have the following possible transitions:

0101

1010

0110

1001 11000011

• To simplify the illustration we use the compact notation:
1 → one pair present; 0 → one pair absent
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About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Fock-State Occupation Probabilities

• Suppose Hamiltonian Ĥ has been diagonalised in the Fock space

Ĥ |ΨK 〉 = EK |ΨK 〉 → |ΨK 〉 =

Nb∑
L=1

CK ,L |ΦL〉

• The quantum probability of finding |ΨK 〉 in one of its Fock-basis
states |ΦL〉 is

Pq
L = |CK ,L| 2 (for a given |ΨK 〉)

• The stochastic probability of finding |ΨK 〉 in one of its Fock-basis
states |ΦL〉 is

Ps
L = NL/Ntotal (for a given |ΨK 〉)

where NL → the number of occurrences of |ΦK 〉 along the random
walk and Ntotal = the total ’length’ of the random walk
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About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Example: Exact Quantum Occupation Probabilities

• p = 8 particles on n = 16 levels {Nb = 70 Fock |ΦK 〉 states} on
an equidistant model spectrum: the ground-state wave-function
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About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Stochastic vs. Quantum Occupation Probabilities

• 8 particles on 16 levels (Nit = 10 000 iterations)
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About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Stochastic vs. Quantum Occupation Probabilities

• 8 particles on 16 levels (Nit = 10 000 iterations) - Case 2
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About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Stochastic vs. Quantum Occupation Probabilities

• 8 particles on 16 levels (Nit = 10 000 iterations) - Case 3
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About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Stochastic vs. Quantum Occupation Probabilities

• 8 particles on 16 levels (Nit = 10 000 iterations) - Case 4
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About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Stochastic vs. Quantum Occupation Probabilities

• 12 particles on 24 levels (Nit = 50 000 iterations)
Fock space dimension N (24/12) = 2 704 156
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About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Stochastic vs. Quantum Occupation Probabilities

• Zooming in the previous spectrum for p = 12 and n = 24
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Stochastic vs. Quantum Occupation Probabilities

• 16 particles on 32 levels (Nit = 300 000 iterations)
Fock space dimension N (32/16) = 601 080 390
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Stochastic vs. Quantum Occupation Probabilities

• 16 particles on 32 levels; ground-state wave-function → L = 1
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Stochastic Approach: Problem with Excited States?

• So far we have considered the ground-state wave functions

• All CL,K coefficients of the ground-state wave functions (L = 1)
are known to be of the same sign

• The stochastic approach may only give the probabilities:

P ∼ |C | 2 ↔ |C |

so there was no problem to obtain the wave-function out of |C1,K | 2

•We arrive at the problem: The wave-function of the excited states
cannot be obtained in the same way ...
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Extending the Random Walk: Excited States

• We consider again the full ensemble of the Fock-basis vectors

{|φK 〉; K = 1, 2, 3, . . . Nb}

• We begin the random walk starting with |Φ1 >; calculations show
that in this way we obtain always the ground-state configuration

• Next we construct the whole series of the random walk processes
by beginning with |Φ2 >, |Φ3 >, . . .

• ... but now: how should we compare the stochastic results with
the quantum case?

• The random walk algorithm provides neither the signs of the
C−coefficients - nor the energies ...
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Extending the Random Walk: Excited States (II)

• Consider a set of linearly independent vectors {|ΨL〉}. We will
orthonormalise them, beginning with |Ψ1 > as follows:

− We normalise |Ψ1 >: |Ψ1〉 → |Θ1〉 =
1

||Ψ1 ||
|Ψ1〉

− We subtract the parallel part of |Ψ2 > from |Θ1 >

|Ψ2〉 → |Ψ′2〉 = |Ψ2〉 − (< Θ1|Ψ2 >) |Θ1〉

• We normalise this last vector:

|Ψ′2〉 → |Θ2〉 =
1

||Ψ2 ||
|Ψ2〉

• We subtract the parallel part of |Ψ2 > from |Θ1 > and |Θ2 >

|Ψ′3〉 → |Ψ3〉 − 〈Θ1|Ψ3 > |Θ1〉 − 〈Θ2|Ψ3 > |Θ2 >
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Orthonormalisation Scheme - Illustration

• 8 particles on 16 levels - 1rst excited state
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... and apparently we are able to obtain the wave function of an excited
state. However:
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Orthonormalisation Scheme - Illustration

• 8 particles on 16 levels - 2nd excited state
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... and apparently the scheme does not seem to perform well for yet another
excited state ... Is it a real problem?
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Overlaps: Stochastic vs. Exact

0 20 40 60
−1

−0.5

0

0.5

1

| Ψ     >exact

i

ex
act

sto
ch

i
< Ψ

    
 | Ψ

    
 >

2

Jerzy DUDEK, University of Strasbourg, France Pairing, Its Fundamental Properties, Stochastic Features



About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Overlaps: Stochastic vs. Exact

0 20 40 60
−1

−0.5

0

0.5

1

| Ψ     >exact

i

ex
act

sto
ch

i
< Ψ

    
 | Ψ

    
 >

2

Jerzy DUDEK, University of Strasbourg, France Pairing, Its Fundamental Properties, Stochastic Features



About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Overlaps: Stochastic vs. Exact

0 20 40 60
−1

−0.5

0

0.5

1

| Ψ     >exact

i

ex
act

sto
ch

i
< Ψ

    
 | Ψ

    
 >

3

Jerzy DUDEK, University of Strasbourg, France Pairing, Its Fundamental Properties, Stochastic Features



About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Overlaps: Stochastic vs. Exact

0 20 40 60
−1

−0.5

0

0.5

1

< Ψ
    

 | Ψ
    

 >

| Ψ     >exact

i

ex
act

sto
ch

i
4

Jerzy DUDEK, University of Strasbourg, France Pairing, Its Fundamental Properties, Stochastic Features



About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Overlaps: Stochastic vs. Exact

0 20 40 60
−1

−0.5

0

0.5

1

| Ψ     >exact

i

ex
act

sto
ch

i
< Ψ

    
 | Ψ

    
 >

5

Jerzy DUDEK, University of Strasbourg, France Pairing, Its Fundamental Properties, Stochastic Features



About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Overlaps: Stochastic vs. Exact

0 20 40 60
−1

−0.5

0

0.5

1

| Ψ     >exact

i

ex
act

sto
ch

i
6

< Ψ
    

 | Ψ
    

 >

Jerzy DUDEK, University of Strasbourg, France Pairing, Its Fundamental Properties, Stochastic Features



About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Overlaps: Stochastic vs. Exact

0 20 40 60
−1

−0.5

0

0.5

1

| Ψ     >exact

i

ex
act

sto
ch

i
< Ψ

    
 | Ψ

    
 >

7

Jerzy DUDEK, University of Strasbourg, France Pairing, Its Fundamental Properties, Stochastic Features



About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Overlaps: Stochastic vs. Exact

0 20 40 60
−1

−0.5

0

0.5

1

| Ψ     >exact

i

ex
act

sto
ch

i
< Ψ

    
 | Ψ

    
 >

8

Jerzy DUDEK, University of Strasbourg, France Pairing, Its Fundamental Properties, Stochastic Features



About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Overlaps: Stochastic vs. Exact

0 20 40 60
−1

−0.5

0

0.5

1

| Ψ     >exact

i

ex
act

sto
ch

i
< Ψ

    
 | Ψ

    
 >

9

Jerzy DUDEK, University of Strasbourg, France Pairing, Its Fundamental Properties, Stochastic Features



About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Observations, Interpretation, Partial Conclusions

•We just have observed that the quantum and stochastic Fock-basis
vectors are similar - but not identical

• More precisely: some stochastic vectors have more than 99% of
overlap with one of their quantum partners ...

• ... some others have a strong overlap with ∼ 2 quantum partners,
and several ’tiny’ overlaps with the others

• Observation: the stochastic basis vectors seem to be often nearly
parallel to their quantum partners; sometimes they rather lie in a
two-dimensional hyperplane

• Clearly the stochastic and quantum Fock bases are not identical;

Are they equivalent i.e. differing by an orthogonal transformation?

Jerzy DUDEK, University of Strasbourg, France Pairing, Its Fundamental Properties, Stochastic Features



About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Certain Property of Eigenvectors

• Let us consider again a Fock basis {|ΦK 〉; K = 1 . . .Nb}

• Eigenvalues and eigenvectors of Ĥ1 in the Fock space obey:

Ĥ1 |ΦN〉 = EN |ΦN〉 with EN =
∑

α∈{Conf .}N

eα

• Eigenvectors |ΨJ〉 satisfy: |ΨJ〉 =
∑Nb

K=1 CJK |ΦK 〉

• Eigenvalues of Ĥ can be calculated knowing the {EL} energies:

EJ =

Nb∑
L=1

C 2
JLEL +

Nb∑
L,M=1

CJLCJM〈ΦL|Ĥ2|ΦM〉

• Knowing coefficients CJL from the stochastic simulation, we or-
thonormalise the vectors → verify whether they give eigenenergies!
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The Eigenvalues of Ĥ and Stochastic Features

• Denoting by n the number of nucleons, we have

〈ΦL|Ĥ(2)|ΦM〉 =


−1

2 n |G | if M = L,
−|G | if M 6= L, but |ΦM〉 and |ΦL〉

differ by one exited pair,
0 otherwise

• We express unknown eigenenergies by stochastic coefficients

EJ =
∑
L

[
C 2

JL(EL − 1
2 n |G |) − CJL |G |

∑
δL

CJ,L+δL

]
;

the symbol {L + δL} refers to configurations that differ from those
denoted {L} by one excited pair
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The Eigenvalues of Ĥ and Stochastic Features

p=8 particles on n=16 levels - Error

Fock space N = 12 870

EXACT [MeV] RANDOM WALK [MeV] RELATIVE ERROR

16.8891704 16.9120315 0.14%
19.4809456 19.5437517 0.32%
21.4463235 21.5163029 0.33%
21.4463235 21.5187773 0.34%
23.4307457 23.4899241 0.25%
23.4307457 23.4963815 0.28%
23.7797130 23.9403046 0.67%
25.4418890 25.4581811 0.06%
25.4418890 25.4605459 0.07%
25.6148968 25.6849886 0.27%
25.8221082 25.9242843 0.40%
25.8221082 25.9578009 0.52%
27.8143803 27.8793481 0.23%
27.8143803 27.8875293 0.26%
· · · · · · · · ·

Jerzy DUDEK, University of Strasbourg, France Pairing, Its Fundamental Properties, Stochastic Features



About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

The Eigenvalues of Ĥ and Stochastic Features

12 particles on 24 levels - Error

Fock space N = 2 704 156

EXACT [MeV] RANDOM WALK [MeV] RELATIVE ERROR

36.8391727 36.8981242 0.16%
39.9047355 40.0512103 0.37%
41.7482282 41.8456965 0.23%
41.7482282 41.8521919 0.25%
43.6532878 43.7391981 0.20%
43.6532878 43.7438472 0.21%
44.3047857 44.4975191 0.43%
45.5945444 45.6720849 0.17%
45.5945444 45.6788884 0.18%
45.9368443 46.0291365 0.20%
46.3210968 46.4902340 0.37%
46.3210968 46.5009797 0.40%
47.5618469 47.6218935 0.13%
· · · · · · · · ·
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The Eigenvalues of Ĥ and Stochastic Features

8 particles on 16 levels - the first 11 levels
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The Eigenvalues of Ĥ and Stochastic Features

8 particles on 16 levels - the first 33 levels
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The Eigenvalues of Ĥ and Stochastic Features

8 particles on 16 levels - All levels
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The Eigenvalues of Ĥ and Stochastic Features

12 particles on 24 levels - the first 25 levels
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Question of the ‘Universal Probability Distribution’

• The results presented above were obtained by using, as a working
hypothesis, the following form of the parametrisation of the transi-
tion probability:

Pα→β =
Kα

a (∆Eαβ)2 + b ∆Eαβ + c

where
∆Eαβ = |Eα − Eβ|

and where Kα is a normalisation constant; a, b and c are adjustable
parameters.

Jerzy DUDEK, University of Strasbourg, France Pairing, Its Fundamental Properties, Stochastic Features



About the Stochastic Approach
Formulating the Concepts
Testing the Method against Exact Results

Summary

•We discussed the problem of the nuclear pairing Hamiltonian writ-
ten down in the Fock space representation (for N ∼ 10 40 spaces)

• We obtained the exact results using the so-called P1, P2 and P12

symmetries and the Lanczos diagonalisation technique

• We have constructed the solutions to the Schrödinger equation by
using the totally independent random walk (Markov chain) concepts

• The eigen-energies constructed using the random walk simulations
agree within a few permille level with the exact ones

• Stochastic solutions are systematically higher than the exact ones

• The Lanczos approach has a natural limitations related to the
present-day computer memory; the stochastic simulation is extremely
fast and can go in principle ’up to infinity’
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Comments and Conclusions

• The Lanczos approach has a natural limitations related to the
present-day computer memory; the stochastic simulation is extremely
fast and can go in principle ’up to infinity’

• We would like to perform more detailed tests of the structure of
the ’universal probability’ distribution

• The fact that such a probability distribution seems to exist, acting
the same way independently of the structure of the Fock-space states
looks to us of extreme importance

• The (small) discrepancies with respect to the exact solutions can
be due to the inaccuracies of the elementary probability distribution
and/or to a ’small non-Markovian corrections’
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