Spectromètres & séparateurs

en physique nucléaire

- 1) Quelques exemples de séparateurs
- 2) Quelques notions de base
- 3) spectromètres (E<500keV) à basse énergie
- 4) Spectromètres de recul (1-20 Mev/A)

5) Séparateurs de fragments (50Mev/A-600 MeV/A)

Ecole Joliot Curie 2008

B.Jacquot// Ganil

Botwedges

Fig. 2. A schematic diagram of the RI-beam tagging in the BigRIPS separator.

exemple n°1 : spectromètres de basse énergies E<500 kev : Longueur #5m

Exemple N°2 : Recoil Mass Separator E# [1-5MeV/A] Longueur=12 m

Spectro « Emma », Vancouver (Canada)

Exemple n°3: séparateur de fragments @Riken(Japan) E#300-500 MeV/A L=77m

TOF, Bp, $\Delta E \twoheadrightarrow Z$, A/Q (A, Q), P

Fig. 2. A schematic diagram of the RI-beam tagging in the BigRIPS separator.

Sélection des fragments produits par l'interaction D'une cible rotative et d'un intense faisceau primaire B.Jacquot// Ganil

Quelques notions de base

La rigidité magnétique :le BRO (Bρ)
Focalisation avec quadripôles
Les coordonnées des particules
Les équations dans les champs B et E
description avec les Matrices
Sélection Optimale pour un spectromètre
La notion d'emittance

Ecole Joliot Curie 2008

Les fonctions d'un spectromètre

Sélection de certain ions (vitesse,P/q,M/Q)

- Mesure de l'énergie (γMv²/q) Spectro Electrostatique (E)
- Mesure de la masse (M/q) Spectro E+B
- Mesure de la vitesse (V)

Mesure du moment (P/q) **Spectromètre** magnetique (B)

séparateur

- Mesure du temps de vol

Les performances et propriétés :

Rejection (faisceau primaire+produits non désirés

Résolution (à mi-hauteur, « au pied »...)

Acceptance angulaire, Transmission

Acceptance en Bro, Ero

Bromax, Eromax, Imax (Faisceau incident)

Le grandissement, la dispersion, angle de la focale

Equations du mouvement d'un ion dans un champ magnétique B :

$$\vec{F} = q \; (\vec{v} \times \vec{B})$$
$$\frac{d}{dt} [\gamma \, mv] = \vec{F}$$

La Trajectoire d'un ion dans un champ magnétique B d'un dipôle est un cercle de rayon R : $|dv/dt| = v^2/R$

$$R = \gamma \ \frac{mv}{q B}$$

On définit la rigidité magnétique Bp

$$B\rho \stackrel{def}{=} \gamma \frac{mv}{q}$$

Le rayon R de courbure de la trajectoire dans un champ B est donné par $B\rho$ /B

$$R = \frac{B\rho}{B} = \gamma \frac{mv}{q B}$$

focalisation avec les quadripôles magnétiques

Χ,Υ

+ 2 angles X', Y'

+ Bro=
$$Bro_{o}(1+\delta)$$

+ (t -to)

L' angle dans le plan Horizontal plan X'=dx/ds L' angle dans le plan vertical Y'=dy/ds

L'enveloppe faisceau & espaces des phases

L'angle VErtical $Y' = tan(\phi) \# \phi$

Les équations du mouvement (1)

Comment calculer x(s),y(s) d'une particule dans une ligne de faisceau

Utilisons le Référentiel curviligne suivant la trajectoire de référence (**e**x,**e**y,**e**s)

au cours du temps t, (ex,es) varie si la trajectoire de REFERENCE n'ext pas rectiligne, ey est constant

$$\frac{d}{dt} [m\gamma \mathbf{v}] = q \cdot (\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

Les équations du mouvement

$$\frac{d}{ds}\left[m\gamma \dot{x}\right] = m\gamma \dot{s}(1+\frac{x}{\rho}) + q(t'Ex+y'B_s - \dot{s}(1+\frac{x}{\rho}) \cdot B_y)$$
$$\frac{d}{ds}\left[m\gamma \dot{y}\right] = q(t'E_y + (1+\frac{x}{\rho}) \cdot B_x - x' \cdot B_s)$$
$$\frac{d}{ds}\left[m\gamma \dot{s}(1+\frac{x}{\rho})\right] = -\frac{m\gamma \dot{x}}{\rho} + q(t'E_s + x' \cdot B_y - y' \cdot B_x)$$

$$\frac{d}{dt} = \dot{s} \frac{d}{ds}$$
$$\dot{x} = \frac{dx}{dt} = \frac{ds}{dt} \frac{dx}{ds} = \dot{s} x$$
$$\vdots$$
$$\dot{x} = \dot{s} x'' + \dot{s} x'$$

Pour simuler les trajectoires des particules chargées :

- 1) Connaître B(x,y,s) et E(x,y,s,t) [cartes de champ 3D]
- Integrer les équations du mouvement (ordinateur+ Runge-kutta)

Il existe un approche simplifiée : l'approche matricielle

$$\begin{split} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ & & \\ & & \\ & & \\ & \\ & \vec{X}_1 = (x,x',y,y',l,\delta)_1 \end{array} \end{array} \\ & \begin{array}{c} & \begin{array}{c} & & \\$$

La Matrice R de transport de calculer Les coordonnées d'une particule la sortie d'un spectromètre Connaissant ses coordonnées à l'entrée. $\overrightarrow{Xin} = (x, x', y, y', l, \delta)_0$ à l'entrée $\overrightarrow{Xout} = (x, x', y, y', l, \delta)_1$ à la sortie

Xout=R.Xin

$$\begin{bmatrix} x \\ x' \\ y \\ y' \\ l \\ \delta \end{bmatrix}_{1} = \begin{bmatrix} R_{11} R_{12} R_{13} R_{14} R_{15} R_{16} \\ R_{21} R_{22} R_{23} R_{24} R_{25} R_{26} \\ R_{31} R_{32} R_{33} R_{31} R_{31} R_{36} \\ R_{41} R_{42} R_{43} R_{44} R_{45} R_{46} \\ R_{51} R_{52} R_{53} R_{54} R_{55} R_{56} \\ R_{61} R_{62} R_{63} R_{64} R_{66} R_{66} \end{bmatrix} \cdot \begin{bmatrix} x \\ x' \\ y \\ y' \\ l \\ \delta \end{bmatrix}_{0} \qquad \delta = \frac{p - p_{0}}{p_{0}}$$

Interprétation de R

$$\begin{aligned} Rij &= \left(\frac{\partial Xi \ out}{\partial Xj \ in}\right) \\ ex: \\ R_{11} &= \left(\frac{\partial X_1}{\partial X_1}\right) = \left(\frac{\partial x \ out}{\partial x \ in}\right) \quad R_{12} = \left(\frac{\partial X_1}{\partial X_2}\right) = \left(\frac{\partial x \ out}{\partial x' \ in}\right) \\ R_{16} &= \left(\frac{\partial X_1}{\partial X_6}\right) = \left(\frac{\partial x \ out}{\partial \delta \ in}\right) \end{aligned}$$

La Matrice R de transport dépend

- de la géométrie du spectromètre
- du réglage des quadripôles

La matrice R d'un spectromètre

Un spectromètre dans la plupart des cas: A) Commence par un point de focalisation B) Finit par un point de focalisation (R12=R34=0) C) Le spectromètre est dispersif (R16 est non nul)

 $B\rho_0$

La matrice typique d'un spectro:

$$\begin{bmatrix} x \\ x' \\ y \\ y' \\ l \\ \delta \end{bmatrix}_{1} = \begin{bmatrix} R_{11} & 0 & 0 & 0 & 0 & R_{16} \\ R_{21}R_{22} & 0 & 0 & 0 & R_{26} \\ 0 & 0 & R_{33} & 0 & 0 & 0 \\ 0 & 0 & R_{43}R_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & L/\gamma^{2} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ x' \\ y \\ y' \\ l \\ \delta \end{bmatrix}_{0} \qquad b = \frac{B\rho - B\rho_{0}}{B\rho_{0}}$$

R16 est appelé dispersion

R11 est appelé grandissement en x

Coordonnées Au plan focal(détecteurs)

Coordonnées à la cible

Un spectro caracterisé par une dispersion R16=2 m(=2cm/%) et $\Delta x=1mm$, possède une résolution R=1/1000 en bro

La Resolution (separation) est optimale au point de focalisation (Δx est minimal)

Les faisceaux Avec

 $\begin{array}{l} \mathsf{B}\rho = \ \mathsf{B}\rho_{\mathsf{ref}} \\ \mathsf{B}\rho = \ \mathsf{B}\rho_{\mathsf{ref}}(1+\mathsf{I}) \\ \text{sont séparé & au plan focal } \\ \text{du spectro, mais pas partout.} \end{array}$ $\begin{array}{l} \mathsf{La résolution (R=2\Delta x/R16) est optimale} \\ \text{quant } \Delta x \ \text{est petit} \\ \text{mais R16(dispersion) grand} \end{array}$

Le concept d'émittance transverse

Evolution des faisceaux dans une ligne :

L'emittance d'un faisceau : (# qualité optique)

L'emittance Est une mesure du volume occupé par une ensemble de particules dans l'espace des phase à 6 dimensions.

Théorème de Liouville :

...forces conservatives, pas de frottement => densité de l'espace des phases conservée

Pour des raisons pratiques on utilise les mesures dans 3 sous-espaces des phases

Emittance Horizontale : surface du faisceau dans (x,x')Emittance Verticale : surface (y,y') Emittance longitudinale :surface (I,δ) ou (t,E) suivant les notations

 $\epsilon \text{ rms} = 4(\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle \rangle$ $\epsilon = \text{surface de l'ellipse qui}$

à x% de l'intensité 20

Fin partie 1

Partie 2

Spectromètre à basse énergieSpectro de reculSéparateurs de fragments

Spectromètre magnétique à basse Energie

Un outil pour l'identification des ions et la purification

Technique de base avec les spectromètres de basse énergie :

Etape A: réglage d'un ion de type A

Etape B: modif des paramètres pour laisser passer les ions de type B

 $B\rho A \neq B\rho B$

$$B\rho = \sqrt{\frac{2M V_{source}}{q}}$$

Étape B: 2 méthodes sont utilisées Pour les Changement d'ions

B1) « Scaling » de tous les champs (dipole,quad,..)

« chgt de Bro »

B2) « Scaling » de tous les champ E (Vsource,...)

« Bro=constant »

Les spectromètres de recul et leur « physique »

Filtre de vitesse

ship@GSI : 1MeV/A (lourds et superlourds) Wien filter @ Lise-GANIL :30-100 MeV/A (fragmentation)

* RMS (Recoil Mass Spectrometer)

(fusion évaporation,...)

* Separateur à gaz (Dubna, Darmstadt, Berkeley, Jyvaskyla, Riken)

1-5MeV/A Fusion évaporation

lourds et superlourds)

* Large Acceptance & Ray tracing Spectrometer Ganil (VAMOS), Legnaro (Prisma), NSCL (S800 (réactions Transfert, fission,fusion..)

=> (utilisation de champ électrique, de gaz....)

Implémenté dans 6 différents Laboratoires

(Oak ridge, Argonne, Legnaro, Jaeri, New Dehli, Vancouver) :

RMS (Recoil Mass Spectrometer) : L' optique

Les limitations d'un RMS : l'électrostatique

-Intensité faisceau primaire limité

(faisceau primaire perdu sur les électrodes => claquages)

=> diffusion (mauvaise rejection)

-Energie des faisceaux d'intérêt <5 MeV/A [Velec<300kV]

La rigidité electrique est en Vitesse^{**}2 : Ero= $\gamma Mv^2/Q$

- L'identification est toujours un challenge M>100 à #1MeV/A!!!

- L'acceptance* # 5mstrd [±40mrad espace entre électrodes limité]

La notion d'acceptance* angulaire

Les produits de réaction émergent de la cible avec une certaine divergence angulaire.

Les limitations de la chambre à vide

induisent des pertes = la transmission chute

l'acceptance du spectrometer se mesure en stéradian.

EXemple: Si les particules inclues dans ±40mrd (Horizontal et vertical) sont transmises

Alors l'acceptance est

 $d\Omega # 5 mstrd$

à r=1000mm dS#80mm*80mm=64000mm³2

Le principe des spectromètres à gaz pour les ions lourds :

Aux énergies inferieures à 5 MeV, les ions émergent de la

cible dans differents état de charges

Un seul état de charge est transmis

dans les spectro standards=> pertes

« Charge focusing »+sélection en Z+bonne rejection

$$B\rho = \frac{m}{\langle q \rangle} v \propto m Z^{-1/3}$$

P=0mbar+ B P=

Dans le gaz

- -Les collisions induisent des échanges de charges
- La trajectoire dépend du Q moyen <q>

Avantages

 1) Transmission de tous les états De charges dans le spectro à gaz
 2) P#0 refroidit la cible

Les spectromètres à très grande acceptance angulaire et reconstruction de trajectoire vamos@ganil,prisma@legnaro,s800@nscl....

L'optique n'est plus linéaire

La position x d'un particule dans le plan focal après le dipôle ne permet pas le calcul du bro

Vamos@ganil #70 mstrd

1) Pour les particules avec des angles petits x',y'<30 mrd :

« l'optique est linéaire »

Pour les particules avec 1) des grands angles x',y'>>30 mrd

=> non linearités

 $B\rho = F1(Bro0, x, x^2, x'^2, x', y',)$

M/q = Br0/v = Bro * TOF/F2(x,x',y,y')# k ΔE 7

Les séparateurs de **fragments**

Shéma de base pour 1 séparateur de fragment :

2 spectromètres magnétiques : arrangement symétrique

Vue du dessus

Fragment séparateur : schéma de principe

Un séparateur de fragments est achromatiqu

Matrice total section A+B : $R(A+B) = R(A) \times R(B)$

Considérons une trajectoire $(x_0=0,x_0'=0,y_0=0,y_0'=0,l=0,\delta)$

Position xA après étage Ahypotheses $XA = R11(A) \times 0 + R12(A) \times 0' + R16(A) \delta$ $X_0 = 0$ $= R16(A) \delta$ $X_0' = 0$ Position xB après second étage BR12(A)=0 $XB = R11(B) \times A + R12(B) \times A' + R16(B) \delta$ R12(B)=0 $= R11(B) [R16(A) \delta] + R16(B) \delta$ R12(B)=0

A la sortie XA est indépendant de δ (achromatique) si XA=0= R11(B) [R16(A) δ] + R16(B) δ Achromaticité if R16 (B)= -R16(A) R11(B)

Spectromètre magnétique « Achromatique » avec Degradeur=> augmente la purification

considérons 2 isobares (A=34,Z=14) (A=34,Z=15) avec même Bp

indépendant de Z Bro=Mv/Q

Sélection en perte d'énergie est « Z dépendant »

Bethe-Bloch formula $\Delta E = k Z^2 / A * \Delta x$

Sélection dans 1 séparateur de Fragments & identification

Le Séparateur LISE

Lise : l'enveloppe faisceau (demi largeur au pied)

A1900@NSCL (Michigan State University)

Specifications $B\rho_{max} = 6Tm$ $\Delta p/p = 5\%$ $\Delta x' = \pm 40mrad$ $\Delta y' = \pm 50mrad$

B.Jacquot// Ganil

43

BIG RIPS (Riken)

Fig. 2. A schematic diagram of the RI-beam tagging in the BigRIPS separator.

BIG RIPS (Riken)

Super-ferric quadrupole triplet

Figure 22: Schematic view of the RIKEN prototype quadrupole triplet (left side) and its installation into the cryostat (right side) [24].

- Supra-conducting coils

- M/Q poles : Raperture =0.1m ; Bpole-max# 2 Teslas GradientMax=2T/0.1m=20.T/m

Comparaison entre # Séparateurs de Fragment dans le monde

	Lise3	FRS GSI	A1900	BigRips
	_{Ganil}	Mode1 or mode2	MSU //NSCL	Riken
Acceptance	1.6mstrd	0.32mstrd or	8mstrd	10 mstrd
Angulaire		3.4mstrd	±40* ±50mrad	±50* ± 60mrad
Momentum Acceptance	±2.5%	± 2.0%	± 3.0%	± 3.0%
R16 (m=cm/%)	1.7 m	6.8m	5.95m	3.3 m
pResolution	1/600	1/1600 or1/160	1/2900	1/3300
Length	42 m	69m	35m	77 m
Bromax	4.3T.m//3.2T .m	18T.m or 8.6T.m	6.3 T.m	9.T.m
Commen- -taires	2 Dipôles + filtre de Wien	4 dipôles	4 dipôles	1 pre- separateur (2 dipôles) + 1 separateur (4 dipôles)

Fin partie 2

Annex

-How to optimise beam quality& Acceptance

-The Lise fragment separator & the wien filter

-Non linear effect in optical systems

-why the degrador thickness (Wedge) is not constant in a fragment separator ?

- Non linear effects in beam optics

- Global Perfomance of (spectrometer+detector)

how to optimise beam quality in fragment separator

Small spot : $\Delta x_0 = +/-1$ mm

big spot : $\Delta x_0 = +/-10$ mm

1) A small spot size on production target - maximise the transmission
 - optimise the selection

After the production target : Emittance = $\pi \Delta x_0 \times \Delta x_0'$

 Δx_0 is the size of primary beam on target => small Δx minimize Emittance

 $\Delta x \sigma'$ is given by the nuclear reaction

- 2) For separation : increase the dispersion R16 while reducing $\Delta xA = R11 \Delta x0$
- 3) For angular transmission : increase the quad size
- 4) For bro transmission (momentum acceptance) :

reduce R16 AND/OR Increase Quad size in chromatic section

LISE separator with wien filter

 $B\rho 1_{max} = 4.3 \text{Tm}$ // $B\rho 2max = 3.2 \text{Tm}$ $\Delta p/p = \pm 2.5\%$ $\Delta x' = \pm 20 \text{mrad}$ $\Delta y' = \pm 20 \text{mrad}$

The velocity filter (so-called Wien filter)

The wien filter use Electric field $F = F_{E} + F_{B} = q(E + v_{x}B)$ + magnetic field

Bp+velocity filter selection

Bo+wedge selection

Bρ+wedge+velocity filter selection

Time of Hight (m)

Non linear effects in optical system

$$\vec{X}2 = R.\vec{X}1 = \sum_{j=1}^{6} R . \vec{X}1_j$$

for large angle, large bro deviation 2nd order, third order is required.

$$X2_{i} = \sum_{j=1}^{6} R \cdot \vec{X}1_{j} + \sum_{k=1}^{6} \sum_{j=1}^{6} T_{ijk} \cdot X1_{j} \cdot X1_{k} + \dots$$

1rst order 2nd order

Linear Approximation hold for small angle, small bro deviation... (#30mrad, δ =1%)

$$\vec{X}_1 = (x, x', y, y', l, \delta)_1$$

Effects of second order :

-Inclination of focal plane

-the Focusing strenght of quads is bp dependent

-Large angle particles are not well focused

High orders come also with field defects in quads and dipoles

Non linear effects in optical system

Ex1: Inclination α of the focal in a spectrometer

tg (α) = R16/T126.R11

-Choice of the dipole Angle

-Magnetic sextupole has to be used for correction

Ex2: distorsion of beam ellipseIn phase spaceInducing Distribution wings

Optical aberrations (non linearities)

Why a degrador (wedge) in not uniform in x : 1) 2 particles Whithout degrador but different B_{ρ} Whithout degrador $P=p0-\Delta p$ $P=p0-\Delta p$ $P=p0-\Delta pw$ $P=p0-\Delta pw$

Goal of the degrador :

- Separate the different particles (different Z)

- All the same particles should re-focus at end of the B stage whatever their bro (δ) => achromatic degrador (Wedge) : R16(A+B)=0

Adding a uniform degrador makes the optics chromatics at the End

Before degrador δ_A , the momentum deviation of the 2 trajectories is $\delta A = -\Delta p/p0$

After degrador $\delta_B = [p0 - \Delta p - \Delta pw - (p0 - \Delta pw)]/[p0 - \Delta pw]$

 $\delta_{B} = [-\Delta p]/[p0-\Delta pw] \qquad \delta A \neq \delta B$

Optics is achromatic without degrador ($\delta A = \delta B$)

Optics will not be achromatic with degrador with $\delta_A \neq \delta_B$

Why a degrador (wedge) in not uniform in x

Global performance of a (spectro+detector)

efficiency $\varepsilon = \varepsilon$ detector * Transmission_spectro

Sensitivity= the smallest measurable cross section

Maximal intensity of incident beam

- thermal limit on target (rotative or not,....)
- maximal intensity on detection sytem
- beam losses in spectro (electrostatic sparking,....)
- radioprotection

References:

The historitical paper for fragment separators: [1] R.Anne, D.Bazin, A.C.Mueller, J.C.Jacmart and M.Langevin, "The achromatic spectrometer LISE at GANIL", NIM A257 (1987) 215-232.

<u>More on wedge</u>

[1] H.Geissel, G.Munzenberg, K.Riisager, "Secondary exotic nuclear beams", Annu. Rev. Nucl. Part. Sci. 45 (1995) 163-203.

Interesting details in : Kubo et Al, Bigrips NIM

Part of this lecture inspired by

H.Geissel A.C. Villari A. Savalle

- H.Geissel : Lecture given in valencia about FRS@GSI
- A.C. Villari : Course in Ganil
- A. Savalle : Course in Ganil