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1. INTRODUCTION

In the Oxford Dictionary of Current English symmetry is defined as the ‘right corre-
spondence of parts; quality of harmony or balance (in size, design etc.) between parts’.
The word is derived from Greek where it has the meaning ‘with proportion’ or ‘with
order’. In modern theories of physics it has acquired a more precise meaning but the
general idea of seeking to order physical phenomena still remains. Confronted with the
bewildering complexity exhibited by the multitude of physical systems, physicists at-
tempt to extract some simple regularities from observations, and the fact that they can
do so is largely due to the presence of symmetries in the laws of physics. Although one
can never hope to explain all observational complexities on the basis of symmetry ar-
guments alone, these are nevertheless instrumental in establishing correlations between
and (hidden) regularities in the data.

The mathematical theory of symmetry is called group theory and its origin dates back
to the nineteenth century. Of course, the notion of symmetry is present implicitly in
many mathematical studies that predate the birth of group theory and goes back even to
the ancient Greeks, in particular Euclid. It was, however, Évariste Galois who perceived
the importance of the group of permutations to answer the question whether the roots of
a polynomial equation can be algebraically represented or not. (A readable summary of
the solution of this problem is given in the first chapter of Gilmore’s book [1].) In the
process of solving that long-standing mathematical problem he invented group theory
as well as Galois theory which studies the relation between polynomials and groups.
The mathematical theory of groups developed further throughout the nineteenth century
and made another leap forward in 1873 when Sophus Lie proposed the concept of a Lie
group and its associated Lie algebra.

For a long time it was assumed that group theory was a branch of mathematics without
any application in the physical sciences. This state of affairs changed with the advent of
quantum mechanics, and it became clear that group theory provides a powerful tool



to understand the structure of quantum systems from a unified perspective. After the
introduction of symmetry transformations in abstract spaces (associated, for example,
with isospin, flavour, colour, etc.) the role of group theory became even central.

The purpose of these lecture notes is to introduce, explain and illustrate the concepts
of symmetry and dynamical symmetry. In Sect. 2 a brief reminder is given of the central
role of symmetry in quantum mechanics and of its relation with invariance and degen-
eracy. There exist two standard examples to illustrate the idea that symmetry implies
degeneracy and vice versa, namely the hydrogen atom and the harmonic oscillator. In
Sect. 3 the second of them is analyzed in detail. Section 4 describes the process of sym-
metry breaking and, in particular, dynamical symmetry breaking in the sense as it is used
in these lecture notes. Section 5 presents the nuclear shell model with a special emphasis
on the symmetry techniques that have been used in the context of this model. Finally, in
Sect. 6, a summary is given.

These notes accompany two lectures given at the Joliot–Curie school on “Symmetries
in Subatomic Systems” which was held in Lacanau, France, from 27 September to 3
October 2010. Similar lecture notes of mine appeared under the same title [2] at the
occasion of the XLth Latin-American school on “Symmetry in Physics in Memoriam of
Marcos Moshinsky” which was held in México D.F., Mexico, from 26 July to 6 August
2010. I have tried to minimize the overlap in content between the two contributions
but some repetition of material seemed unavoidable. In particular, the basic notions of
symmetry and dynamical symmetry, Sects. 2 and 4, and an elementary introduction to
the nuclear shell model, Subsect. 5.1, needed to be included in both lecture notes.

A part from these similarities, the material presented here is different from the one
in Ref. [2]. On both occasions isospin in nuclei was central to the lectures. Since
a detailed discussion of this topic can be found in the previous lecture notes, it has
been omitted from the present written account. The classic example of ‘accidental’
degeneracy discussed in the present lecture notes is the U(3) symmetry of the three-
dimensional harmonic oscillator, Sect. 3, while in Ref. [2] it is the SO(4) symmetry
of the hydrogen atom. A beautiful example of the application of symmetry techniques
in nuclear physics is the interacting boson model of Arima and Iachello [3]. It is
nevertheless omitted entirely here since this topic was covered at the Joliot–Curie school
in the lectures of R.F. Casten. The interested reader may also consult my lecture notes
at the XLth Latin-American school for an introduction to the interacting boson model.
Finally, while the symmetry aspects of the nuclear shell model are only summarily
treated in Ref. [2], they are central here and discussed at length.

2. SYMMETRY IN QUANTUM MECHANICS

The starting point of any discussion of symmetry is that the laws of physics should
be invariant with respect to certain transformations of the reference frame, such as a
translation or rotation, or a different choice of the origin of the time coordinate. This
observation leads to three fundamental conservation laws: conservation of linear mo-
mentum, angular momentum and energy. In some cases an additional space-inversion
symmetry applies, yielding another conserved quantity, namely parity. In a relativistic
framework the above transformations on space and time cannot be considered separately



but become intertwined. The laws of nature are then invariant under the Lorentz trans-
formations which operate in four-dimensional space–time.

These transformations and their associated invariances can be called ‘geometric’ in
the sense that they are defined in space–time. In quantum mechanics, an important
extension of these concepts is obtained by also considering transformations that act
in abstract spaces associated with intrinsic variables such as spin, isospin (in atomic
nuclei), flavour and colour (of quarks) etc. It is precisely these ‘intrinsic’ invariances
which have lead to the preponderance of symmetry applications in the quantum physics.

To be more explicit, consider a transformation acting on a physical system, that is,
an operation that transforms the coordinates r̄i and the momenta p̄i of the particles that
constitute the system. Such transformations are of a geometric nature. For a discussion
of symmetry in quantum-mechanical systems this definition is too restrictive and the
appropriate generalization is to consider, instead of the geometric transformations them-
selves, the corresponding transformations in the Hilbert space of quantum-mechanical
states of the system. The action of the geometric transformation on spin variables (i.e.,
components of the spin vector) is assumed to be identical to its action on the compo-
nents of the angular momentum vector ¯̀ = r̄∧ p̄. Furthermore, it can be shown [4] that
a correspondence exists between the geometric transformations in physical space and
the transformations induced by it in the Hilbert space of quantum-mechanical states.
This correspondence, however, is not necessarily one-to-one; that is only the case if the
system is ‘bosonic’ (consists of any number of integer-spin bosons and/or an even num-
ber of half-integer-spin fermions). If the system is ‘fermionic’ (contains an odd number
of fermions), the correspondence is two-to-one and the groups, formed by the geomet-
ric transformations and by the corresponding transformations in the Hilbert space of
quantum-mechanical states, are not isomorphic but rather homomorphic.

No distinction is made in the following between geometric and quantum-mechanical
transformations; all elements gi will be taken as operators acting on the Hilbert space of
quantum-mechanical states.

2.1. Symmetry

A time-independent hamiltonian H which commutes with the generators gk that form
a Lie algebra G,

∀gk ∈ G : [H,gk] = 0, (1)

is said to have a symmetry G or, alternatively, to be invariant under G. The determi-
nation of operators gk that leave invariant the hamiltonian of a given physical system
is central to any quantum-mechanical description. The reasons for this are profound
and can be understood from the correspondence between geometrical and quantum-
mechanical transformations. It can be shown [4] that the transformations gk with the
symmetry property (1) are induced by geometrical transformations that leave unchanged
the corresponding classical hamiltonian. In this way the classical notion of a conserved
quantity is transcribed in quantum mechanics in the form of the symmetry property (1)
of the time-independent hamiltonian.



2.2. Degeneracy and state labeling

A well-known consequence of a symmetry is the occurrence of degeneracies in the
eigenspectrum of H. Given an eigenstate |γ〉 of H with energy E, the condition (1)
implies that the states gk|γ〉 all have the same energy,

Hgk|γ〉= gkH|γ〉= Egk|γ〉. (2)

An arbitrary eigenstate of H shall be written as |Γγ〉, where the first quantum number Γ is
different for states with different energies and the second quantum number γ is needed to
label degenerate eigenstates. The eigenvalues of a hamiltonian that satisfies (1) depend
on Γ only,

H|Γγ〉= E(Γ)|Γγ〉, (3)

and, furthermore, the transformations gk do not admix states with different Γ,

gk|Γγ〉= ∑
γ ′

aΓ

γ ′γ(k)|Γγ
′〉. (4)

This simple discussion of the consequences of a hamiltonian symmetry illustrates the
relevance of group theory in quantum mechanics. Symmetry implies degeneracy and
eigenstates that are degenerate in energy provide a Hilbert space in which irreducible
representations of the symmetry group are constructed. Consequently, the irreducible
representations of a given group directly determine the degeneracy structure of a hamil-
tonian with the symmetry associated to that group.

Eigenstates of H can be denoted as |Γγ〉 where the symbol Γ labels the irreducible
representations of G. Note that the same irreducible representation might occur more
than once in the eigenspectrum of H and, therefore, an additional multiplicity label η

should be introduced to define a complete labeling of eigenstates as |ηΓγ〉. This label
shall be omitted in the subsequent discussion.

A sufficient condition for a hamiltonian to have the symmetry property (1) is that it
is a Casimir operator which by definition commutes with all generators of the algebra.
The eigenequation (3) then becomes

Cm[G]|Γγ〉= Em(Γ)|Γγ〉, (5)

where Cm[G] is the mth order Casimir operator of the algebra G. In fact, all results remain
valid if the hamiltonian is an analytic function of Casimir operators of various orders.
The energy eigenvalues Em(Γ) are functions of the labels that specify the irreducible
representation Γ, and are known for all classical Lie algebras [5].

3. THE HARMONIC OSCILLATOR IN THREE DIMENSIONS

The potential which best mimics the nuclear mean-field potential and which can be
solved exactly, is the harmonic-oscillator potential

V (r) =
1
2

mnω
2r2. (6)



In Sect. 5 more details are given on the relation between this schematic potential and
the mean-field potential as observed in nuclei. The purpose of the present section is
the study of the harmonic oscillator from the perspective of symmetries. The potential
is independent of the spin of the nucleon which leads to a two-fold degeneracy of all
states corresponding to spin-up and spin-down. Spin is ignored in the following and the
symmetry properties of the spatial part only of the nucleon wave functions are studied.

The eigensolutions of the Schrödinger equation of a harmonic oscillator in three
dimensions can be written as [6]

φn`m`
(r,θ ,ϕ) = Rn`(r)Y`m`

(θ ,ϕ), (7)

where Rn`(r) are radial wave functions appropriate for the harmonic oscillator and
Y`m`

(θ ,ϕ) are spherical harmonics. The quantized energy spectrum is given by

E(n, `) =
(
2n+ `+ 3

2

)
h̄ω, (8)

in terms of the radial quantum number n which has the allowed values 0,1,2, . . . and
gives the number of nodes [values of r for which Rn`(r) = 0 excluding those at r = 0
and r = ∞]. Because of the factor r` in the radial part, the wave function always vanishes
at r = 0 except for ` = 0 (s state). The energy E(n, `) is independent of m`, the projection
of the orbital angular momentum along the z axis, as should be for a rotationally invariant
hamiltonian. In addition, E(n, `) is only dependent on the sum 2n + `. Introducing
N = 2n+ `, one can rewrite (8) as

E(N) =
(
N + 3

2

)
h̄ω, (9)

which shows that N can be interpreted as the number of oscillator quanta, the term 3
2 h̄ω

being accounted for by the zero-point motion of an oscillator in three dimensions; N is
called the major oscillator quantum number. The allowed values of the orbital angular
momentum are (because ` = N−2n and n = 0,1, . . .)

` = N,N−2, . . . ,0 or 1. (10)

This completely determines the eigenspectrum of a spinless particle in a harmonic-
oscillator potential.

The 2` + 1 eigensolutions with the same radial quantum number n and the same
orbital angular momentum ` but different z projections m` are degenerate in energy. This
degeneracy arises because the harmonic-oscillator hamiltonian is rotationally invariant.
There exists an additional degeneracy, namely the one for levels with the same 2n + `
which is illustrated in Fig. 1 for the lowest levels of the three-dimensional harmonic
oscillator.

To understand the origin of this additional degeneracy, let us introduce the following
raising and lowering operators [6]:

b†
x =

1√
2

(
x′− ∂

∂x′

)
, b†

y =
1√
2

(
y′− ∂

∂y′

)
, b†

z =
1√
2

(
z′− ∂

∂ z′

)
,

bx =
1√
2

(
x′+

∂

∂x′

)
, by =

1√
2

(
y′+

∂

∂y′

)
, bz =

1√
2

(
z′+

∂

∂ z′

)
, (11)
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FIGURE 1. The energy spectrum of the harmonic oscillator in three dimensions.

where the primed coordinates are dimensionless, that is, x′ = x/b, y′ = y/b and z′ = z/b,
with b the length parameter of the oscillator, b =

√
h̄/mnω . The raising and lowering

operators satisfy commutations rules appropriate for bosons, viz.

[bi,b j] = [b†
i ,b

†
j ] = 0, [bi,b

†
j ] = δi j. (12)

Furthermore, in terms of these operators, the hamiltonian of the harmonic oscillator can
be written as

Hho =
p2

2mn
+

1
2

mnω
2r2 = ∑

i=x,y,z

(
b†

i bi +
1
2

)
h̄ω. (13)

Since this hamiltonian manifestly conserves the total number of bosons, it commutes
with the nine bilinear combinations ui j ≡ b†

i b j,

∀i, j ∈ x,y,z : [Hho,ui j] = 0. (14)

Finally, the nine operators ui j can be shown to close under commutation,

[ui j,ukl] = uilδ jk−uk jδil, (15)

and the corresponding algebra can be identified as U(3). This establishes that the symme-
try algebra of the harmonic oscillator in three dimensions is U(3). In fact, in an entirely
analogous fashion it can be shown that the symmetry algebra of the harmonic oscillator
in n dimensions is U(n).

How is this U(3) algebra related to the symmetry associated with rotational invari-
ance? To answer this question, one rewrites the nine U(3) generators differently, in the
following way:

Hho

h̄ω
− 3

2
= b†

xbx +b†
yby +b†

z bz ≡ N,



Lx =−ih̄
(

y
∂

∂ z
− z

∂

∂y

)
= −ih̄

(
b†

ybz−b†
z by

)
,

Ly =−ih̄
(

z
∂

∂x
− x

∂

∂ z

)
= −ih̄

(
b†

z bx−b†
xbz

)
,

Lz =−ih̄
(

x
∂

∂y
− y

∂

∂ z

)
= −ih̄

(
b†

xby−b†
ybx

)
,

Q0 = h̄
(

2b†
z bz−b†

xbx−b†
yby

)
,

Q±1 = h̄

√
3
2

(
∓b†

z bx∓b†
xbz− ib†

ybz− ib†
z by

)
,

Q±2 = h̄

√
3
2

(
b†

xbx−b†
yby∓ ib†

xby∓ ib†
ybx

)
, (16)

The first of these is the number operator N which is, up to a constant and a scaling factor,
equivalent to the hamiltonian Hho. The next three operators are the components of the
angular momentum L̄ and together they generate the Lie algebra SO(3). This shows that
the angular momentum algebra SO(3) is a subalgebra of U(3). The last set of operators
in Eq. (16) comprise the five components of the quadrupole operator Q̄. Since L̄ as
well as Q̄ conserves the number of bosons, there components commute with the number
operator N. This, in fact, is equivalent to the mathematical statement that the algebra
U(3) can be written as U(1)⊗SU(3) with U(1) = {N} and SU(3) = {L̄, Q̄}.

The above derivation establishes the symmetry algebra of the harmonic oscillator as
U(3), which explains the additional degeneracy in its energy spectrum. It should be
recognized, however, that these results apply to the Schrödinger equation for a single
particle and that they can be obtained easily with traditional methods as well. The real
power of algebraic methods transpires when one considers the corresponding many-
particle problem. Raising and lowering operators can be defined for each of the A
particles in the system,

b†
x,k =

1√
2

(
x′k−

∂

∂x′k

)
, b†

y,k =
1√
2

(
y′k−

∂

∂y′k

)
, b†

z,k =
1√
2

(
z′k−

∂

∂ z′k

)
,

bx,k =
1√
2

(
x′k +

∂

∂x′k

)
, by,k =

1√
2

(
y′k +

∂

∂y′k

)
, bz,k =

1√
2

(
z′k +

∂

∂ z′k

)
,

and by summing over all particles a total U(3) algebra can be generated by the nine
operators

A

∑
k=1

b†
i,kb j,k, ∀i, j ∈ x,y,z. (17)

A many-body version of the harmonic-oscillator hamiltonian is of the form

Hho = h̄ω

A

∑
k=1

∑
i=x,y,z

b†
i,kbi,k + ∑

k<l
V (k, l). (18)



The first term on the right-hand side is, up to a constant associated with zero-point mo-
tion, identical to the single-particle hamiltonian (13), summed over the A particles in the
nucleus. The second term represents a two-body interaction; higher-order interactions
can be considered in a similar manner if needed. As shown above, the one-body term
commutes with the generators of the total U(3) algebra. The question of genuine interest
here is whether there exist classes of two-body interactions that also have the property
of commuting with the generators of U(3). This indeed turns out to be the case. The
property is related to the structure of the Casimir operators of the (total) algebras SO(3)
and SU(3), which can be written as

C2[SO(3)] = ∑
k,l

L̄(k) · L̄(l),

C2[SU(3)] = ∑
k,l

(
1
2

L̄(k) · L̄(l)+
1
6

Q̄(k) · Q̄(l)
)

. (19)

An arbitrary combination of a rotational term L̄ · L̄ and a quadrupole term Q̄ · Q̄ can thus
be written as a combination of the quadratic Casimir operators of SO(3) and SU(3).

This is the basic idea of the SU(3) model which was proposed by Elliott in 1958 to
account for rotational phenomena in the spherical shell model [7]. The application of
SU(3) to nuclei is more complicated than what is presented in this section since the
nucleons have spin and isospin (i.e., there are neutrons and protons) and these have
been ignored here. It is an—historically perhaps the first—example of the mechanism
of dynamical symmetry breaking, a general discussion of which is presented in the next
section.

4. DYNAMICAL SYMMETRY BREAKING

The concept of a dynamical symmetry for which (at least) two algebras G1 and G2 with
G1 ⊃ G2 are needed can now be introduced. The eigenstates of a hamiltonian H with
symmetry G1 are labeled as |Γ1γ1〉. But, since G1⊃G2, a hamiltonian with G1 symmetry
necessarily must also have a symmetry G2 and, consequently, its eigenstates can also be
labeled as |Γ2γ2〉. Combination of the two properties leads to the eigenequation

H|Γ1η12Γ2γ2〉= E(Γ1)|Γ1η12Γ2γ2〉, (20)

where the role of γ1 is played by η12Γ2γ2. The irreducible representation Γ2 may occur
more than once in Γ1, and hence an additional quantum number η12 is needed to
uniquely label the states. Because of G1 symmetry, eigenvalues of H depend on Γ1 only.

In many examples in physics (several are discussed below), the condition of G1
symmetry is too strong and a possible breaking of the G1 symmetry can be imposed
via the hamiltonian

H ′ = κ1Cm1[G1]+κ2Cm2[G2], (21)

which consists of a combination of Casimir operators of G1 and G2. The symmetry
properties of the hamiltonian H ′ are now as follows. Since [H ′,gk] = 0 for all gk in
G2, H ′ is invariant under G2. The hamiltonian H ′, since it contains Cm2[G2], does not



commute, in general, with all elements of G1 and for this reason the G1 symmetry is
broken. Nevertheless, because H ′ is a combination of Casimir operators of G1 and G2,
its eigenvalues can be obtained in closed form,

H ′|Γ1η12Γ2γ2〉= [κ1Em1(Γ1)+κ2Em2(Γ2)] |Γ1η12Γ2γ2〉. (22)

The conclusion is thus that, although H ′ is not invariant under G1, its eigenstates are
the same as those of H in (20). The hamiltonian H ′ is said to have G1 as a dynamical
symmetry. The essential feature is that, although the eigenvalues of H ′ depend on Γ1
and Γ2 (and hence G1 is not a symmetry), the eigenstates do not change during the
breaking of the G1 symmetry. As the generators of G2 are a subset of those of G1, the
dynamical symmetry breaking splits but does not admix the eigenstates. A convenient
way of summarizing the symmetry character of H ′ and the ensuing classification of its
eigenstates is as follows:

G1 ⊃ G2
↓ ↓

Γ1 η12Γ2

. (23)

This equation indicates the larger algebra G1 (sometimes referred to as the dynamical
algebra or spectrum generating algebra) and the symmetry algebra G2, together with
their associated labels with possible multiplicities.

5. THE NUCLEAR SHELL MODEL

The structure of the atomic nucleus is determined, in first approximation, by the nuclear
mean field, the average potential felt by a nucleon through the interactions exerted by all
others. This average potential is responsible for the shell structure of the nucleus because
the energy spectrum of a particle moving in this mean field shows regions with many
levels and others with few. A second important ingredient that determines the structure
of nuclei is the Pauli principle. Consequently, the nucleus can be viewed as an onion-like
construction, with shells determined by the mean-field potential that are being filled in
accordance with the Pauli principle. For a description that goes beyond this most basic
level, the residual interaction between nucleons must be taken into account and what
usually matters most for nuclear structure at low energies is the residual interaction
between nucleons in the valence or outer shell. This interaction depends in a complex
fashion on the numbers of valence neutrons and protons, and on the valence orbits
available to them.

No review is given here of the nuclear shell model which has been the subject of
several comprehensive monographs [17, 18, 19, 20, 21]. Instead, after an introductory
subsection, describing the model’s essential features and assumptions, emphasis is laid
on its symmetry structure. It turns out that the two most important correlations in nuclei,
pairing and quadrupole, can be analyzed with symmetry techniques.



5.1. The independent-particle shell model

In a non-relativistic approximation, the wave function of any quantum-mechanical
state of a nucleus with A nucleons satisfies the Schrödinger equation

HΨ(ξ1,ξ2, . . . ,ξA) = EΨ(ξ1,ξ2, . . . ,ξA), (24)

with the hamiltonian

H =
A

∑
k=1

p2
k

2mk
+

A

∑
k<l

W2(ξk,ξl)+
A

∑
k<l<m

W3(ξk,ξl,ξm)+ · · · . (25)

The notation ξk is used to denote all coordinates of nucleon k, not only its position vector
r̄k but also its spin s̄k and its isospin t̄k, ξk ≡ {r̄k, s̄k, t̄k}. The term p2

k/2mk is the kinetic
energy of nucleon k and acts on a single nucleon only. The operator Wi(ξk,ξl,ξm, . . .) is
an i-body interaction between the nucleons k, l,m, . . ., and, as such, acts on i nucleons
simultaneously. Since neutron and proton are not elementary particles, it is not a priori
clear that the interaction should be of two-body nature. Nevertheless, for a presentation
of the elementary nuclear shell model, it can be assumed that the nature between the
nucleons is two-body, Wi>2 = 0, as will be done in the subsequent discussion.

Under the assumption of at most two-body interactions, one can rewrite (25) as

H =
A

∑
k=1

(
p2

k
2mk

+V (ξk)
)

+

(
A

∑
k<l

W2(ξk,ξl)−
A

∑
k=1

V (ξk)

)
. (26)

The idea is now to choose V (ξk) such that the effect of the residual interaction, that is,
the second term in (26), is minimized. The independent-particle shell model is obtained
by neglecting the residual interaction altogether,

Hip =
A

∑
k=1

(
p2

k
2mn

+V (ξk)
)

, (27)

where it is also assumed that all nucleons have the same mass mn. The physical interpre-
tation of the approximation (27) is that each nucleon moves independently in a mean-
field potential V (ξ ) which represents the average interaction with all other nucleons in
the nucleus.

The eigenproblem associated with the hamiltonian (27) is much easier to solve than
the original problem (24) because it can be reduced to a one-particle eigenequation. Its
solution proceeds as follows. First, one solves the Schrödinger equation of a particle in
a potential V (ξ ), that is, one finds the eigenfunctions φi(ξ ) satisfying(

p2

2mn
+V (ξ )

)
φi(ξ ) = Eiφi(ξ ), (28)

where i labels the different eigensolutions. For example, for a harmonic-oscillator po-
tential, the index i stands for the set of quantum numbers n, ` and m` in the eigenfunc-
tions (7). The exact form of the eigenfunctions φi(ξ ) depends on the potential V (ξ ). For



simple potentials (e.g., the harmonic oscillator) the eigenfunctions can be found in ana-
lytic form in terms of standard mathematical functions; for more complicated potentials
(e.g., Woods–Saxon) φi(ξ ) must be determined numerically. For all ‘reasonable’ poten-
tials V (ξ ) the solutions of (28) can be obtained, albeit in most cases only in numerical
form.

The solution of the many-body hamiltonian Hip is immediately obtained due to its
separability,

Φi1i2...iA(ξ1,ξ2, . . . ,ξA) =
A

∏
k=1

φik(ξk). (29)

Although this is a genuine, mathematical eigensolution of the hamiltonian (27), it is not
antisymmetric under the exchange of particles as is required by the Pauli principle. The
solution (29) must thus be antisymmetrized which leads to the replacement of the wave
function Φi1i2...iA(ξ1,ξ2, . . . ,ξA) by a Slater determinant of the form

Ψi1i2...iA(ξ1,ξ2, . . . ,ξA) =
1√
A!

∣∣∣∣∣∣∣∣
φi1(ξ1) φi1(ξ2) · · · φi1(ξA)
φi2(ξ1) φi2(ξ2) · · · φi2(ξA)

...
... . . . ...

φiA(ξ1) φiA(ξ2) · · · φiA(ξA)

∣∣∣∣∣∣∣∣ . (30)

This is the solution of the Schrödinger equation associated with the hamiltonian (27)
that takes account of the Pauli principle.

The following question now arises. How should one choose the potential V (ξ ) in-
troduced in (26)? This choice can be made at several levels of refinement. Ideally one
wants to minimize the expectation value of H in the ground state, that is, to solve the
variational equation

δ

∫
Ψ
∗(ξ1,ξ2, . . . ,ξA)HΨ(ξ1,ξ2, . . . ,ξA)dξ1dξ2 . . .dξA = 0. (31)

If, in this variational approach, the wave function Ψ(ξ1,ξ2, . . . ,ξA) is allowed to vary
freely, the solution of (31) is equivalent to the ground-state solution of the Schrödinger
equation (24). Obviously, one needs to set more modest goals to arrive at a solvable
problem! One way to do so is to restrict Ψ(ξ1,ξ2, . . . ,ξA) in (31) to the form of a
Slater determinant, in other words, to minimize the ground-state energy by varying the
potential V (ξ ) that defines the single-particle wave functions φi1,φi2, . . . ,φiA in (30). This
is known as the Hartree–Fock method. One determines the form of the potential V (ξ )
by requiring the expectation value of the complete hamiltonian (25) in the state (30) to
be minimal.

The ground-state energy determined in Hartree–Fock theory is not the correct one;
nevertheless, it is the best procedure at hand to construct an independent-particle model.
Often an even simpler approach is preferred. One proposes a phenomenological form of
the potential V (ξ ), such that the Schrödinger equation associated with Hip in (27) is ana-
lytically solvable. The potential which best mimics the nuclear mean-field potential and
which can be solved exactly, is the harmonic-oscillator potential discussed in Section 3.

An important quantity appearing in the harmonic-oscillator model is the elementary
quantum of excitation h̄ω . By relating the radius of the nucleus, R, to the number of



nucleons, A, and subsequently deriving a relationship between R, A and the oscillator
length parameter b, one finds the expression [18]

b≈ 1.00A1/6 fm, (32)

and, since b =
√

h̄/mnω ,
h̄ω ≈ 41A−1/3 MeV. (33)

The harmonic-oscillator solutions φn`m`
(r,θ ,ϕ) of Eq. (7) contain the dependence

on the spatial coordinates only and not on the intrinsic spin of the particle. Since the
intrinsic spin does not appear in the potential (6), the wave functions are simply given
by the product

φn`m`
(r,θ ,ϕ)χsms, (34)

where χsms are spinors for particles with intrinsic spin s = 1
2 . The energies are indepen-

dent of ms and are still given by Eq. (8). The eigenstates (34) do not have good total
angular momentum, that is, they are not eigenstates of j2 where j̄ results from the cou-
pling of the orbital angular momentum ¯̀ and the spin s̄ of the nucleon. States of good
angular momentum are constructed from (34) with the help of Clebsch–Gordan coeffi-
cients,

φn` jm j(r,θ ,ϕ) = ∑
m`ms

(`m` sms| jm j)φn`m`
(r,θ ,ϕ)χsms. (35)

Again, this state has the same energy eigenvalue (8) since all states appearing in the sum
are degenerate. If the spin degeneracy of the quantum numbers (n` jm j) is taken into
account, stable shell gaps are obtained at the nucleon numbers 2, 8, 20, 40, 70, 112,. . . .
These are the magic numbers of the harmonic oscillator in three dimensions.

The existence of nuclear shell structure can be demonstrated in a variety of ways.
The most direct way is by measuring the ease with which a nucleus can be excited. If
it has a closed shell structure, one expects it to be rather stable and difficult to excite.
This should be particularly so for nuclei that are doubly magic, that is, nuclei with a
closed-shell configuration for neutrons and protons. The principle is illustrated in Fig. 2.
The figure shows the energy Ex(2+

1 ) of the first-excited 2+ state relative to the ground
state for all even–even nuclei. This energy is multiplied with A1/3 and the result plotted
on a normalized scale. (The factor A1/3 accounts for the gradual decrease with mass
number A of the strength of the nuclear residual interaction which leads a compression
of the spectrum with A.) Nuclei with particularly high values of Ex(2+

1 )A1/3 are 16O
(N = Z = 8), 40Ca (N = Z = 20), 48Ca (N = 28, Z = 20), 132Sn (N = 82, Z = 50) and
208Pb (N = 126, Z = 82). Figure 2 establishes the stability properties of the isotopes
and/or isotones with N,Z = 8, 20, 28, 50, 82 and 126.

How to explain the differences between the observed magic numbers (2, 8, 20, 28, 50,
82 and 126) and those of the harmonic oscillator? The observed ones can be reproduced
in an independent-particle model if to the harmonic-oscillator hamiltonian Hho a spin–
orbit as well as an orbit–orbit term is added of the form

Vso = ζso(r) ¯̀· s̄, Voo = ζoo(r) ¯̀· ¯̀. (36)
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FIGURE 2. The energy of the first-excited 2+ state in all even–even nuclei with N,Z ≥ 8 (where known
experimentally) plotted as a function of neutron number N along the x axis and proton number Z along
the y axis. The excitation energy is multiplied by A1/3 and subsequently normalized to 1 for 208Pb where
this quantity is highest. The value of Ex(2+

1 )A1/3 is indicated by the scale shown on the left. To improve
the resolution of the plot, the scale only covers part of the range from 0 to 0.5 since only a few doubly
magic nuclei (16O, 40,48Ca, 132Sn and 208Pb) have values greater than 0.5.

The eigenvalue problem associated with the hamiltonian Hho + Vso + Voo is not, in
general, analytically solvable but the dominant characteristics can be found from the
expectation values

〈n` jm j|Vso|n` jm j〉= 1
2〈ζso(r)〉n`

[
j( j +1)− `(`+1)− 3

4

]
, (37)

and
〈n` jm j|Voo|n` jm j〉= `(`+1)〈ζoo(r)〉n`, (38)

with radial integrals defined as

〈ζ (r)〉n` =
∫ +∞

0
ζ (r)Rn`(r)Rn`(r)r2 dr. (39)

Consequently, the degeneracy of the single-particle levels within one major oscillator
shell is lifted. Empirically, one finds that the radial integrals approximately satisfy the
relations [18]

〈ζso(r)〉n` ≈−20A−2/3 MeV, 〈ζoo(r)〉n` ≈−0.1 MeV. (40)

The origin of the orbit–orbit coupling can be understood from elementary arguments.
The corrections to the harmonic-oscillator potential are repulsive for short and large
distances and attractive for intermediate distances. These corrections therefore favour
large-` over small-` orbits. The spin–orbit coupling has a relativistic origin. An im-
portant feature is that the radial integral is negative, reflecting the empirical finding that
states with parallel spin and orbital angular momentum are pushed down in energy while
in the antiparallel case they are pushed up.



5.2. A symmetry triangle for the shell model

The summary of the preceding discussion is that a simple approximation of the nu-
clear mean-field potential consists of a three-dimensional harmonic oscillator corrected
with spin–orbit and orbit–orbit terms. If, in addition, a two-body residual interaction is
included, the many-body hamiltonian acquires the following form:

H =
A

∑
k=1

(
p2

k
2mn

+
1
2

mnω
2r2

k +ζoo ¯̀k · ¯̀k +ζso ¯̀k · s̄k

)
+ ∑

k<l
Vres(ξk,ξl), (41)

where the indices in the second sum run over a restricted number of particles, usually
only the valence nucleons. In spite of the severe simplifications of the original many-
body problem (24), the solution of the Schrödinger equation associated with the hamil-
tonian (41) still represents a formidable problem since the residual interaction must be
diagonalized in a basis of Slater determinants of the type (30). Even if one limits oneself
to valence excitations, the dimension of the Hilbert space rapidly explodes with increas-
ing mass of the nucleus. The m-scheme basis can be used to illustrate this. Because of
the antisymmetry of Slater determinants, their number can be computed easily. For n
valence neutrons and z valence protons distributed over Ωn and Ωz single-particle states
in the valence shell, the dimension of the basis is

Ωn!
n!(Ωn−n)!

Ωz!
z!(Ωz− z)!

. (42)

Application of this formula to 28Si (in the sd shell, Ωn = Ωz = 12,n = z = 6) and to 78Y
(half-way between the magic numbers 28 and 50, Ωn = Ωz = 22,n = z = 11) illustrates
the point since it leads to dimensions of 8.5 105 and 5.0 1011, respectively.

Given the considerable effort it takes to solve the nuclear many-body problem even
only approximately, any analytical solution of (41) that can be obtained through sym-
metry techniques might be of considerable value. In fact, the residual nuclear interaction
can approximately be written as pairing-plus-quadrupole,

Vres(ξk,ξl) = Vpairing(r̄k, r̄l)+Vquadrupole(r̄k, r̄l), (43)

where the exact form of these interactions is defined below. For particular values of
the parameters in the mean field and if the residual interaction is either of pairing or
of quadrupole type, the eigenproblem (41) can be solved analytically. Three situations
arise, of which two are of interest:

1. No residual interaction. If Vres(ξk,ξl) = 0, the solution of (41) reduces to a Slater
determinant built from harmonic-oscillator eigenstates.

2. Pairing interaction. If the residual interaction has a pure pairing character, Racah’s
SU(2) model of pairing results. This model is usually applied in the j j-coupling
limit of strong spin–orbit coupling.

3. Quadrupole interaction. If the residual interaction has a pure quadrupole charac-
ter, Elliott’s SU(3) model of rotation results. This model requires an LS-coupling
scheme which occurs in the absence of spin–orbit coupling.
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FIGURE 3. Schematic representation of the shell-model parameter space with its three analytically
solvable vertices.

The situation is represented schematically in Fig. 3. It should be emphasized that, in
contrast to the top vertex, the two bottom vertices, SU(2) and SU(3), represent solutions
of the nuclear hamiltonian which include genuine many-body correlations. These two
limits are thus of particular interest. Furthermore, it should be stressed that the triangle in
Fig. 3 is a highly schematic representation of a complex parameter space, and that SU(2)
and SU(3) are the most elementary examples of symmetries that can be encountered in
the shell model. The two basic symmetries and their generalizations are discussed in the
following two subsections, which draw on material from earlier reviews [22, 23].

5.3. Pairing models

The discussion of pairing correlations in nuclei traditionally has been inspired by
the treatment of superfluidity in condensed matter. The superfluid phase in the latter
systems is characterized by the presence of a large number of identical bosons in a
single quantum state. In superconductors the bosons are pairs of electrons with opposite
momenta that form at the Fermi surface. In nuclei the bosons are pairs of valence
nucleons with opposite angular momenta.

Condensed-matter superfluidity (and associated superconductivity) was explained by
Bardeen, Cooper and Schrieffer [24] and the resulting BCS theory has strongly influ-
enced the discussion of pairing in nuclei [25]. Nevertheless, the approximations made in
BCS theory are less appropriate for nuclei since the number of nucleons is comparatively
small, and over the years techniques have been developed to yield exact solutions of the
nuclear pairing problem. These methods, often based on group theory, are summarized
in the present subsection.
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5.3.1. Pairing, seniority and quasi-spin algebras

The pairing interaction is a reasonable first-order approximation to the strong force
between identical nucleons. For nucleons in a single- j shell, pairing is defined by the
matrix elements

νJ ≡ 〈 j2;JMJ|Vpairing| j2;JMJ〉=−g0(2 j +1)δJ0, (44)

where j is the total (orbital+spin) angular momentum of a single nucleon (hence j is
half-odd-integer), J results from the coupling of two js and MJ is the projection of J on
the z axis. Furthermore, g0 is the strength of the interaction which is attractive in nuclei
(g0 > 0). The pairing interaction is illustrated in Fig. 4 for the nucleus 210Pb which
can be described as two neutrons in a 2g9/2 orbit outside the doubly magic 208Pb inert
core. For two non-interacting valence neutrons all levels would be degenerate in energy.
This degeneracy is lifted by the residual interaction which has a short-range attractive
character. The spectrum obtained with a delta interaction is close to what is observed
experimentally, and a pairing interaction constitutes a further approximation.

The pairing interaction was introduced by Racah for the classification of n electrons in
an atom [27]. He was able to derive a closed formula for the interaction energy among the
n electrons and to prove that any eigenstate of the pairing interaction is characterized by a
‘seniority number’ υ which corresponds to the number of electrons that are not in pairs
coupled to orbital angular momentum L = 0. Racah’s original definition of seniority
made use of coefficients of fractional parentage. He later noted that simplifications arose
through the use of group theory [28]. Seniority turned out to be a label associated with
the (unitary) symplectic algebra Sp(2 j +1) in the classification

U(2 j +1) ⊃ Sp(2 j +1) ⊃ SU(2)
↓ ↓ ↓

[1n] [1υ ] J
. (45)



If the nucleons are identical, all states of the jn configuration belong to the totally
antisymmetric irreducible representation (IR) [1n] of U(2 j + 1). The IRs of Sp(2 j + 1)
therefore must also be totally antisymmetric of the type [1υ ] with allowed values of
seniority υ = n,n− 2, . . . ,1 or 0. The angular momentum content for a given seniority
υ can also be worked out [29] but no simple general rule is available for the reduction
Sp(2 j +1)⊃ SU(2).

An alternative, simpler definition of seniority can be given which relies on the exis-
tence of an SU(2) symmetry of the pairing hamiltonian [30, 31]. In second quantization
the pairing interaction (44) is written as

Vpairing =−g0S j
+S j
−, (46)

with
S j

+ =
1
2

√
2 j +1(a†

j ×a†
j)

(0)
0 , S j

− =
(

S j
+

)†
, (47)

where a†
jm j

creates a nucleon in the shell j with projection m j. The commutator of S j
+

and S j
− leads to the operator [S j

+,S j
−] = (2n j− 2 j− 1)/2 ≡ 2S j

z , which thus equals, up
to a constant, the number operator n j. Since the three operators {S j

z ,S
j
±} close under

commutation, [S j
z ,S

j
±] = ±S j

± and [S j
+,S j

−] = 2S j
z , they form an SU(2) algebra, referred

to as the quasi-spin algebra.
This algebraic structure allows an analytical solution of the pairing hamiltonian.

From the commutation relations it follows that S j
+S j
− = (S j)2− (S j

z)2 +S j
z , which shows

that the pairing hamiltonian can be written as a combination of Casimir operators
belonging to SU(2) and SO(2)≡{S j

z}. The associated eigenvalue problem can be solved
instantly, yielding the energy expression −g0[S(S + 1)−MS(MS − 1)]. The quantum
numbers S and MS can be put in relation to the seniority υ and the nucleon number
n, S = (2 j− 2υ + 1)/4 and MS = (2n− 2 j− 1)/4, leading to the energy expression
−g0(n− υ)(2 j− n− υ + 3)/4. This coincides with the original expression given by
Racah, Eq. (50) of Ref. [27], after the replacement of the degeneracy in LS coupling,
4`+2, by the degeneracy in j j coupling, 2 j +1.

5.3.2. Seniority in several j shells

The quasi-spin algebra can be generalized to the case of several (say s) degenerate
shells by making the substitutions S j

+ 7→ S+ ≡ ∑ j S j
+ and 2 j + 1 7→ ∑ j(2 j + 1) ≡

2Ω. Therefore, if a semi-magic nucleus can be approximated as a system of identical
nucleons interacting through a pairing force and distributed over several degenerate
shells, the formulas of the quasi-spin formalism should apply. In particular, the ground
states of even–even semi-magic nuclei will have a ‘superfluid’ structure of the form

(S+)n/2 |o〉, (48)

where |o〉 represents the vacuum (i.e., the doubly-magic core nucleus).



FIGURE 5. The difference E(n,2)−E(n,0) is a function of particle number n (top) and the corre-
sponding observed excitation energies Ex(2+

1 )≡ E(2+
1 )−E(0+

1 ) and Ex(4+
1 )≡ E(4+

1 )−E(0+
1 ) in the Sn

isotopes.

The SU(2) quasi-spin solution of the pairing hamiltonian (46) leads to several char-
acteristic predictions: a constant excitation energy (independent of n) of the first-excited
2+ state in even–even isotopes, the linear variation of two-nucleon separation energies
as a function of n, the odd–even staggering in nuclear binding energies, the enhancement
of two-nucleon transfer. The first of these predictions is illustrated in Fig. 5. The ground
state of an even–even nucleus has υ = 0 and the lowest excited states have υ = 2. An
example of such υ = 2 states are those in a two-nucleon j2 configuration with J 6= 0,
J = 2,4, . . . ,2 j−1. The energy difference between υ = 2 and υ = 0 states is given by

E(n,2)−E(n,0) = g0Ω, (49)

and is independent of the number of valence nucleons. This prediction is illustrated in
Fig. 5 where it is compared with the excitation energies of the 2+

1 and 4+
1 levels in the

even–even Sn isotopes.
Another manifestation of pairing correlations can be obtained from two-nucleon

separation energies defined as

S2n(N,Z) = B(N,Z)−B(N−2,Z), S2p(N,Z) = B(N,Z)−B(N,Z−2), (50)

for two-neutron and two-proton separation energies, respectively, where B(N,Z) denotes
the ground-state binding energy of a nucleus with N neutrons and Z protons. In a simple
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the Sn isotopes with active neutrons in the 50–82 shell.

approximation the binding energy of the ground state of a semi-magic nucleus can be
related to the pairing interaction energy among its valence nucleons [21]. This leads to
the following result for the difference of two-nucleon separation energies:

S2n(N,Z)−S2n(N−1,Z) =−g0, S2p(N,Z)−S2p(N,Z−1) =−g0, (51)

that is, the two-nucleon separation energy varies linearly as a function of nucleon
number. For a system of identical nucleons occupying a set of non-degenerate single-
particle levels as shown on the left of Fig. 6, the complete absence of pairing correlations
(g0 = 0) would lead to a staircase behaviour of S2n (S2p) as a function of N (Z) (see
Fig. 6a). The other extreme, strong pairing correlations among nucleons distributed over
closely spaced single-particle levels, is represented in Fig. 6b which shows a smooth
decrease of S2n or S2p as the nucleon number increases. Figure 6c shows the two-neutron
separation energies measured in the Sn isotopes, as a function of neutron number. As far
as the 50–82 shell is concerned, the data are consistent with the superfluid solution.
At N = 82 a large jump in S2n is observed. This indicates that pairing correlations are
confined to the 50–82 shell.

Exact quasi-spin SU(2) is valid only for identical nucleons interacting through a pair-
ing force in a single- j shell or distributed over several, degenerate shells. A more gener-
ally valid model is obtained if one imposes the following condition on the hamiltonian:

[[H,S+],S+] = ∆(S+)2 , (52)

where S+ creates the lowest two-nucleon eigenstate of H and ∆ is a constant. This con-
dition of generalized seniority, which was proposed by Talmi [33], is much weaker than
the assumption of a pairing interaction and, in particular, it does not require the com-
mutator [S+,S−] to yield (up to a constant) the number operator—a property which is
central to the quasi-spin formalism. In spite of the absence of a closed algebraic struc-
ture, it is still possible to compute the exact ground-state eigenvalue but hamiltonians
satisfying (52) are no longer necessarily completely solvable.

An exact method to solve the problem of identical nucleons distributed over non-
degenerate levels interacting through a pairing force was proposed a long time ago
by Richardson [34] based on the Bethe ansatz [35]. As an illustration of Richardson’s
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FIGURE 7. Graphical solution of the Richardson equation for n = 2 fermions distributed over s = 5
single-particle orbits. The sum ∑ j Ω j/(2ε j−E)≡ y(E) is plotted as a function of E; the intersections of
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approach, consider the pairing interaction supplemented with a one-body term:

H = ∑
j

ε jn j−g0S+S− = ∑
j

ε jn j−g0 ∑
j

S j
+∑

j′
S j′
−, (53)

where ε j are single-particle energies. The solvability of the hamiltonian (53) arises
as a result of the symmetry SU(2)⊗ SU(2)⊗ ·· ·, where each SU(2) algebra pertains
to a specific j. Whether the solution of (53) can be called superfluid depends on the
differences ε j− ε j′ in relation to the strength g0. In all cases the solution is known in
closed form for all possible choices of ε j.

It is instructive to analyze first the case of n = 2 nucleons because it gives insight into
the structure of the general problem. The two-nucleon, J = 0 eigenstates can be written
as S+|o〉 = ∑ j x jS

j
+|o〉 with x j coefficients that are determined from the eigenequation

HS+|o〉 = ES+|o〉 where E is the unknown eigenenergy. With some elementary ma-
nipulations this can be converted into the secular equation 2ε jx j− g0 ∑ j′Ω j′x j′ = Ex j,
with Ω j = j + 1

2 , from where x j can be obtained up to a normalization constant,
x j ∝ g0/(2ε j − E). The eigenenergy E can be found by substituting the solution for
x j into the secular equation, leading to

∑
j

Ω j

2ε j−E
=

1
g0

. (54)

This equation can be solved graphically which is done in Fig. 7 for a particular choice
of single-particle energies ε j and degeneracies Ω j. In the limit g0→ 0 of weak pairing,
the solutions E → 2ε j are obtained, as should be. Of more interest is the limit of strong
pairing, g0 → +∞. From the graphical solution we see that in this limit there is one
eigenstate of the pairing hamiltonian which lies well below the other eigenstates with
approximately constant amplitudes x j since for that eigenstate |E| � 2|ε j|. Hence, in



the limit of strong pairing one finds a J = 0 ground state which can be approximated as

Sc
+|o〉 ≈

√
1
Ω

∑
j

S j
+|o〉, (55)

where Ω = ∑ j Ω j. Because of this property this state is often referred to as the collective
S state, in the sense that all single-particle orbits contribute to its structure.

This result can be generalized to n particles, albeit that the general solution is more
complex. On the basis of the two-particle problem one may propose, for an even number
of particles n, a ground state of the hamiltonian (53) of the form (up to a normalization
constant)

n/2

∏
α=1

(
∑

j

1
2ε j−Eα

S j
+

)
|o〉, (56)

which is known as the Bethe ansatz [35]. Each pair in the product is defined through
coefficients x j = (2ε j−Eα)−1 in terms of an energy Eα depending on α which labels
the n/2 pairs. This product indeed turns out to be the ground state provided the Eα are
solutions of n/2 coupled, non-linear equations

∑
j

Ω j

2ε j−Eα

−
n/2

∑
β (6=α)

2
Eβ −Eα

=
1
g0

, α = 1, . . . ,n/2, (57)

known as the Richardson equations [34]. Note the presence of a second term on the
left-hand side with differences of the unknowns Eβ − Eα in the denominator, which
is absent in the two-particle case. In addition, the energy of the state (56) is given
by ∑α Eα . A characteristic feature of the Bethe ansatz is that it no longer consists of
a superposition of identical pairs since the coefficients (2ε j − Eα)−1 vary as α runs
from 1 to n/2. Richardson’s model thus provides a solution that covers all possible
hamiltonians (53), ranging from those with superfluid character to those with little or no
pairing correlations [36].

An important remaining restriction on the form of the pairing hamiltonian (53) is
that it contains a single strength parameter g0 whereas, in general, the interaction might
depend on j and j′, leading to s(s + 1)/2 strengths g0( j j′) = g0( j′ j). In nuclei, often
the assumption of a separable interaction is made which, in the case of pairing, leads
to strengths g0( j j′) = g0c jc j′ in terms of s parameters c j. This restriction leads to the
following pairing hamiltonian:

H = ∑
j

ε jn j−g0 ∑
j j′

c jc j′S
j
+S j′
−. (58)

As yet, no closed solution of the general hamiltonian (58) is known but three solvable
cases have been worked out:

1. The strengths c j are constant (independent of j). This case was discussed above.
2. The single-particle energies ε j are constant (independent of j). The solution was

given by Pan et al. [37]
3. There are two levels. The solution was given by Balantekin and Pehlivan [38].



5.3.3. Seniority with neutrons and protons

About ten years after its introduction by Racah, seniority was adopted in nuclear
physics for the j j-coupling classification of nucleons in a single- j shell [39, 40]. The
main additional difficulty in nuclei is that one deals with a system of neutrons and
protons, and hence the isospin T of the nucleons should be taken into account. The
generalization of the classification (45) for identical nucleons toward neutrons and
protons reads as follows:

U(4 j +2) ⊃
(

U(2 j +1) ⊃ Sp(2 j +1) ⊃ SU(2)
)
⊗ SUT (2)

↓ ↓ ↓ ↓ ↓
[1n] [h] [σ ] J T

, (59)

where [h] and [σ ] are Young tableaux associated with U(2 j +1) and Sp(2 j +1). In gen-
eral, 2 j+1 labels are needed to characterize an IR of U(2 j+1), [h] = [h1,h2, . . . ,h2 j+1],
and j+ 1

2 labels are needed for an IR of Sp(2 j+1), [σ ] = [σ1,σ2, . . . ,σ j+1/2]. To ensure
overall antisymmetry under U(4 j+2), the Young tableaux of U(2 j+1) and UT (2) must
be conjugate, that is, one is obtained from the other by interchanging rows and columns.
Since the Young tableau associated with UT (2) is determined by the nucleon number
n and the total isospin T as [n/2 + T,n/2− T ], the Young tableau of U(2 j + 1) must
therefore be

[h] = [

n/2−T︷ ︸︸ ︷
2,2, . . . ,2,

2T︷ ︸︸ ︷
1,1, . . . ,1]. (60)

Since an IR of U(2 j + 1) has at most 2 j + 1 labels, it follows that n/2 + T ≤ 2 j + 1.
Furthermore, all non-zero labels in [σ ] must be either 2 or 1 and the Young tableau of
Sp(2 j +1) must therefore be of the form

[σ ] = [

υ/2−t︷ ︸︸ ︷
2,2, . . . ,2,

2t︷ ︸︸ ︷
1,1, . . . ,1]. (61)

The IR of Sp(2 j + 1) is thus characterized by two labels [40]: the seniority υ and the
‘reduced isospin’ t. The former has the same interpretation as in the like-nucleon case
while the latter corresponds to the isospin of the nucleons which are not in pairs coupled
to J = 0.

The group-theoretical analysis is considerably more complex here than in the case of
identical nucleons and, in addition, for each value of j one is faced with a different
reduction problem associated with U(2 j + 1) ⊃ Sp(2 j + 1) ⊃ SU(2). It is therefore
advantageous to go over to a quasi-spin formulation of the problem and, as was shown by
Helmers [31], this is possible for whatever value of the intrinsic quantum number of the
particles (which is t = 1

2 for nucleons). If the pairing interaction is assumed to be isospin
invariant, it is the same in the three T = 1 channels, neutron–neutron, neutron–proton
and proton–proton, and Eq. (46) can be generalized to

V ′pairing =−g0 ∑
µ

S+,µS−,µ =−g0S+ ·S−, (62)



where the dot indicates a scalar product in isospin. In terms of the nucleon creation
operators a†

jm jtmt
, which now carry also isospin indices (with t = 1

2 ), the pair operators
are

S+,µ =
1
2 ∑

j

√
2 j +1(a†

jt×a†
jt)

(01)
0µ

, S−,µ =
(
S+,µ

)†
, (63)

where the coupling refers to angular momentum and to isospin. The index µ (isospin
projection) distinguishes neutron–neutron (µ = +1), neutron–proton (µ = 0) and
proton–proton (µ =−1) pairs. There are thus three different pairs with J = 0 and T = 1
and they are connected by the isospin raising and lowering operators T±. By considering
the commutation relations between the different operators, a closed algebraic structure
is obtained, generated by the pair operators S±,µ , the number operator n and the isospin
operators T± and Tz. The quasi-spin algebra of neutrons and protons in degenerate j
shells turns out to be SO(5), by virtue of which the hamiltonian (62) is analytically
solvable [41, 42].

A further generalization is possible in LS coupling. For a neutron and a proton there
exists a different paired state with parallel spins. The most general pairing interaction
for a system of neutrons and protons is therefore of the form

V ′′pairing =−g0S+ ·S−−g′0P+ ·P−, (64)

where the pair operators are defined as

S+,µ =

√
1
2 ∑

`

√
2`+1(a†

`st×a†
`st)

(001)
00µ

, S−,µ =
(
S+,µ

)†
,

P+,µ =

√
1
2 ∑

`

√
2`+1(a†

`st×a†
`st)

(010)
0µ0 , P−,µ =

(
P+,µ

)†
, (65)

where a†
`m`smstmt

creates a nucleon in the shell ` with projection m`, spin projection ms

and isospin projection mt . The hamiltonian (64) contains two parameters g0 and g′0, the
strengths of the isovector and isoscalar components of the pairing interaction. While in
the previous case the single strength parameter just defines an overall scale, this is no
longer true for a generalized pairing interaction and different solutions are obtained for
different ratios g0/g′0.

In general, the eigenproblem associated with the interaction (64) can only be solved
numerically; for specific choices of g0 and g′0 the solution of V ′′pairing can be obtained
analytically [43, 44]. A closed algebraic structure is obtained, formed by the pair op-
erators (65), their commutators, the commutators of these among themselves, and so
on until closure is attained. The quasi-spin algebra in this case turns out to be SO(8),
with 28 generators, consisting of the pair operators S±,µ and P±,µ , the number operator
n, the spin and isospin operators Sµ and Tµ , and the Gamow–Teller-like operator Yµν ,
which is a vector in spin and isospin. The symmetry character of the hamiltonian (64)
is obtained by studying the subalgebras of SO(8). Of relevance are the subalgebras
SOT (5) ≡ {S±,µ ,n,Tµ}, SOT (3) ≡ {Tµ}, SOS(5) ≡ {P±,µ ,n,Sµ}, SOS(3) ≡ {Sµ} and



SO(6)≡ {Sµ ,Tµ ,Yµν}, which can be placed in the following lattice of algebras:

SO(8)⊃

 SOS(5)⊗SOT (3)
SO(6)

SOT (5)⊗SOS(3)

⊃ SOS(3)⊗SOT (3). (66)

By use of the explicit form of the generators of SO(8) and its subalgebras, and their
commutation relations [44], the following relations can be shown to hold:

S+ ·S− =
1
2

C2[SOT (5)]− 1
2

C2[SOT (3)]− 1
8
(2Ω−n)(2Ω−n+6),

S+ ·S−+P+ ·P− =
1
2

C2[SO(8)]− 1
2

C2[SO(6)]− 1
8
(2Ω−n)(2Ω−n+12),

P+ ·P− =
1
2

C2[SOS(5)]− 1
2

C2[SOS(3)]− 1
8
(2Ω−n)(2Ω−n+6), (67)

with Ω = ∑`(2`+ 1). This shows that the interaction (64) in the three cases (i) g0 = 0,
(ii) g′0 = 0 and (iii) g0 = g′0, can be written as a combination of Casimir operators of
algebras belonging to a chain of nested algebras of the lattice (66). They are thus the
dynamical symmetries of the SO(8) model.

The nature of ‘SO(8) superfluidity’ can be illustrated in the specific example of the
ground state of even–even N = Z nuclei. In the SO(6) limit of the SO(8) model the exact
ground-state solution can be written as [45]

(S+ ·S+−P+ ·P+)n/4 |o〉. (68)

This shows that the superfluid solution acquires a quartet structure in the sense that it
reduces to a condensate of bosons each of which corresponds to four nucleons. Since
the boson in (68) is a scalar in spin and isospin, it can be thought of as an α particle;
its orbital character, however, might be different from that of an actual α particle. A
quartet structure is also present in the two SO(5) limits of the SO(8) model, which yields
a ground-state wave function of the type (68) with either the first or the second term
suppressed. A reasonable ansatz for the N = Z ground-state wave function of the SO(8)
pairing interaction (64) with arbitrary strengths g0 and g′0 is therefore

(cosθ S+ ·S+− sinθ P+ ·P+)n/4 |o〉, (69)

where θ is a parameter that depends on the ratio g0/g′0. The condensate (69) of α-
like particles provides an excellent approximation to the N = Z ground state of the
pairing hamiltonian (64) for any combination of g0 and g′0 [45]. It should nevertheless be
stressed that, in the presence of both neutrons and protons in the valence shell, the pairing
hamiltonian (64) is not a good approximation to a realistic shell-model hamiltonian
which contains an important quadrupole component.

These results can be generalized to the case of several non-degenerate shells. In fact,
the Richardson equations (57) are valid for the quasi-spin symmetry SU(2) but they are
known for any Lie algebra [46]. Closed solutions have been obtained for a system of
neutron and protons with a pairing interaction of pure isovector character and of equal
isovector and isoscalar strength, based on the SO(5) and the SO(6) quasi-spin algebras,
respectively [47, 48].



5.4. Rotation models

In the early days of nuclear physics, nuclei with a rotational-like spectrum were
interpreted either with the liquid-drop model of Bohr and Mottelson [49] or with a
deformed single-particle shell model of Nilsson [50]. An understanding of rotational
phenomena in terms of the spherical shell model, however, was lacking. Elliott’s SU(3)
model [7] provides such an understanding from a symmetry perspective. Since SU(3) is
based on Wigner’s supermultiplet model, first a discussion of the latter should be given.

Wigner’s supermultiplet model [8] assumes nuclear forces to be invariant under ro-
tations in spin as well as isospin space. This invariance is expressed by the following
commutation relations:

[H,Sµ ] = [H,Tµ ] = [H,Yµν ] = 0, (70)

where

Sµ =
A

∑
k=1

sµ(k), Tµ =
A

∑
k=1

tµ(k), Yµν =
A

∑
k=1

sµ(k)tν(k), (71)

are the spin, isospin and Gamow–Teller-like operators, in terms of sµ(k) and tµ(k),
the spin and isospin components of nucleon k. The 15 operators (71) generate the Lie
algebra SU(4). According to the discussion in Section 2, any hamiltonian satisfying the
conditions (70) has SU(4) symmetry, and this in addition to symmetries associated with
the conservation of total spin S and total isospin T .

To obtain a qualitative understanding of SU(4) symmetry, it is instructive to analyze
the case of two nucleons in an oscillator shell. Total antisymmetry of the wave function
requires that the spatial part is symmetric and the spin–isospin part antisymmetric or
vice versa. Both cases correspond to a different symmetry under SU(4), the first being
antisymmetric and the second symmetric. The symmetry under a given algebra can
characterized by a Young diagram, and for two particles the antisymmetric configuration
is denoted as [1,1], while the symmetric one is written as [2,0].

This argument can be generalized to an arbitrary number of nucleons and the result
emerges that the SU(4) quantum numbers specify the way in which the overall antisym-
metry is distributed over the spatial and spin–isospin parts of the wave function. More
formally, the orbital/spin–isospin decomposition is equivalent to the algebraic reduction

U(4Ω) ⊃ U(Ω) ⊗ U(4)
↓ ↓ ↓

[1n] [ f1, f2, f3, f4] [ f̄1, f̄2, f̄3, f̄4]
, (72)

where Ω denotes the orbital shell size (i.e., Ω = 1,3,6, . . . for the s, p, sd,. . . shells).
The U(4) algebra consists of the SU(4) generators (71) supplemented with the particle-
number operator n. The overall antisymmetry [1n] of the wave function requires conju-
gate symmetry under U(Ω) and U(4), which defines the relation between [ f1, f2, f3, f4]
and [ f̄1, f̄2, f̄3, f̄4]: they have conjugate Young diagrams [51]. As an example, the sym-
metry classification of one and two particles in the sd shell is summarized in Table 1.
The table also gives the more commonly used SU(4) labels which are related to those of



TABLE 1. Classification of one particle and two particles in the sd shell.

n [ f1, f2, f3, f4] L [ f̄1, f̄2, f̄3, f̄4] (λ ,µ,ν) (S,T )

1 [1] 0,2 [1] (1,0,0) ( 1
2 , 1

2 )

2 [2,0] 02,22,4 [1,1] (0,1,0) (0,1),(1,0)
[1,1] 1,2,3 [2,0] (2,0,0) (0,0),(1,1)

U(4) through
λ = f̄1− f̄2, µ = f̄2− f̄3, ν = f̄3− f̄4. (73)

The physical relevance of Wigner’s supermultiplet classification is connected with the
short-range attractive nature of the residual interaction as a result of which states with
spatial symmetry are favoured energetically. To see this point, consider an extreme form
of a short-range interaction, namely a delta interaction. It has a vanishing matrix element
in a spatially antisymmetric two-nucleon state since in that case the wave function has
zero probability of having r̄1 = r̄2. In contrast, the matrix element is attractive in the
spatially symmetric case with [1,1] U(4) symmetry. Again, this result can be generalized
to many nucleons, leading to the conclusion that the energy of a state depends on its
SU(4) labels.

Wigner’s supermultiplet model is a nuclear LS-coupling scheme. It is strongly broken
by the large spin–orbit coupling in the nuclear mean field and, as a result, the SU(4)
model is not considered as realistic any longer. In spite of its limited applicability,
Wigner’s idea remains important because it demonstrates the connection between the
short-range character of the residual interaction and the spatial symmetry of the many-
body wave function. The break down of SU(4) symmetry is a consequence of the spin–
orbit term in the nuclear many-body hamiltonian (41) which does not satisfy the second
and third commutator in (70). The spin–orbit term breaks SU(4) symmetry [SU(4)
representations are admixed by it] and does so increasingly in heavier nuclei since the
energy splitting of the spin doublets `− 1

2 and `+ 1
2 increases with nucleon number A.

In addition, SU(4) symmetry is also broken by the Coulomb interaction—an effect that
also increases with A—and by spin-dependent residual interactions.

The break down of SU(4) symmetry with increasing nuclear mass number A can be
illustrated with Gamow–Teller β decay [52] and with nuclear binding energies [53].
A simple way to represent the latter effect involves the double differences of nuclear
binding energies [54, 55],

δVnp(N,Z) =
1
4
[B(N,Z)−B(N−2,Z)−B(N,Z−2)+B(N−2,Z−2)], (74)

where B(N,Z) is the binding energy of a nucleus with N neutrons and Z protons and
where N and Z are assumed even. The quantity δVnp(N,Z) acts as a filter to isolate the
interaction between neutrons and protons. Particularly large values of δVnp(N,Z) are
found for N = Z [56]. The erosion of this N = Z enhancement with mass number A
provides a proof of the breaking of SU(4) symmetry. An example is shown in Fig. 8
which shows on the left the measured double binding energy δVnp(N,Z) for even–even
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FIGURE 8. Barchart representation of double binding energy differences (a) as observed in even–even
sd-shell nuclei [32], (b) as predicted by Wigner’s unbroken SU(4) symmetry, and (c) as obtained by taking
a mixture of first- and second-favoured SU(4) representations. The x and y coordinates of the centre of
a cuboid define N and Z and its height z defines δVnp(N,Z). An empty square indicates that the data are
lacking.

nuclei in the sd shell. The SU(4) result of Fig. 8b is obtained by assuming a nuclear
binding energy of the form a + b〈C2[SU(4)]〉 where a and b are coefficients depending
smoothly on mass number and 〈C2[SU(4)]〉 is the eigenvalue of the quadratic Casimir of
SU(4) in the favoured SU(4) representation [57]. As long as the departure from SU(4)
symmetry is not too important, its breaking can be investigated by assuming a nuclear
ground state which does not correspond entirely to the favoured SU(4) representation
but contains an admixture of the next-favoured SU(4) representation. These admixtures
will modify the behaviour of δVnp(N,Z) at N ∼ Z. This is illustrated in Fig. 8c where
δVnp(N,Z) is plotted by taking a varying mixture of first- and second-favoured SU(4)
representations. As the mass of the nucleus increases, one notes indeed a decrease of
the N = Z enhancement effect for δVnp(N,Z), roughly consistent with the experimental
observations. An exceptional point occurs for N = Z = 20 where the calculation is
unrealistic since 40Ca is taken as doubly closed and hence corresponds to a unique SU(4)
representation with no possible admixtures.

In Wigner’s supermultiplet model the spatial part of the wave function is left unspec-
ified. It is only assumed that the total orbital angular momentum L is a good quantum
number. The main feature of Elliott’s model [7] is that it provides an orbital classifi-
cation which incorporates rotational characteristics. Elliott’s model of rotation presup-
poses Wigner’s SU(4) classification and assumes in addition that the residual interaction
has a quadrupole character, a reasonable hypothesis if the valence shell contains neu-
trons and protons. With reference to the hamiltonian (41), one requires that it reduces
to

H =
A

∑
k=1

(
p2

k
2mn

+
1
2

mnω
2r2

k

)
+Vquadrupole, (75)

where Vquadrupole =−g2Q ·Q contains a quadrupole operator

Qµ =

√
3
2

[
A

∑
k=1

1
b2 (r̄k× r̄k)

(2)
µ +

b2

h̄2

A

∑
k=1

(p̄k× p̄k)
(2)
µ

]
, (76)



in terms of coordinates r̄k and momenta p̄k, and where b is the oscillator length parame-
ter (32). Note that Q ·Q contains one-body (k = l) as well as two-body (k 6= l) terms.

To recognize that the shell-model hamiltonian (75) is analytically solvable, it is best
to write it in second-quantized form. Because of its symmetric structure in r̄ and p̄,
the quadrupole operator Qµ does not couple to states outside a given valence shell and
particle creation operators a†

`m`smstmt
can be assigned the ` quantum number of that shell,

together with spin and isospin labels. The quadrupole operator (76) can then be rewritten
as (see Chapter 30 of Ref. [21])

Qµ = ∑
`

√
8(2`+1)(a†

`st× ã`st)
(200)
µ00 , (77)

where ã`m`smstmt = (−)`−m`+s−ms+t−mt a`−m`s−mst−mt . By construction, the quadrupole
operator (76) is a scalar in spin and isospin, as it does not change either of them, and a
tensor in orbital angular momentum. Likewise, the orbital angular momentum operator,
Lµ = ∑k(r̄k∧ p̄k)µ/h̄, reads in second quantization

Lµ = ∑
`

√
4`(`+1)(2`+1)

3
(a†

`st× ã`st)
(100)
µ00 . (78)

The hamiltonian (75) can thus be rewritten as

H = h̄ω
(
N + 3

2

)
−g2Q ·Q, (79)

where N is an operator that counts the number of oscillator quanta. For a given number
of nucleons in the valence shell the first term in (79) reduces to a constant; the second
term, however, generates a spectrum as can be seen as follows.

The hamiltonian (75) satisfies the commutation relations (70) and hence has SU(4)
symmetry. Its additional symmetry character depends on the orbital space available to
the valence nucleons. With reference to the classification (72), the operators Lµ and Qµ

are scalar in spin and isospin and hence are generators of U(Ω). Furthermore, from their
explicit expressions (77) and (78) one derives the commutation relations

[Qµ ,Qν ] = 3
√

10〈2µ 2ν |1µ +ν〉Lµ+ν ,

[Lµ ,Qν ] = −
√

6〈1µ 2ν |2µ +ν〉Qµ+ν ,

[Lµ ,Lν ] = −
√

2〈1µ 1ν |1µ +ν〉Lµ+ν , (80)

which show that they generate an SU(3) Lie algebra that must then be a subalgebra
of U(Ω). With the commutation relations (80) it can also be shown that the quadratic
combination Q ·Q + 3L · L commutes with all generators of SU(3). The quadrupole
interaction is thus a combination of Casimir operators,

Q ·Q = 4C2[SU(3)]−3L ·L = 4C2[SU(3)]−3C2[SO(3)], (81)

and it follows that the hamiltonian (75) has the eigenvalues

E(λ ,µ,L) = E0−g2
[
4(λ 2 + µ

2 +λ µ +3λ +3µ)−3L(L+1)
]
, (82)
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where E0 is a constant energy associated with the first term in the hamiltonian (79). The
quadrupole interaction implies the orbital reduction

U(Ω) ⊃ SU(3) ⊃ SO(3)
↓ ↓ ↓

[ f1, f2, f3, f4] (λ ,µ) KLL
, (83)

and represents an example of dynamical symmetry breaking. The degeneracy within a
given Wigner supermultiplet is lifted (dynamically) by the quadrupole interaction.

A simple illustration of SU(3) dynamical symmetry is shown in Fig. 9. The nucleus
20Ne contains two neutrons and two protons in the sd shell (Ω = 6) above the 16O closed-
shell configuration. These four nucleons can acquire a spatially symmetric configuration,
leading to [ f1, f2, f3, f4] = [4,0,0,0]≡ [4] in U(6). All states in this symmetric configu-
ration correspond to a single supermultiplet with labels [ f̄1, f̄2, f̄3, f̄4] = [1,1,1,1]≡ [14]
in U(4) and with S = T = 0. The degeneracy of this supermultiplet is lifted by the resid-
ual quadrupole interaction which gives rise to the SU(3) spectrum shown in Fig. 9. This
interaction separates the different SU(3) multiplets (or representations) which can be
(λ ,µ) = (8,0), (4,2), (0,4) or (2,0). The allowed values of the total orbital angular
momentum L (and, since S = 0, of the total angular momentum J) follow from the
SU(3) ⊃ SO(3) reduction rule [7]. For the lowest SU(3) multiplet with (λ ,µ) = (8,0)
they are L = 0,2,4,6,8. The observed angular momenta J of the states and their excita-
tion energies as a function of J are approximately consistent with those of a rotational
band with K = 0 projection of the total angular momentum on the axis of symmetry.
The SU(3) model predicts this band to terminate at Jπ = 8+ which is consistent with
the observations since the lowest Jπ = 10+ occurs at 27.5 MeV [26], well above the
energy expected from a rotational behaviour. The experimental spectrum of 20Ne con-
tains many more levels than those in the Kπ = 0+ band, the lowest of which are shown
in Fig. 9. States of four nucleons in the sd shell have positive parity and, consequently,
the observed negative-parity levels necessarily must involve a (particle–hole) excitation



outside this shell. The first-excited 0+ level possibly belongs to the next SU(3) multiplet
with (λ ,µ) = (4,2), also shown in Fig. 9, containing the levels L = 0,22,3,42,5,6. Al-
ternatively, it may correspond to a two-particle–two-hole excitation outside the sd shell.

The importance of Elliott’s idea is that it gives rise to a rotational classification of
states through mixing of spherical configurations. With the SU(3) model it was shown,
for the first time, how deformed nuclear shapes may arise out of the spherical shell
model. As a consequence, Elliott’s work bridged the gap between the nuclear shell model
and the liquid-drop model which up to that time (1958) existed as separate views of the
nucleus.

At this point we can summarize the situation as follows. Elliott’s SU(3) model pro-
vides a natural explanation of rotational phenomena, ubiquitous in nuclei, but it does so
by assuming Wigner’s SU(4) symmetry which is known to be badly broken in most nu-
clei. This puzzle has motivated much work since Elliott: How can rotational phenomena
in nuclei be understood starting from a j j-coupling scheme induced by the spin–orbit
term in the nuclear mean field? Arguably the most successful way to do so and to ex-
tend the applications of the SU(3) model to heavy nuclei is based upon the concept of
pseudo-spin symmetry. The starting point for the explanation of this symmetry is the
single-particle part of the hamiltonian (41),

Hip =
A

∑
k=1

(
p2

k
2mn

+
1
2

mnω
2r2

k +ζoo ¯̀k · ¯̀k +ζso ¯̀k · s̄k

)
. (84)

For ζoo = ζso = 0 a three-dimensional isotropic harmonic oscillator is obtained which
exhibits degeneracies associated with U(3) symmetry. For arbitrary non-zero values of
ζoo and ζso this symmetry is broken. However, for the particular combination 4ζoo =
ζso some degree of degeneracy, associated with a so-called pseudo-spin symmetry, is
restored in the spectrum of Hip.

To understand the nature of pseudo-spin symmetry, consider the unitary transforma-
tion

U =
A

∑
k=1

uk, uk = 2i
s̄k · r̄k

rk
, (85)

and apply this transformation to the hamiltonian (84). One finds

U−1HipU =
A

∑
k=1

(
p2

k
2mn

+
1
2

mnω
2r2

k +ζoo ¯̀k · `k +(4ζoo−ζso) ¯̀k · s̄k

)
+C, (86)

where C = A(h̄ω +2ζoo−ζso) is a constant. The original and transformed hamiltonians
have the same eigenspectrum since they are related, up to the constant, by a unitary
transformation. This shows that for 4ζoo = ζso the spectrum of Hip is identical (up
to a constant) to that of a single-particle hamiltonian with only an orbit–orbit and no
spin–orbit term. This results in single-particle orbits with j = `+ 1

2 and j = (`+2)− 1
2

being degenerate for all values of `. These single-particle orbits can be considered as
originating from a pseudo-orbital angular momentum ˜̀ = `+1, in the presence of zero
pseudo-spin–orbit splitting ˜̀· s̃.



Pseudo-spin symmetry has a long history in nuclear physics. The existence of nearly
degenerate pseudo-spin doublets in the nuclear mean-field potential was pointed out
more than forty years ago by Hecht and Adler [58] and by Arima et al. [59] who noted
that, because of the small pseudo-spin–orbit splitting, pseudo-LS (or L̃S̃) coupling should
be a reasonable starting point in medium-mass and heavy nuclei where LS coupling
becomes unacceptable. With L̃S̃ coupling as a premise, an pseudo-SU(3) model can be
constructed [60] in much the same way as Elliott’s SU(3) model can be defined in LS
coupling. The formal definition of the pseudo-spin transformation (85) in terms of a
helicity operator was given in Refs. et al. [61, 62]. Finally, it is only many years after its
original suggestion that Ginocchio showed pseudo-spin to be a symmetry of the Dirac
equation which occurs if the scalar and vector potentials are equal in size but opposite
in sign [63].

The models discussed so far all share the property of being confined to a single
shell, either an oscillator or a pseudo-oscillator shell. A full description of nuclear
collective motion requires correlations that involve configurations outside a single shell.
The proper framework for such correlations invokes the concept of a non-compact
algebra which, in contrast to a compact one, can have infinite-dimensional unitary
representations. The latter condition is necessary since the excitations into higher shells
can be infinite in number. The inclusion of excitations into higher shells of the harmonic
oscillator, was achieved by Rosensteel and Rowe by embedding the SU(3) algebra into
the symplectic algebra Sp(3,R) [64].

6. SUMMARY

In these lecture notes an introduction was given to the notions of symmetry and dynam-
ical symmetry (or spectrum generating algebra). Their use in the solution of the nuclear
many-body problem was described. As an example of these techniques, the U(3) symme-
try of the harmonic oscillator in three dimensions was discussed in detail. A review was
given of the shell model, with particular emphasis on the application of group-theoretical
techniques in the context of this model.
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