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The nuclear many-body problem is considered in the framework of the shell model. In the
first part, we review the formalism of the nuclear shell model: oscillator based expansion for the
wave function, diagonalization of the residual interaction, types of the effective interactions used
in the calculations. In the second part, a multipole decomposition of the shell-model Hamiltonian
is introduced. The monopole part of the Hamiltonian governs the spherical nuclear mean field
and defines shell gaps, while the higher multipole part contains particle-particle correlations. The
mechanism for the formation or disappearance of different magic numbers is outlined (competition
between closed-shell configurations and intruder configurations). Variations of spherical single-
particle energies in series of isotopes or isotones, as obtained by realistic interactions, are explored
in a few regions of nuclear chart. The role of different components of the effective NN interaction
is discussed in terms of schematic forces and is further elucidated by the spin-tensor decomposition
of the two-body matrix elements in the (1s0d1p0 f ) shell-model space.
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1 Introduction
The shell model represents a powerful tool in nuclear structure. If the model space contains all
physically relevant degrees of freedom and the residual interaction is well adjusted, the shell
model describes nuclear spectra at low energies and transition probabilities rather accurately. The
oscillator-based expansion for the wave function allows to analyze the structure of the states in
terms of different configurations. It is also very instructive to consider specific cases of schematic
interactions when sometimes an analytically solvable Hamiltonian can describe well a part of an
experimental spectrum and transition rates, and therefore shed light on the nature of the states.

The purpose of these lectures is first to revise the basic ideas behind the nuclear shell model. In
particular, we consider in simple examples how to construct a basis from single-particle solutions,
how to solve a many-particle problem by diagonalization of the Hamiltonian matrix and how to
choose or construct an effective interaction.

The shell model is then applied to explore the evolution of the shell structure in nuclei far from
stability. We will be interested in the mechanism responsible for the weakening of shell closures,
characteristic for nuclei close to the valley of β-stability. In particular, we will study variations
of spherical single-particle energies and associated spherical shell gaps in series of isotopes or
isotones. Finally, we will focus on the role of different terms of the effective nucleon-nucleon
(NN) interaction in the shell evolution.

2 Basic principles of the nuclear shell model
The basic assumption of the nuclear shell model is that to a first approximation each nucleon
moves independently in a potential that represents the average interaction with the other nucleons
in a nucleus. This independent motion can be understood qualitatively from a combination of the
weakness of the long-range nuclear attraction and the Pauli exclusion principle.

In a non-relativistic approximation, nuclear properties are described by the Schrödinger equa-
tion for A nucleons

ĤΨ(1,2, . . . ,A) = EΨ(1,2, . . . ,A) , (1)
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where Ĥ contains nucleon kinetic energy operators and interactions between nucleons — of a
two-body and, eventually, of a three-body character, i.e.

Ĥ =
A

∑
i=1

(
− ~2

2m
∆i

)
+

A

∑
i< j=1

W (i, j)+
A

∑
i< j<k=1

W (i, j,k) , (2)

Ψ(1,2, . . . ,A) is an A-body wave function, while i denotes all relevant coordinates~ri,~si,~ti of a given
particle (i = 1,2, . . . ,A). Although the three-body forces are proved to be important [57, 56, 46],
in the present course we will consider only the two-body interaction.

We can re-write the Hamiltonian (2), adding and subtracting a one-body potential of the form
∑

A
i=1U(i) as

Ĥ =
A

∑
i=1

[
− ~2

2m
∆i +U(i)

]
+

A

∑
i< j=1

W (i, j)−
A

∑
i=1

U(i) = Ĥ(0) +V̂ , (3)

where we denoted a sum of single-particle Hamiltonians as Ĥ(0),

Ĥ(0) =
A

∑
i=1

[
− ~2

2m
∆i +U(i)

]
≡

A

∑
i=1

ĥ(i) , (4)

and V̂ is called a residual interaction. Existence of a nuclear average potential allows to assume
that we can find such a potential ∑

A
i=1U(i), that the residual interaction V is small.

One way to obtain the most optimal mean-field potential is provided in the framework of the
Hartree-Fock theory. Given a two-body interaction with typically global parametrization, one aims
at deriving the best mean-field potential by minimizing the total energy of the system. Then one
searches how to account for correlations beyond the mean-field approximation (see lecture of M.
Grasso in this volume).

The nuclear shell model follows another strategy. U(i) is chosen to be a known suitable po-
tential (e.g., the harmonic oscillator potential, or the Woods-Saxon potential, or the square-well).
Solutions of a single-particle problem for ĥ with this potential are used to construct a basis for
further diagonalization of the residual interaction V̂ .

The full theory of the nuclear shell model can be found in numerous excellent books (e.g. [17,
32]), only main principles will be presented here in a few first sections as an introduction to the
second part. In section 3 we revise a single-particle problem with the harmonic oscillator potential.
Section 4 is devoted to the basis contruction and diagonalization problem. In section 5 we discuss
different types of effective interactions, including microscopic ones. In section 6 we re-write
the shell-model Hamiltonian in a second quantization formalism and we perform a separation
into multipole parts. Sections 7 and 8 are devoted to the description of exotic nuclei and shell
evolution far from stability. The modern status of the shell model and various applications to
nuclear spectroscopy, including structure exotic nuclei, can be found in reviews [54, 12, 18]. Two
courses on the shell model, covering some of the topics discussed here, have been previously given
at Joliot-Curie School by A. Poves [58] and F. Nowacki [47].
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3 Single-particle wave functions

3.1 Particle in a spherically symmetric potential
Solutions of a single-particle problem serve to construct a basis to diagonalize the residual shell-
model interaction. To start with, let us revise the solution of the eigenproblem for a particle in a
spherically symmetric potential U(~r)≡U(r). Then the Schrödinger equation

ĥφ(~r)≡
(
− ~2

2m
∆+U(r)

)
φ(~r) = εφ(~r) (5)

is separable in radial and angular coordinates. The eigenfunctions can be expressed as

φnlml(~r) =
Rnl(r)

r
Ylml(θ,ϕ) , (6)

where Ylml(θ,ϕ) are spherical harmonics, the eigenfunctions of the squared orbital angular mo-
mentum operator and its projection on z-axis:

l̂2Ylml(θ,ϕ) = l(l +1)Ylml(θ,ϕ) ,
l̂zYlml(θ,ϕ) = mlYlml(θ,ϕ) .

(7)

The radial part, denoted as Rnl(r), is solution of the one-dimensional second-order differential
equation

− ~2

2m
R′′(r)+

~2

2m
l(l +1)

r2 R(r)+U(r)R(r) = εR(r) . (8)

We will use here the radial quantum number n = 0,1,2,3, . . . to label different solutions of this
equation (number of zeros of R(r)). Single-particle wave functions transform under a parity oper-
ation P̂(~r)→ (−~r) following the rule:

P̂
(
φnlml(~r)

)
= P̂

(
Rnl(r)

r
Ylml(θ,ϕ)

)
=

Rnl(r)
r

(−1)lYlml(θ,ϕ) = (−1)l
φnlml(~r) . (9)

For a particle with an intrinsic spin we must consider the spin-orbit interaction. The corre-
sponding Schrödinger equation reads

− ~2

2m
∆φ(~r)+U(r)φ(~r)+ fls(r)(~l ·~s)φ(~r) = εφ(~r) . (10)

The single-particle wave function of a particle with an intrinsic spin 1/2 takes then a form

φnls jm(~r,~s) =
Rnl j(r)

r

[
Yl(θ,ϕ)×χ 1

2
(~s)

]( j)

m
=

Rnl j(r)
r ∑

mlms

(lml
1
2

ms| jm)Ylml(θ,ϕ)χ 1
2 ms

, (11)

where χ 1
2 ms

denotes a spin-1/2 spinor, j is the quantum number associated with the total angular

momentum operator ~j =~l +~s which is conserved, and the coefficients in the round brackets are
the Clebsch-Gordan coefficients. The radial wave functions become solutions of the following
second-order differential equation:

− ~2

2m
R′′(r)+

~2

2m
l(l +1)

r2 R(r)+ [U(r)R(r)+als fls(r)]R(r) = εR(r), (12)
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with als being eigenvalues of the (~l ·~s) operator in a state with definite l, s and j quantum number.
Exercise. Calculate als for a state characterized by nl j quantum numbers.

For finite potentials, eq. (12) has both discrete solutions, corresponding to bound states (ε < 0),
and continuum solutions (ε > 0). Bound states are normalized according to a condition:R

|φnls jm(~r,~s)|2d~r = ∑
ml ,ms,m′

l ,m
′
s

(lml
1
2ms| jm)(lm′

l
1
2m′

s| jm)
R

Ylml(θ,ϕ)Ylm′
l
(θ,ϕ)dΩ

× 〈χ 1
2 ms
|χ 1

2 m′
s
〉

∞R
0
|Rnl(r)|2dr =

∞R
0
|Rnl(r)|2dr = 1

(13)

3.2 Harmonic oscillator potential
The explicit form of the radial part will depend on the spherically symmetric potential considered.
The choice of the potential will influence the efficiency of the solution of a many-body problem.
Let us suppose that each nucleon moves in a harmonic oscillator potential:

U(r) =
mω2r2

2
. (14)

The solution of eq. (8) with the harmonic oscillator potential have a form:

Rnl(r) = Nnl rl+1 exp
(
− r2

2b2

)
Ll+1/2

n

(
r2

b2

)
, (15)

where b =
√

~
mω

is the harmonic oscillator length parameter and Ll+1/2
n

(
r2

b2

)
are generalized La-

guerre polynomials. The normalization factor Nnl is defined by the condition
∞Z

0

R2
nl(r)dr = 1 . (16)

The energy eigenvalues are given by

εN = ~ω

(
2n+ l +

3
2

)
= ~ω

(
N +

3
2

)
, (17)

with
N = 0,1,2, . . . ,
l = N,N−2, . . . ,1 or 0
n = (N− l)/2 .

(18)

The energy level with a given N is called an oscillator shell. The states corresponding to different
n and l values can be labeled as shown in Table 1 (here the numbers refer to the values of n and the
letters s, p,d, f ,g, . . . denote states with l = 0,1,2,3,4, . . ., respectively). The equidistant energy
spectrum is shown in Fig. 1 (left).

Each oscillator shell contains orbitals with either even or odd values of l and hence it is either
even or odd with respect to the parity operation (9). The total degeneracy of the Nth oscillator shell
for identical spin 1/2 nucleons is

ΩN =
N

∑
l=0or1

2(2l +1) = (N +1)(N +2) , (19)
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Table 1: Notations of single-particle states in the harmonic oscillator potential.
N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 . . .

0s 0p 0d, 1s 0 f , 1p 0g, 1d, 2s 0h, 1 f , 2p . . .

The distance between two different shells is estimated as

~ω = 41A−1/3MeV . (20)

The degeneracy of the oscillator shell can be removed by addition of a centrifugal term (~l ·~l) and
a spin-orbit coupling term (~l ·~s):

ĥ =− ~2

2m
∆+

mω2r2

2
+ fll(r)(~l ·~l)+ fls(r)(~l ·~s) . (21)

The centrifugal term separates states having the same N, but different l quantum numbers as shown
in Fig. 1 (center). Spin-orbit splitting leads to appearance of the states characterized by different
values of the total angular momentum j = l ± 1/2, see Fig. 1 (right). The single-particle wave
function has thus a form of eq.(11).
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N=4
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0d
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1p
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0p3/2

0p1/2

0d5/2

1s1/2
0d3/2

0f7/2

1p3/2
0f5/2
1p1/2

0g9/2

1d5/2

0g7/2
2s1/2
1d3/2
0h11/2

0h9/2
1f7/2

1f5/2
2p3/2

2p1/2

2

8

20

28

50

82

Figure 1: Single-particle level schemes obtained with (i) a harmonic-oscillator potential (14) (left),
(ii) harmonic-oscillator potential plus a centrifugal term (center), (iii) harmonic-oscillator potential
plus both a centrifugal term and a spin-orbit term (right).
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3.3 Isospin
As is well known, the interaction between two protons (Coulomb interaction subtracted), two
neutrons or a proton and a neutron is approximately the same, i.e. vππ ≈ vνν ≈ vπν. It was an
idea of Heisenberg to introduce a new quantum number, isospin, to distinguish between two types
of nucleons. Similarly to the intrinsic spin, nucleons are considered to carry an isospin t = 1/2,
with neutrons being characterized by its projection mt = 1/2 and protons being characterized by
mt = −1/2. Single-particle wave functions of a neutron and a proton can be expressed with the
help of t = 1/2 spinors as

φν(r) = φ(~r)
(

1
0

)
= φ(~r)θt=1/2,mt=1/2 ,

φπ(r) = φ(~r)
(

0
1

)
= φ(~r)θt=1/2,mt=−1/2 .

(22)

Similarly to the angular momentum, we can introduce an isospin operator, a vector~t = 1
2~τ, where

three components of the vector~τ have a form of the Pauli matrices:

τx =
(

0 1
1 0

)
, τy =

(
0 −i
i 0

)
, τz =

(
1 0
0 −1

)
(23)

The ladder operators, t± = 1
2(τx± iτy), thus convert a proton into a neutron and vice versa:

t+φπ(~r) = φν(~r) , t−φπ(~r) = 0
t+φν(~r) = 0 , t−φν(~r) = φπ(~r)

(24)

Thus the full explicit form of a single-nucleon wave function reads

φnls jm,tmt (~r,~s,~t ) = Rnl(r)
[
Yl(θ,ϕ)×χ1/2(~s)

]( j)
m θ1/2(~t) . (25)

The wave function (25) is a coordinate-spin-isospin representation of a state vector |nls jm, tmt〉:

〈~r,~s,~t |nls jm; tmt〉 ≡ φnls jm,tmt (~r,~s,~t) (26)

Isospin operators can be used similarly to the angular momentum operators to construct isospin
states of a many-nucleon system:

T̂ =
A

∑
i=1

t̂i, T̂z =
A

∑
i=1

t̂zi . (27)

Charge independence of a nuclear interaction thus leads to a new symmetry, called an isospin
symmetry. If the Hamiltonian is charge independent, i.e. if it commutes with the total isospin
operator T̂ , [

Ĥ, T̂
]
= 0 . (28)

then the nuclear states of a nucleus with N neutrons and Z protons (A = N +Z) can be characterized
by definite values of T and MT quantum numbers:

MT =
1
2
(N−Z),

1
2
(N−Z)≤ T ≤ A

2
. (29)
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Isospin quantum number represents a convenient way to deal with nucleon wave functions and
it is valid when the nuclear Hamiltonian under consideration does not break the isospin symmetry
(electromagnetic interactions are not considered). An alternative possibility is to label explicitly
nucleon wave function by proton or neutron indices which will lead to equivalent results.

The addition of the Coulomb interaction between protons will break the isospin symmetry.
Since the effect is small, for many purposes it can be accounted within the perturbation theory. The
Coulomb interaction can be expressed in the isospin formalism as a following sum over valence
protons

V̂Coulomb = ∑
i< j

[
1
2

+ t̂z(i)
][

1
2

+ t̂z( j)
]

e2

r
. (30)

and therefore, represents a sum of ranks k = 0,1,2 tensors in isospace:

V̂Coulomb = V̂ (T=0) +V̂ (T=1) +V̂ (T=2) . (31)

Thus, the nuclear states can still be characterized by the total isospin quantum number T , however,
the states of an isospin multiplet are splitted according to the rule

E(T,Tz) = a(T )+b(T )MT + c(T )M2
T , (32)

known as the isobaric multiplet mass equation (see Refs. [71, 36, 11] for more details).
Exercise. Starting from the expression (30) get eq. (32).

4 Solution of the eigenproblem
Single-particle wave functions are used to construct many-body states which will serve as a basis
to diagonalize the residual interaction. The following two methods to construct basis states are
most frequently used in practical calculations.

4.1 m-scheme basis
An efficient way to construct a basis numerically is provided by the so-called m-scheme. The basic
blocks are Slater determinants — normalized and antisymmetrized products of A single-particle
wave functions occupying A different states:

Φα(1,2, . . . ,A)≡ Φα1α2...αA(1,2, . . . ,A) =
1√
A!

∣∣∣∣∣∣∣∣∣
φα1(~r1) φα1(~r2) . . . φα1(~rA)
φα2(~r1) φα2(~r2) . . . φα2(~rA)

...
... . . . ...

φαA(~r1) φαA(~r2) . . . φαA(~rA)

∣∣∣∣∣∣∣∣∣ (33)

where αi = (ni, li, ji,mi) and α stores a set of single-particle configurations {α1,α2, . . . ,αA}. It
is clear that the wave function (33) does not possess a certain J value and only its projection

M =
A
∑

i=1
mi is a good quantum number.

The many-particle wave functions constructed in such a way are eigenfunctions of the Schrödinger
equation for an independent particle Hamiltonian Ĥ(0) (4):

Ĥ(0)
Φα(1,2, . . . ,A) = E(0)

α Φα(1,2, . . . ,A) . (34)

8



with E(0)
α being a sum of single-particle energies from (10):

E(0)
α =

A

∑
i=1

εαi , (35)

All such functions in a given configuration space will form a basis. In practice, one first projects
them on the states with good values of J,T and then performs diagonalization of the residual inter-
action.
Exercise. Consider three identical nucleons in a 0 f7/2 orbital. The state

with the maximum M-value |M = 15
2 〉 = |m1m2m3〉 = |72

5
2

3
2〉 corresponds to the maximum

value of J = 15/2. Distributing particles among different m-substates in all
possible ways, find which J-values can be constructed.

4.2 J(T )-coupled basis
A more complicated way to get a basis of many-body states is to construct from antisymmetrized
and normalized products of single-particle states linear combinations corresponding to a good an-
gular momentum value J, using angular momentum algebra. The same procedure can be performed
with nucleon isospin operators, coupling them to a good total isospin T .

Let us consider a 2-particle system. We will require a two-particle wave function to be anti-
symmetric with respect to interchange of all coordinates of the two nucleons and to have definite
values of the total angular momentum J and total isospin T . It is easy to verify that the wave
function will have a form

Φ
ab
JMT MT

(1,2) =
{

[φa(~r1)×φb(~r2)]
(J)
M +(−1) ja+ jb+J+T [φb(~r1)×φa(~r2)]

(J)
M

}
ΘT MT√

2(1+δab)
. (36)

Here instead of Greek letters referring to four quantum numbers of a nucleon single-particle state
(α), we will use notation a = (nala ja) to denote three quantum labels and a separate notation for the
angular momentum projection ma, while× sign denotes a tensorial product of two tensor operators
of ranks ja and jb which is performed by use of the Clebsch-Gordan coefficients. The total angular
momentum thus takes values J = | ja− jb|, | ja− jb|+1, . . . , ja + jb, while M =−J,−J +1, . . . ,J−
1,J. Θ is a two-nucleon isospin part which can be expressed as

Θ1,1 = θ1/2,1/2(1)θ1/2,1/2(2) ,
Θ1,−1 = θ1/2,−1/2(1)θ1/2,−1/2(2) ,
Θ1,0 =

[
θ1/2,1/2(1)θ1/2,−1/2(2)+θ1/2,−1/2(1)θ1/2,1/2(2)

]
/
√

2 ,

Θ0,0 =
[
θ1/2,1/2(1)θ1/2,−1/2(2)−θ1/2,−1/2(1)θ1/2,1/2(2)

]
/
√

2 ,

(37)

where the Clebsch-Gordan coefficients in isospace are written explicitly.
We will remark an important case when ja = jb = j. Due to the antisymmetry, the total wave

function exists only when (J +T ) is odd. This means that for two identical nucleons on the same
j-shell, the total J can take only even values J = 0,2, . . . ,2 j−1.

Similarly, a many-particle wave function can be constructed. For Na particles in a state coupled
to Ja angular momentum, Nb particles in b state coupled to Jb angular momentum and so on, a
many-particle wave function which can be denoted as

Φ
a(Na)χaJa,b(Nb)χbJb,...
JMT MT

(1,2, . . . ,A) , (38)
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where χi are the other quantum numbers. The energy levels can be also be denoted as E(0)
JT .

Let us suppose that we have wave functions of (N− 1) identical nucleons in a single j-shell,
which are orthonormalized, antisymmetric and characterized by certain value of J′ obtained by
all possible ways (χ′ will distinguish between different ways of coupling to the same J′). To get
an N-particle wave function, totally antisymmetric and characterized by a definite value of J, we
have to couple a single-particle wave function to an (N − 1)-particle one and to antisymmetrize
the products. The coefficients which realize this procedure are called one-particle coefficients of
fractional parentage (cfp’s) [17]:

Φ
j(N)
χJM = ∑

χ′J′

[
jN−1(χ′J′) j|

}
jN

χJ
]

Φ
j(N−1)
χ′J′M′ φ jm , (39)

where summation is done over all possible values of J′ compatible with ~J = ~J′+~j, and all values
of χ′ distinguishing different realizations of (J′). The procedure can be generalized to include the
isospin quantum number T as in the example above of a two-nucleon case (summation will be
performed then over all possible values of (J′,T ′)).

A many-particle wave functions with nucleons occupying different j-orbitals can be obtained
first by creating antisymmetrized wave functions for groups of nucleons in each j-shell and then
by coupling and antisymmetrization between different groups (see [42]).

4.3 Diagonalization of the shell-model Hamiltonian
We would like now to solve the Schrödinger equation for Ĥ = Ĥ(0) + V̂ . Let us suppose that
we have constructed a basis of many-body states, for example, by coupling single-particle states
to good (J,T ) values using cfp’s, which are eigenfunctions of the Schrödinger equation for an
independent particle Hamiltonian H(0):

Ĥ(0)
ΦJT,k(1,2, . . . ,A) = E(0)

JT,kΦJT,k(1,2, . . . ,A) . (40)

The energy of a given state (JT )k is a sum of single-particle energies

E(0)
JT,k =

A

∑
i=1

εi . (41)

Below we will suppress the indices (J,T ) and denote the basis states as |Φk〉, k = 1, . . . ,d and
corresponding energies as E(0)

k , k = 1, . . . ,d (here d denotes the number of basis states |Φk〉 con-
sidered, or the dimension of the model space). Then we have to take into account V̂ , i.e. we solve
the eigenvalue problem

Ĥ|Ψp〉= Ep|Ψp〉 . (42)

We are looking for the wave functions |Ψ〉 of the system in the form

|Ψp〉=
d

∑
k=1

akp|Φk〉 , (43)

with the normalization condition
d

∑
k=1

a2
kp = 1 with p = 1, . . . ,d . (44)
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Since the Hamiltonian Ĥ is invariant in the space and isospace, its eigenstates are characterized by
good values of the total angular momentum J and isospin T . In other words, the functions ΨJT,p
and ΦJT,k have the same labels (JT ) which we suppressed in the equation (43) as well to simplify
the notations. Substituting (43) into equation (42), we get

(Ĥ(0) +V̂ )
d

∑
k=1

akp|Φk〉= Ep

d

∑
k=1

akp|Φk〉 . (45)

Multiplying this equation from the left-hand side by 〈Φl| and making use of the orthonormality of
the basis functions Φk, we get a system of equations

d

∑
k=1

Hlkakp = Epal p , (46)

where the matrix elements of the Hamiltonian Ĥ are given by

Hlk ≡ 〈Φl|Ĥ|Φk〉= E(0)
k δlk +Vlk , (47)

with E(0)
k representing a sum of single-particle energies and

Vlk = 〈Φl|V̂ |Φk〉 . (48)

For a two-body interaction V̂ , the matrix elements (48) are expressed in terms of the matrix ele-
ments between two-nucleon states. Thus, we have to diagonalize the matrix Hlk and to find the
eigenvalues Ep and the coefficients akp. Since the basis is orthogonal and normalized, the eigen-
vectors belonging to different eigenvalues are necessarily orthogonal and can be normalized such
that

d

∑
k=1

akpakp′ = δpp′ for Ep 6= Ep′ . (49)

If Ep = Ep′ , but p 6= p′, the corresponding eigenvectors Ψp and Ψp′ can be made orthonormal by
some orthogonalization procedure.

There exist different numerical algorithms for matrix diagonalization: the Jacobi method for
small matrices (d ≤ 50), the Householder method for matrices with 50 ≤ d ≤ 200, the Lanczos
method for dimensions d ≥ 200 and for giant matrices [18].

We can estimate the dimension of the configuration space in m-scheme for Nπ protons in the
space of dimension Ωπ = ∑ jπ(2 jπ +1) and Nν neutrons in the space of dimension Ων = ∑ jν(2 jν +
1). It is given by the product of binomial coefficients(

Ωπ

Nπ

)(
Ων

Nν

)
(50)

This is the total dimension of the space. We can reduce it taking into account invariance of the
Hamiltonian with respect to the total angular momentum J and isospin T .

It is clear that the model space becomes quickly huge for numerical treatment as the number of
nucleons increases. Only the light nuclei can be described by the no-core calculations [45], when
all nucleons are taken into account in a space of a few or even many oscillator shells. For heavier
nuclei, in practice, one usually takes into account all possible configurations of Nπ valence protons
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and Nν valence neutrons in a valence space (orbitals which can be occupied) beyond the closed
shell core which is supposed to be inert. The orbitals lying energetically higher than the valence
space are kept always free, however, part of low-lying excitations of valence particle to those free
orbitals, as well as core excitations, should be effectively incorporated in the residual interaction
(section 5).

Even though, the dimension of the space grows very quickly. For example, consider 60
30Zn30

which can be modeled by 10 valence protons and 10 valence neutrons beyond 40
20Ca20 closed-shell

core in (1p0 f ) shell-model space. The dimension of the basis states is given by

d(60Zn) =
(

20
10

)(
20
10

)
≈ 3.4×1010. (51)

Such cases requires state-of-the-art calculations and highly efficient codes. The top list includes
m-scheme codes ANTOINE [19], OXBASH [13], MSHELL [44], Oslo code [1], REDSTICK
code [51] (for no-core shell model), while among J(T )-coupled codes we will mention NATHAN [19],
Drexel code DUPSM [69]. Modern achievements in nuclear physics community in treating giant
matrices and accuracy reached by now in the description of nuclear spectra can be found in re-
views [54, 18]

As a practical example, let us calculate the energies of 0+ states in 18O. We will model it by
two neutrons beyond 16O core in (1s0d) shell-model space. First, we need to get single-particle
energies. These can be extracted as difference in binding energies between 17O and 16O. The
ground state of 17O is supposed to correspond to 0d5/2 configuration, while the first two excited
states 1/2+ and 3/2+ can be assumed to contain dominant 1s1/2 and 0d3/2 single-particle states,
respectively. Thus, we have

ε0d5/2 = BE(17O)−BE(16O) = (−131.762+127.619) MeV =−4.143 MeV
ε1s1/2 = ε0d5/2 +E(17O(1/2+

1 )) =−3.273 MeV
ε0d3/2 = ε0d5/2 +E(17O(3/2+

1 )) =−0.942 MeV
(52)

As the interaction between two valence neutrons (48), we have to know the set of two-body matrix
elements (TBME’s) 〈ab;JT |V |cd;JT 〉 with (JT ) = (01). We will take the values of the two-body
matrix elements from USD interaction [16] which will be described in the next section (although
USD uses slightly different single-particle energies). The only necessary matrix elements are three
diagonal ones

〈(0d5/2)2;01|V |(0d5/2)2;01〉=−2.82 MeV
〈(0d5/2)2;01|V |(0d3/2)2;01〉=−3.186 MeV
〈(1s1/2)2;01|V |(1s1/2)2;01〉=−2.125 MeV

(53)

and three off-diagonal ones :

〈(1s1/2)2;01|V |(0d5/2)2;01〉=−0.1325 MeV
〈(0d3/2)2;01|V |(0d3/2)2;01〉=−2.185 MeV
〈(1s1/2)2;01|V |(0d3/2)2;01〉=−1.084 MeV

(54)

Diagonalization of this (3× 3) matrix gives rise to three eigenvalues E(0+
1 ) = −12.95 MeV,

E(0+
2 ) = −8.10 MeV, E(0+

3 ) = −2.79 MeV, which leads to the following excitation spectrum
with the respect to the lowset eigenstate: E(0+

g.s.) = 0 MeV,E(0+
2 ) = 4.85 MeV, E(0+

3 ) = 10.16
MeV.
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Exercise. Calculate excitation energies of 3+ states in 18O in sd-shell model
space, if

〈1s1/20d5/2;31|V |1s1/20d5/2;31〉= 0.7626 MeV
〈0d5/20d3/2;31|V |0d5/20d3/2;31〉= 0.5894 MeV
〈1s1/20d5/2;31|V |0d5/20d3/2;31〉= 0.6741 MeV

5 Effective interaction
The only ingredient which we have not discussed yet is the residual interaction V̂ .

5.1 Basic properties of the NN interaction
The bare NN interaction is the interaction between two free nucleons. It is considered in detail in
the lecture of E.Epelbaum, with the special emphasize on the modern approach based on the chiral
perturbation theory.

In the following sections, discussing shell evolution, we will be referring to a general structure
of the NN potential, taking some of its components as a schematic effective interaction. This is
why in this section we will discuss the general properties of the NN potential.

We assume that (i) nucleons are basically non-relativistic particles and they do not have any
substructure, (ii) they interact via a potential, (iii) only two-body effects are considered. From the
symmetry properties (see lecture of E.Epelbaum), we may construct the following components of
the NN potential.

• The central force does not depend on the velocity (a local force) and contains only scalar
products of~σ and~τ operators:

VC(1,2) = V0(r)+Vσ(r)~σ1 · ~σ2 +Vτ(r)~τ1 ·~τ2 +Vστ(r)~σ1 · ~σ2 ~τ1 ·~τ2 . (55)

The central force can be expressed alternatively using spin and isospin exchange operators:

P̂σ =
1
2

(1+ ~σ1 · ~σ2) , P̂τ =
1
2

(1+~τ1 ·~τ2) . (56)

The operator P̂σ thus produces no change in the wave function when acting on a spin-triplet
state (S = 1) and gives a minus sign when acting on a spin-singlet state (S = 0). Similar
relations hold for P̂τ. The exchange operator for spatial coordinates, P̂r can be defined via
the relation:

P̂rP̂σP̂τ =−1 (57)

since the two-nucleon wave function is totally antisymmetric under the interchange of all
coordinates of particles 1 and 2.

Using (56), we can rewrite (55) as

VC(1,2) = VW (r)+VM(r)P̂r +VB(r)P̂σ +VH(r)P̂rP̂σ (58)

where
VW = V0−Vσ−Vτ +Vστ Wigner force
VM =−4Vστ Majorana force
VB = 2Vσ−2Vστ Bartlett force
VH =−2Vτ +2Vστ Heisenberg force

(59)
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Another useful way to express the central force is by using projection operators:

Π̂σ
s = 1

2

(
1− P̂σ

)
, Π̂σ

t = 1
2

(
1+ P̂σ

)
,

Π̂τ
s = 1

2

(
1− P̂τ

)
, Π̂τ

t = 1
2

(
1+ P̂τ

)
,

(60)

which project onto spin or isospin single (s) or triplet (t) states. The central force can be thus
expressed as

VC(1,2) = VSE(r)Π̂σ
s Π̂

τ
t +VTO(r)Π̂σ

t Π̂
τ
t +VSO(r)Π̂σ

s Π̂
τ
s +VT E(r)Π̂σ

t Π̂
τ
s (61)

where different terms mean sinlet-even (SE), triplet-odd (TO), singlet-odd (SO) and triplet-
even (TE) components.
Exercise. Express strengths VSE, VTO, VT E, VSO from (61) in terms of V0,
Vσ, Vτ, Vστ.

• The two-body tensor force also has a local character:

VT N(1,2) = VT N(r)(vt0 + vtt~τ1 ·~τ2)
(

(~σ1 ·~r)(~σ2 ·~r)
r2 − 1

3
~σ1 · ~σ2

)
. (62)

Recoupling ~σ2 and~r operators, one can get an equivalent expression:

VT N(1,2) = VT N(r)(vt0 + vtt~τ1 ·~τ2) [~r×~r](2) · [~σ1× ~σ2]
(2) . (63)

Exercise. Get expression (63) from (62).

The tensor force connects only states with S = 1, therefore it has non-zero matrix elements
only between triplet states. Using projection operators (60), the tensor force can be repre-
sented as a sum of two components, tensor-even (TNE) and tensor-odd (TNO):

VT N(1,2) =
(
VT NE(r)Π̂τ

s +VT NO(r)Π̂τ
t
)
[~r×~r](2) · [~σ1× ~σ2]

(2) . (64)

• Two-body spin-orbit force has a non-local structure (velocity dependent force):

VLS(1,2) = VLS(r)(vls0 + vlst~τ1 ·~τ2) ~l ·~S , (65)

where l is a relative orbital angular momentum operator of a two-body state. Similarly, the
two-body spin-orbit force can be expressed in terms of the projection operators as

VLS(1,2) = VLSE(r)~l ·~S Π̂
τ
s +VLSO(r)~l ·~S Π̂

τ
t , (66)

where again we see that the spin-orbit force connects only triplet states (S = 1).

We will not consider here a second-order spin-orbit term.

The radial dependence of different terms can be parametrized using simple central potentials.
On of the most useful is the Yukawa potential form,

V (1,2) = V0
exp(−µr)

µr
. (67)
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Meson-exchange theories provide a theoretical basis to the Yukawa-type radial dependence and
lead naturally to a central, tensor and spin-orbit terms, with the strengths related to meson and
nucleon coupling constants. The µ parameter in (67) is related to the Compton wavelength of an
exchanged meson, 1/µ = ~/mc where m is the meson mass. Such potentials are characterized by
an infinite core at short distances, which is not suitable for application in many-body calculations.
In addition, nucleons inside a nucleus obey the Pauli principle. In the next section we will consider
different ways to construct effective interaction from the bare NN force. We will also describe
schematic and empirical interactions used within the shell model. In general, the central, tensor
and spin-orbit components of the NN interaction with reasonably evaluated strengths can also be
used within the shell model for specific purposes, as an estimate of a given force component in the
in-medium interaction. We will refer to such a use in the last section.

5.2 Schematic interaction
Schematic interactions are parametrized functions of nucleon coordinates. They are used to calcu-
late all TBME’s in a given model space:

〈ab;JT |V (1,2)|cd;JT 〉 (68)

where a = (nala ja) denote quantum numbers of one nucleon state.
For example, an interaction between two nucleons can be imagined to be of zero-range (δ-

type):
V (1,2) = V0δ(~r1−~r2)(1+α~σ1 · ~σ2) . (69)

A few parameters, characterizing a schematic interaction, such as V0 and α in (69), are adjusted to
reproduce low-energy spectra of a few neighboring nuclei of interest. These parameters are then
supposed to change from one region of the nuclear chart to another.

Another important interaction is the pairing interaction between alike nucleons. For a constant
pairing force, it is defined as an extra attraction between coupled to J = 0,T = 1 pairs of nucleons,
which results in only non-zero TBME’s of the type

〈a2;01|Vpairing(1,2)|b2;01〉=−(−1)la+lb 1
2

G
√

(2 ja +1)(2 jb +1) , (70)

where G is the strength, and zero matrix elements otherwise.
The last schematic interaction we would like to mention here is the quadrupole-quadrupole in-

teraction which is necessary, in particular, its proton-neutron part, to describe rotation of deformed
nuclei. This is a λ = 2 component of the general (proton-neutron) multipole-multipole interaction
(a separable interaction) of the type:

V (1,2) = ∑
λ

χλ(Qλ ·Qλ) = ∑
λ

χλ rλ
π rλ

ν Yλ(Ωπ) ·Yλ(Ων) . (71)

5.3 Empirical interaction
Schematic interactions possess only local predictive power. A pragmatic approach to get a resid-
ual interaction is to consider all TBME’s in a given model space as free parameters. The energy
eigenvalues obtained after diagonalization can be represented as linear combinations of these pa-
rameters. Hence, the TBME’s of the residual interaction can be adjusted to reproduce experimental
low-energy spectra of nuclei from the model space by a least-square fit procedure.

15



The approach allows to get a good description of nuclei in a given model space. The drawback
is that as the model space increases, the number of parameters increases drastically (15 TBME’s
for (0p)-shell, 63 TBME’s in (1s0d)-shell model space, 195 TBME’s in (1p0 f ) shell model space
and so on). To reach convergence, one uses the so-called linear combination method [16, 54]. Its
meaning is to choose the most important linear combinations of TBME’s to be determined in a fit.
The interaction found in this way describes very accurately the data. The examples of empirical
interactions are the (0p)-shell interaction of Cohen and Kurath [21], the so-called universal (1s0d)-
interaction (USD) [16, 14], the (1p0 f )-shell GXPF1 interaction [34, 35].

5.4 Microscopic interaction
The most fundamental way to get the two-nucleon interaction to be exploited in the many-body
calculations is to derive it from a bare NN potential for free nucleons in a vacuum, by taking
into account medium effects, the Pauli principle and truncated model space. This is why such an
interaction is called an effective interaction. We will briefly describe below two different renormal-
ization procedures1 which help to eliminate the short-range attractive part of the NN interaction
and thus can serve as a first step to the construction of the microscopic effective interaction.

5.4.1 Many-body perturbation theory and G-matrix

The traditional way to get the effective shell-model interaction was via calculation of the so-called
G-matrix and then computation of the effective interaction between two nucleons in the valence
space. We will only sketch the basic ideas behind the approach based on the time-independent
perturbation theory (see Refs. [10, 40, 33] for detail), while the time-dependent perturbation theory
formalism can be find elsewhere [40, 33].

We have to solve the Schrödinger equation

ĤΨ = (Ĥ(0) +V̂ )Ψ = EΨ , (72)

where Ĥ(0) is an unperturbed A-nucleon Hamiltonian as defined by (4), Ψ is the true wave function,
which should be expanded in basis of the solutions for Ĥ(0) as

Ψ =
∞

∑
k=1

akΦk . (73)

However, we cannot solve this equation in a full Hilbert space and we replace this expansion by a
similar one, but in a restricted model space:

Ψ
M = ∑

k∈M
akΦk . (74)

Thus, we would like to solve the Schrödinger equation for a model wave function, however, to get
true eigenvalues. This means that we need to change also the interaction V by an effective one
Ve f f :

Ĥe f f Ψ
M = (Ĥ(0) +V̂e f f )ΨM = EΨ

M (75)

1Other techniques are developed for no-core shell model [45] or coupled-cluster approaches [23] which are beyond
the scope of the present course.
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To continue we introduce projection operators P̂ and Q̂ with the following properties which project
the true wave function onto and off the model space M:

P̂ = ∑
k∈M

|Φk〉〈Φk|

Q̂ = ∑
k/∈M

|Φk〉〈Φk|
(76)

These operators satisfy the following decoupling properties:

P̂+ Q̂ = 1 ,

P̂2 = P̂, Q̂2 = Q̂ ,

P̂Q̂ = Q̂P̂ = 0 ,

(77)

and they commute with the unperturbed Hamiltonian:[
P̂, Ĥ(0)

]
=

[
Q̂, Ĥ(0)

]
= 0 . (78)

Starting from two equations
P̂(Ĥ−E)Ψ = 0
Q̂(Ĥ−E)Ψ = 0

(79)

one can get the following relation between Ve f f and V :

V̂e f f = V̂ +V̂
Q̂

E− Ĥ(0)
V̂e f f (80)

and a similar relation between the truncated wave function ΨM and a true one Ψ:

Ψ = Ψ
M +

Q̂
E− Ĥ(0)

V̂ Ψ . (81)

Exercise: Obtain eqs. (80) and (81).
The inconvenience of these equations is that Ve f f and ΨM depend on the true energy E which

is not known. However, representing E as

E = E(0)
c +∆Ec +E(0)

v +∆Ecv , (82)

where E(0)
c is an unperturbed core energy, E(0)

c +∆Ec is the true core energy, E(0)
v is an unperturbed

valence energy and ∆Ecv is the rest, one can show [10] that eq. (80) can be rewritten for valence
nucleons as

V̂e f f = V̂ +V̂
Q̂

Ev− Ĥ(0)
v

V̂e f f

= V̂ +V̂
Q̂

Ev− Ĥ(0)
v

V̂ +V̂
Q̂

Ev− Ĥ(0)
v

V̂
Q̂

Ev− Ĥ(0)
v

V̂ + . . . , (83)

where Ĥ(0)
v is an unperturbed Hamiltonian for valence particles. These series can be evaluated

by using a diagrammatic technique. The summations include only the special class of diagrams,
linked and folded diagrams [10].
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The standard approach to this equation was to sum first an infinite class of diagrams, called
ladder diagrams which result in the Brückner’s reaction G-matrix, solution of the Bethe-Goldstone
equation [8]:

Ĝ(ω) = V̂ +V̂
Q̂2p

ω− Ĥ(0)
2p

Ĝ(ω) , (84)

where H(0)
2p is an unperturbed Hamiltonian of the intermediate two-particle, the Pauli operator Q̂2p

produces a non-vanishing result only if it acts on a pair of particles, both of which are beyond
the Fermi level. The parameter ω represents the so-called starting energy at which G-matrix is
evaluated. It is considered as a softer interaction compared to the bare NN potential. Evaluation of
the G-matrix for finite nuclei can be found in Refs. [5, 33].

As a second step, the G-matrix is used to calculate the effective interaction for the model space
to be used in the shell-model calculations:

V̂e f f = Ĝ+ Ĝ
Q̂′

Ev− Ĥ(0)
v

V̂e f f

= Ĝ+ Ĝ
Q̂′

Ev− Ĥ(0)
v

Ĝ+ Ĝ
Q̂′

Ev− Ĥ(0)
v

Ĝ
Q̂′

Ev− Ĥ(0)
v

Ĝ+ . . . . (85)

where the prime on the projection operator Q̂′ indicates that the ladder diagrams are excluded. Thus
the effective interaction is given as a perturbation expansion in orders of G. The leading order term
in this expression is given by the G-matrix itself. Calculations for finite nuclei in valence spaces
show necessity to go beyond, taking into account higher order terms, such as core-polarization and
so on [41]. More details and the current status can be found in Refs. [33].

In spite of much progress in development of techniques to get Ve f f via (85), numerical eval-
uation of the last equation is very complicated. In addition, it is not clear whether the series
converges, i.e. whether a next order term in the expansion is smaller than the previous one. It
is very difficult to go beyond the second order term in perturbation and it is hard to incorporate
three-nucleon interactions.

5.4.2 Vlow−k

Recently, a new approach to get a soft interaction has been developed. The high-momentum com-
ponent of the bare NN-interaction is integrated out down to a given cut-off momentum Λ within
the renormalization group approach, resulting in a so-called Vlow−k (see [9] and the lecture of
Th. Duguet in this volume). For a cut-off Λ∼ 2.1 fm−1, low-momentum interactions derived from
different bare NN potentials are very similar to each other. The soft interaction brings promising
results in studies of nuclear matter properties. It is possible to incorporate three-body forces pro-
vided by effective-field theory potentials [70, 26, 27] (and lecture of E. Epelbaum in this volume),
what is very important for application in nuclear spectroscopy within the shell-model approach.

To be applied in the shell model calculations for heavy nuclei in a valence space, core-polarization
and other diagrams should be added to Vlow−k. For first applications within the shell model see [22]
and references therein.

Up to now, either microscopic interaction based on the G-matrix, or on Vlow−k, derived from
two-nucleon potential, leads to a reasonable description of nuclei with two or a few valence nucle-
ons beyond a closed shell core in a one-oscillator shell valence space. As soon as the model space
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increases, the agreement deteriorates. The plausible reason is the absence of many-body forces, in
particular, the lack of a three-body force. As shows a systematic analysis, it is always mainly the
monopole part of the interaction which requires modifications [59]. This is why for successful de-
scription, microscopically obtained TBME’s are subjected to an adjustment to known experimental
data in the model space. This can be performed either by minimal monopole changes [59, 43, 48],
or by a least-square fit [34, 54]. As the number of TBME’s gets important, a microscopic effec-
tive interaction serves as a starting point to get a good realistic interaction. The descriptive and
predictive power of such interactions is very high (see [18] for numerous examples).

6 Multipole-multipole decomposition
To proceed with the analysis of the changes in the shell structure and appearance or disappearance
of magic numbers we will need to deal with the multipole-multipole decomposition of the shell-
model Hamiltonian which has to be performed in the occupation number formalism, or sometimes
called second quantization.

6.1 Second-quantization

In a second quantization formalism, we introduce nucleon creation operator a†
α which creates a

single-particle state |α〉 acting on a vacuum state |0〉:

|α〉= a†
α|0〉 (86)

and the corresponding annihilation operator

〈α|= 〈0|aα , (87)

with the annihilation operator aα being a Hermitean conjugate of the creation operator a†
α:

aα =
(

a†
α

)†
(88)

The coordinate representation of the single-particle state α is given by the single-particle wave
function discussed above:

〈~r|α〉= φα(~r) (89)

These fermion creation and annihilation operators satisfy (anti)commutation relations:{
a†

α,aβ

}
= a†

αaβ +aβa†
α = δαβ ,{

a†
α,a†

β

}
=

{
aα,aβ

}
= 0 .

(90)

Thus an A-nucleon antisymmetric state can be expressed as

|α1α2 . . .αA〉= a†
αA

a†
αA−1

. . .a†
α2

a†
α1
|0〉 . (91)

Operators have also to be expressed in a second-quantization formalism. A symmetric one-body
operator acting on a system of A identical fermions,

Ô =
A

∑
k=1

Ô(~rk) , (92)
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is characterized by its matrix elements between one-body states:

〈α|Ô|β〉=
Z

φ
∗
α(~r)Ô(~r)φβ(~r)d~r . (93)

It is easy to verify that the second-quantized expression for this operator is given by

Ô = ∑
αβ

〈α|Ô|β〉a†
αaβ . (94)

For example, the number operator reads as

N̂ = ∑
αβ

〈α|1̂|β〉a†
αaβ = ∑

α

a†
αaα . (95)

Similarly, a symmetric two-body operator acting on a system of A identical fermions

T̂ =
A

∑
j<k=1

T̂ (~rk,~r j) (96)

is characterized by its matrix elements between normalized antisymmetric two-body states:

〈αβ|T̂ |γδ〉=
Z

φ
∗
α(~r1)φ∗β(~r2)T̂ (~r1,~r2)

(
1− P̂12

)
φγ(~r1)φδ(~r2)d~r1d~r2 , (97)

where P̂12 is an exchange operator. It can be shown that this operator may be equivalently expressed
in a second-quantization formalism as

T̂ =
1
4 ∑

αβγδ

〈αβ|T̂ |γδ〉a†
αa†

β
aδaγ . (98)

The shell model Hamiltonian (3), containing a one-body term (Ĥ(0)), and a two-body term (V̂ ),
can be thus rewritten in a second-quantization formalism in the following way:

Ĥ = ∑
α

εαa†
αaα +

1
4 ∑

αβγδ

〈αβ|V̂ |γδ〉a†
αa†

β
aδaγ , (99)

where the one-body term is diagonal in the harmonic-oscillator basis.

6.2 Second-quantization and angular momentum coupling
In the nuclear shell model the angular momentum is conserved, therefore, it is convenient to work
with angular momentum coupled states. Creation operators a†

α represent spherical tensors of rank
jα. As in section 4.2, instead of a single-partile state notation α, we will use notation a = (nala ja)
to denote three quantum labels and a separate notation for the angular momentum projection ma.
A creation operator a†

α will be represented as a†
ama

. A state of two fermions coupled to a certain
angular momentum J can be constructed using the Clebsch-Gordan coefficients:

|ab;JM〉 ≡ |(nala ja)(nblb jb);JM〉=− 1√
1+δab

∑
mamb

( jama jbmb|JM)a†
ama

a†
bmb

|0〉

= − 1√
1+δab

[
a†

a×a†
b

]J

M
|0〉 . (100)
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Here δab ≡ δnanbδlalbδ ja jb . Similarly, in using the isospin formalism, one may need to express an
antisymmetric two-body state characterized by good J and T values:

|ab;JMT MT 〉=− 1√
1+δab

[
a†

a 1
2
×a†

b 1
2

]JT

MMT

|0〉 . (101)

For further discussion, we will need to transform the residual interaction (a two-body term
from (99)) to a coupled form using angular momentum coupling:

V̂ =−1
4 ∑

abcd,J
〈ab;JM|V̂ |cd;JM〉

√
2J +1

√
(1+δab)(1+δcd)

[[
a†

a×a†
b

](J)
× [ãc× ãd]

(J)
](0)

0
.

(102)
Here we introduced annihilation operators with the phase ãcmc = (−1) jc+mcac,−mc which have
good transformation properties under rotations. Expression (102) can be generalized to the case of
isospin formalism as

V̂ =−1
4 ∑

abcd,JT

√
(2J +1)(2T +1)

√
(1+δab)(1+δcd)〈ab;JMT MT |V̂ |cd;JMT MT 〉[[

a†
a 1

2
×a†

b 1
2

](JT )

×
[
ãc 1

2
× ãd 1

2

](JT )
](0)

0

.
(103)

The form of the residual interaction as in (102)-(103) is called a particle-particle representation.
For further consideration, we will need also another form, called a particle-hole (or multipole)
representation. To get it, we have to interchange the operators a†

b and ãc, using commutation
relations and preserving a coupled form of the expression. Assuming that the model space contains
only orbitals from one or two neighboring oscillator shells (otherwise extra terms would appear in
the expression below due to the presence of the orbitals with the same (l j) quantum numbers, but
different n-values), we obtain a multipole representation the two-body interaction (102):

V̂ =
1
4 ∑

abcd,λ

wλ

abcd

√
2λ+1

√
(1+δab)(1+δcd)

[[
a†

a× ãc

](λ)
×

[
a†

b× ãd

](λ)
](0)

0
. (104)

The parameters wλ

abcd can be obtained from the two-body matrix elements of the residual interac-
tion V̂ entering expression (102). For a proton-neutron part of V̂ , we have

wλ

abcd = ∑
J

(2J +1)(−1) jc+ jb−λ−J
{

ja jb J
jd jc λ

}
〈ab;JM|V̂ |cd;JM〉 . (105)

Eq. (104) can be generalized to the isospin quantum number:

V̂ =
1
4 ∑

abcd,λτ

wλτ

abcd

√
(2λ+1)(2τ+1)

√
(1+δab)(1+δcd)

[[
a†

a 1
2
× ãc 1

2

](λτ)

×
[

a†
b 1

2
× ãd 1

2

](λτ)
](0)

0

.

(106)
The multipole expansion of the residual interaction (104) or (106) is extremely important. It

allows to separate the shell-model Hamiltonian into the monopole part [3, 59, 75, 18], i.e. all one-
body and λ = 0 terms in (104) or (λτ) = (00) and (01) terms in the expression (106), and the rest
called a multipole part. In the next two sections we will discuss their physical meaning and their
role in the formation of nuclear spectra.
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6.3 Monopole Hamiltonian and effective single-particle energies
In the proton-neutron formalism, if the model space contains only one or two neighboring oscillator
shells, the monopole Hamiltonian has a diagonal form and can be expressed in terms of neutron
and proton number operators:

Ĥmon = ∑
a

ε
ν
aN̂ν

a +∑
a

ε
π
aN̂π

a +∑
ab

V̄ νπ

ab N̂ν
a N̂π

b +

∑
a≤b

N̂ν
a (N̂ν

b −δab)
1+δab

V̄ νν

ab + ∑
a≤b

N̂π
a (N̂π

b −δab)
1+δab

V̄ ππ

ab .
(107)

The matrix elements with a bar represent angular-momentum averaged TBME’s, or centroids of
the interaction:

V̄ ρρ′

ab =
∑
J
〈ab;JM|V |ab;JM〉(2J +1)

∑
J
(2J +1)

(108)

where ρ,ρ′ stand for π or ν (a proton or a neutron), a,b run over valence orbitals and angular
momentum J takes all allowed values.
Exercise. Show that the centroid of a separable multipole-multipole proton-
neutron interaction (71) is non-zero only for its monopole (λ = 0) component.

The monopole Hamiltonian (107) represents a spherical mean field as extracted from the inter-
acting shell model. The single-particle states in this average potential are called effective single-
particle energies (ESPE’s). These can be defined as a nucleon separation energy for an unoccupied
orbital or the extra energy necessary to extract a nucleon from a fully occupied orbital (taken with
an opposite sign).

From expression (107) one can get that in a series of isotopes or isotones, ESPE of a given
a-state of ρ-type of nucleons can be calculated as

ε̃
ρ
a(A) = ε

ρ
a(A0)+∑

b
V̄ ρρ′

ab 〈N̂ρ′

b 〉 (109)

where ρ′ denote neutrons or protons, respectively.
A given configuration (or particle distribution over valence orbitals) is characterized by certain

nucleon occupation numbers (Na,Nb, . . .) in the valence space of the oscillator orbitals a, b, etc.
In the case of normal filling (all orbitals are occupied up to a Fermi level), Na, Nb, etc are integer
numbers and the eigenenergy of the monopole Hamiltonian can be simply calculated for a given
two-body interaction using (107). For example, the ESPE of the ν0 f7/2 orbital at Z = 8, N = 20
is the difference between the total energy obtained from (107) for 28O in its ground state and 29O
with an extra neutron in the 0 f7/2 state. It is important to note that nuclei with one particle or one
hole beyond the closed shell core are the best examples to check the monopole field, since in these
cases other particle-particle correlations are often negligible and one can associate single-particle
centroids with the eigenstates of the monopole Hamiltonian. In Fig. 2 we show calculated neutron
ESPE’s for N = 20 isotones in the (1s0d1p0 f ) shell-model space, evaluated only for nuclei with
fully occupied sub-shells: 28O, 34Si, 36S and 40Ca. It is well seen that ESPE’s are not constant as
a function of proton number, but represent linear functions according to the following equation:

ε̃
ν
a(A) = ε

ν
a(

28O)+∑
b

V̄ νπ

ab Nπ

b , (110)
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Figure 2: Variation of the neutron ESPE’s in N =20 isotones from O to Ca calculated using the
realistic interaction [50].

where summation is performed over proton orbitals. Thus, the shift of the ESPE’s is due to the
monopole part of the proton-neutron matrix elements (108). The bigger the overlap of the proton
and neutron radial wave functions and the higher the j-values of the orbitals considered will lead,
in general, to more drastic changes.

We see very well the shell structure. For nuclei from A = 34 to A = 40, we notice two separate
oscillator shells, the (1s0d) shell and the higher-lying (1p0 f ) shell with an energy gap of about
7 MeV between them. This is in line with our knowledge on the shell structure for stable nuclei.
However, below 34Si, we may notice that the neutron 0d3/2 state comes closer to the neutron
(1p0 f ) shell, creating a big gap between the 1s1/2 and 0d3/2 states. This is a phenomenon which
will be discussed in the next section.

In nuclei with partially filled orbitals other particle-particle correlations become important and
the role of the monopoles is not easily seen. One particular case of nuclei can however be easily
incorporated in (109). These are nuclei adjacent to semimagic ones, i.e. having an extra proton
(neutron) beyond a closed shell and an even number of nucleons of the other kind. Then the most
important particle-particle correlations at low energies are the pairing correlations among identical
nucleons and these can be taken into account within the BCS approximation (see [28, 65, 30, 63]
for details). For example, let us consider odd-A Cu-isotopes (Z = 29) which can be modeled by a
valence proton and an even number of valence neutrons in the (1p0 f5/20g9/2) shell-model space
beyond the 56Ni closed-shell core. We are interested in the shift of the proton ESPE’s starting
from 57Cu and to heavier Cu-isotopes as a function of neutron number. Expression (109) can
be directly applied with the exception that we need a more precise determination of the neutron
occupation numbers than normal filling. We know that the pairing correlations are important in
semi-magic nuclei. Calculating neutron occupation probabilities v2

jb from the BCS equations for
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valence neutrons, assuming a pure pairing force with a strength G = 23/A, we get

ε̃
π
a(A) = ε

π
a(

57Cu)+∑
b

V̄ πν

ab (2 jb +1)v2
jb (111)

where label a refers to the proton orbitals and b runs over neutron orbitals. Proton ESPE’s from
(111) calculated from a realistic interaction are shown in Fig. 3(b).
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Figure 3: (a) Experimental centroids (if information available) of single-particle states in odd-A
Cu-isotopes; (b) Proton ESPE’s in odd-A Cu-isotopes from the realistic interaction [48], including
the BCS correlations among valence neutrons according to eq. (111).

The monopole part is tightly connected with the single-particle energies defined from spec-
troscopic strengths and may be extracted from experimental data. Following Ref. [4, 68], let us
consider one-nucleon transfer reactions.

• In the case of a closed-shell nucleus, if a nucleon is transferred to an orbital from a valence
space in a stripping reaction, an ESPE of this orbital is defined via

ε̃nl j = ∑
f

S+ j
f i E+ j

f i , (112)

where E+ j
f i = En+1,k f J f −EnkiJi is an excitation energy of the final state of one-nucleon trans-

fer reaction. Here we take into account that final state may carry different J f values and the
S-coefficient is related to a spectroscopic factor,

S+ j
f i =

∣∣∣〈n+1,k f J f ||a+
nl j||nkiJi〉

∣∣∣2

(2 j +1)(2Ji +1)
. (113)
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• In the case of a closed-shell nucleus, if a nucleon is removed from an occupied orbital from
a valence space in a pick-up reaction, an ESPE of this orbital (a one-hole state) can be
expressed as

ε̃nl j = ∑
f

S− j
f i E− j

f i , (114)

where E− j
f i = EnkiJi −En−1,k f J f is an excitation energy of the final state of one-nucleon trans-

fer reaction and

S− j
f i =

∣∣∣〈n,kiJi||a+
nl j||n−1,k f J f 〉

∣∣∣2

(2 j +1)(2Ji +1)
. (115)

• In the case of a nucleus with valence particles (an open-shell nucleus), to get an ESPE of
a partially filled orbital, we have to consider both possibilities, to populate this state by a
nucleon and to remove one nucleon from this state, i.e.

ε̃nl j = ∑
f

S+ j
f i E+ j

f i +∑
f

S− j
f i E− j

f i , (116)

where S± j
f i are defined above and satisfy the following sum rule:

∑
f

S+ j
f i +∑

f
S− j

f i = 1 . (117)

It can be shown [68] that such defined single-particle energies can be obtained in the shell-model
formalism as one-nucleon separation energies from the monopole Hamiltonian (107).

Experimental determination of the single-particle energies, however, is rather difficult in nuclei
with open shells since it requires measurements of the full spectroscopic strength. Even near closed
shells only part of the strength is known. This complicates the comparison between theory and
experiment. As an example, in Fig. 3(a) we show experimental centroids in Cu-isotopes obtained
from stripping reactions on Ni-isotopes from (112). In spite of the fact that the lowest 3/2+ states
and 1/2+ states contain more than half of the proton single-particle contribution of 1p3/2 and 1p1/2
states, respectively, much more data on 5/2− and 9/2+ states in Cu-nuclei is desired. Beyond
65Cu, all indicated states are only lowest levels of a given spin and parity (β-decay experiments
for heavy Cu’s). The effective interaction used in the theoretical calculation [63] does not allow
to reproduce correctly the change of the ground state spin and parity to 5/2− observed already
in 75Cu and expected in heavier odd-A isotopes, however, it reproduces the rapid lowering of the
0 f5/2 state as the occupation of the neutrons 0g9/2 orbital increases (from 69Cu to 79Cu).

6.4 Multipole Hamiltonian
The multipole part of the shell-model Hamiltonian can be defined as the total Hamiltonian minus
its monopole part, i.e.

Hmult = H−Hmon = ∑
abcd,λ6=0

wλ

abcd

[[
a†

a× ãc

](λ)
×

[
a†

b× ãd

](λ)
](0)

0
. (118)

It contains basically all multipoles of the two-body interaction, except for λ = 0 terms. The
most important terms represent isoscalar and isovector pairing, quadrupole-quadrupole interaction,
hexadecapole-hexadecapole term, spin-flip term and other. For the full extraction and discussion
we will refer to Ref. [24, 18].
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7 Shape coexistence and “islands of inversion”
There are numerous indications that the shell structure changes with changing N/Z ratio. Charac-
teristic shell gaps responsible for extra stability at certain values of N and/or Z (magic numbers)
are not the same in nuclei near the valley of stability and in very neutron-rich or neutron-deficient
nuclei. How to understand and describe quenching of a certain shell gap and the onset of de-
formation? The mechanism, discussed below, leads to a phenomenon called shape coexistence
(appearance of spherical and deformed structures at similar excitation energies), well known in
heavier nuclei, and it can lead even to deformed ground states in lighter nuclei with large neutron
excess characterized by ”magic” values of N or Z (nuclei belonging to the so-called “islands of
inversion”).

7.1 Shape coexistence near closed shells
Shape coexistence in nuclei around closed shells is known for long time already [29, 72]. As an
example we will consider here Pb-isotopes. 208

82 Pb126 is a well-known doubly-magic nucleus, its
ground state is spherical and first excited states lie very high in energy. Fig. 4 shows some selected
low-lying states of even-even Pb-isotopes from 206Pb down to the very light 184Pb as neutrons
empty the (0h9/21 f 2p0i13/2) shell-model space. We note an excited 0+ state which appears rather
high in energy in 206Pb and quickly lowers as more and more neutrons are removed . The minimum
is reached near 186Pb where about half of the neutron shell is filled. These 0+ states are known to
correspond to an oblate quadrupole-deformed nuclear shape [72, 37]. Some other members of the
bands are known around 198Pb (in Fig. 4 the oblate-deformed states are shown by lines of green
color in online edition).

Within the shell model they can be approximated as two-particle-two-hole (2p-2h) excita-
tions across the magic Z = 82 shell gap (see schematic picture on the right side of the Fig. 5),
called intruder configurations. Their energy can be evaluated following the approach developed in
Ref. [30]:

Eintruder = 2
(
ε( jπ)− ε( j′π)

)
−∆Eππ

pair +∆Eπν
M +∆Eπν

Q , (119)

where ε( jπ) and ε( j′π) denote proton single-particle energies in the two major shells ( jπ is the
orbital in the upper shell to which the particles are promoted and j′π is the orbital in the formerly
filled shell from where two particles are excited). In the independent single-particle model, such
a 2p-2h excitation energy would be as high as 2(ε( jπ)− ε( j′π)) ' 7 MeV. However, two-body
correlations compensate for such an increase (see left side of Fig. 5 for energy contributions from
different terms of (119) provided jπ runs over proton 0h9/2 and 0i13/2 orbitals, while j′π stands for
the proton 2s1/2 orbital). There is a gain in pairing energy ∆Eππ

pair due to the creation of a particle
pair at jπ and a hole pair at j′π (with respect to a closed-shell configuration). Then, there is a
monopole correction ∆Eπν

M to the single-particle energy due to the changing total proton-neutron
interaction as neutrons are removed (109). Finally, open shell configurations manifest quadrupole-
quadrupole interaction ∆Eπν

Q , which being estimated in a bosonic approximation [30] shows a
parabolic trend as a function of valence neutrons (Fig. 5). The total energy of the 2p-2h intruder
thus shows a spectacular descent from 208Pb to 186Pb leading to rather good agreement with the
experimental trend.

In general, multi-particle-multi-hole (np-nh) excitations across a magic shell gap can take place
in nuclei near shell closures. In the case of Pb-nuclei, many prolate quadrupole-deformed bands
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Figure 4: Low-energy states in Pb-isotopes (from K. Heyde).

have been recently observed in 182−190Pb which are shown by thick lines (of red color in online
edition) in Fig. 4. These are states based on 4p-4h proton excitations across the Z = 82 shell gap.
In particular, three coexisting 0+ states — spherical, oblate and prolate deformed — have been
identified below 1 MeV (three lowest states) in 186Pb [2].

The pairing interaction and the quadrupole-quadrupole interaction are contained in the mul-
tipole part of the shell-model Hamiltonian. So, generally speaking, the relative energy between
spherical and deformed configurations is determined by a competition of the monopole term and
the other multipole terms of the nuclear Hamiltonian.

7.2 “Islands of inversion”
In light neutron-rich nuclei this phenomenon becomes even more pronounced, when deformed
configurations may not only be observed at very low energies, coexisting with the spherical ground
state shape, but even become ground state configurations themselves. In addition, spin and parity
of the ground states of odd-A neighbors confirm inversion of single-particle level structure inherent
to stable nuclei. After 11Be with an unexpected 1/2+ ground state, the first discovery attracting
overall attention was the determination of the 3/2+ ground state of 31Na [67], signifying that this
N = 20 nucleus is deformed at low energies. Later on, it was found out that 32Mg20 is deformed
in its ground state from the low-lying first excited 2+ state and a large B(E2;2+

1 → 0+
g.s.) value.

Since then numerous experimental and theoretical investigations of the nuclear structure have been
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Figure 5: Schematic evaluation of the intruder energy in neutron-deficient Pb-isotopes (from [30]).

Table 2: Experimental data on Mg-isotopes around N = 20.
Nucleus 30Mg18

32Mg20
34Mg22

E(2+
1 ) (MeV) 1.48 0.89 0.67

E(4+
1 ) (MeV) (2.3) (2.13)

B(E2;2+
1 → 0+

g.s.) (e2.fm4) 59(5) 90(16) 126(25)

performed in nuclei far from stability. Breaking of the ground state sphericity is now known at
magic numbers N = 20 in F, Ne, Na and Mg nuclei, at N = 28 in neutron-rich S, Si, Mg, at N = 40
in Cr-nuclei and around. On the other hand, appearance of new magic numbers such as N = 16
for O-isotopes has been reported as well. For an overview of the experimental situation in various
mass regions see Ref. [66] and the lecture of O. Sorlin in this volume.

In the shell model, deformed states in N = 20 nuclei are associated with np-nh excitations of
neutrons across N = 20 shell gap. Table 2 shows some experimental data on three Mg-isotopes
with N = 18,20,22. Indeed, it is well seen that 32,34Mg are characterized by low-lying 2+ states
and large B(E2) values inherent to deformed rotors. Table 3 (from Ref. [18]) presents calculated
properties of 32Mg for the normal configuration (0p-0h — all nucleons are confined in (1s0d)
shell) and intruder configurations (2p-2h — two neutrons are fixed in the (1p0 f ) shells and there-
fore two holes are created in the (1s0d) shell-model space), see also Fig. 6. It is evident that
spectroscopic data are much better reproduced for an intruder configuration in 32Mg, rather than
for a normal spherical configuration. Appearance of such np-nh excitations low in energy is
explained again by the energy balance between two parts of the shell-model Hamiltonian — a
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Table 3: Theoretical calculation [18] for 32Mg assuming normal or intruder configurations.
Configurations Normal Intruder

in 32Mg (0p-0h) (2p-2h)
E(0+

g.s.) (MeV) 0 0 (-1.1)
E(2+

1 ) (MeV) 1.69 0.93
E(4+

1 ) (MeV) 2.93 2.33
B(E2;2+

1 → 0+
g.s.) 36 98

(e2.fm4)

Normal configuration (0p0h) Intruder configuration (2p2h)

3/20d

5/20d
1/21s

5/20d

3/20d
1s1/2

7/20f
3/2 1/21p ,1p 3/2 1/21p ,1p

7/20f

5/20f 5/20f

Z,N=20 Z,N=20

π πν ν

Figure 6: Normal and intruder configurations in 32Mg.

monopole term and higher multipole terms. The neutron ESPE’s obtained from a recently devel-
oped realistic interaction [50] are shown in Fig. 2 and have already been discussed. A schematic
approach to estimate the intruder energy as was done for Pb-nuclei in (119) has been worked out
in Ref. [31]. The monopole energy gap between ν0d3/2 and ν0 f7/2 is strongly reducing in isotones
below 34Si (see Fig. 2). In addition, due to the gain in pairing energy while creating a pair of
neutron particles in (1p0 f ) shell and a pair of neutron holes in (1s0d) shell and due to the increase
in quadrupole-quadrupole interaction energy in an open-shell configuration, such a 2p-2h intruder
becomes favorable in 32Mg. Fig. 7 shows the numerical result obtained from the diagonalization

Figure 7: Figures taken from Ref. [20]: energy difference between normal 0p− 0h and intruder
2p−2h configurations in neutron-rich nuclei around N = 20 (left plot); monopole energy gap and
correlation energy in Mg-isotopes around N = 20 (two right plots).
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of the nuclear Hamiltonian. On the left side there is an energy difference between 0p-0h and 2p-2h
configurations, predicting deformed ground states for N = 20,21 Mg-Na-Ne nuclei. On the right
side, there are two plots showing the monopole energy gap in Mg-isotopes and the correlation
energy from the multipole Hamiltonian. We see that the decrease of the N = 20 spherical shell
gap and the increase in correlation energy (mainly of a quadrupole-quadrupole type) in open-shell
configurations energetically favors deformed ground states in N = 20,21 Mg-Na-Ne nuclei and,
thus, evidence the disapperance of the N = 20 shell closure in this region.

A huge correlation energy can be created in multi-particle-multi-hole excitations (4p-4h or
8p-8h) in closed-shell nuclei, leading to excited superdeformed bands in doubly-magic nuclei and
nearby, such as 16O, 40Ca, 36Ar, etc (see Ref. [18] for details).

So, large spherical shell gaps obtained from a monopole Hamiltonian is a necessary condi-
tion to have certain magic numbers. At the same time, the multipole part of the Hamiltonian is
responsible for the correlation energy (an energy gain from particle-particle correlations, such as
pairing, quadrupole-quadrupole correlations, etc). The interplay between these two terms of the
shell-model Hamiltonian determines the structure of the ground state. The contribution from the
multipole interaction (or the magnitude of the correlation energy) depends on the number of va-
lence particles and the orbitals they occupy. It is important, therefore, to study the mechanism
behind changes in the spherical shell structure from stable nuclei to nuclei with large neutron
excess. This is the topic of the next section, where only the monopole Hamiltonian is discussed.

8 Shell evolution and nuclear forces

8.1 Spin-isospin exchange central term versus tensor force
The question what particular component of the nuclear interaction is responsible for the appearance
or disappearance of magic numbers was first raised in 2001 [53]. The authors studied the behavior
of neutron ESPE’s in N = 16 isotones. The structure of 32S16 at low energies is well described
in the shell model as a nucleus with 8 valence protons and 8 valence neutron in the (1s0d) shell-
model space beyond an 16O ’inert’ core (see Fig. 8). At the same time, 24O16 is characterized
by the large shell gap between neutron 0d3/2 and 1s1/2 single-particle states. The former (1s0d)
shell is splitted and a new N = 16 magic number appears. In the extreme single-particle picture
with normal filling of orbitals, 32S16 differs from 24O16 by 6 protons which completely occupy the
0d5/2 orbital. While protons fill the 0d5/2 orbital, the neutron 0d3/2 state comes much lower in
energy, i.e. there is an extra well manifested attraction between a proton in the 0d5/2 state and a
neutron in the 0d3/2 state, i.e. the centroid V̄ πν

0d5/20d3/2
is large and negative. This particular feature is

characteristic for a spin-isospin-exchange component of the NN interaction (the last term in (55)).
So, the conclusion of the authors of Ref. [53] was that the spin-isospin-exchange term governs the
shell structure.

However, later on studying heavier nuclei, it has been noticed [55, 64] that throughout the nu-
clear chart, an ESPE of a certain neutron (proton) nl, j = l± 1/2 comes lower in energy while a
proton (neutron) orbit with n′l′, j′ = l′∓1/2 is being filled. This means that there is a particularly
strong attraction between proton and neutron in the orbitals with different spin-to-orbital orien-
tation of the angular momentum, even when these orbitals do not have the same orbital angular
momenta (l 6= l′). This effect could not been explained by a central spin-isospin exchange term,
however, it was very much in agreement with the following analytical property inherent to the
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Figure 8: From Ref. [53]: schematic neutron ESPE’s in 32S and 24O (a,b); attraction between the
proton j = l + 1/2 orbital and the neutron j = l− 1/2 orbital (c) and the proposed spin-isospin-
exchange mechanism of this attraction (d).

Figure 9: Figure from Ref. [55]: proton (neutron) ESPE’s as a function of N (Z) as due to the tensor
force against experimental data (points). (a) Proton ESPE’s in Ca-isotopes; (b) proton ESPE’s in
Ni-isotopes; (c) neutron ESPE’s in N = 51 isotones; (d) proton ESPE’s in Sb-isotopes (tensor + a
common monopole shift).
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tensor operator (62):
(2 j> +1)V̄ πν

j> j′ +(2 j< +1)V̄ πν

j< j′ = 0 (120)

where j> = l+1/2 and j< = l−1/2 are proton (neutron) orbitals and j′ refers to a neutron (proton)
orbital. This means that the centroids V̄ πν

j> j′ and V̄ πν

j< j′ , calculated for a tensor interaction (62), are
of opposite sign. Therefore, if we consider ESPE’s of j> and j< orbitals for a tensor operator
only, we get them shifting in opposite ways, while j′ is being filled. Amazingly, such a property
may indeed be found experimentally in many cases, some of which can be seen in Fig. 9 (taken
from Ref. [55]). For example, experimental energies of proton single-particle states in Ca-isotopes
obtained from the information on the proton hole states from 39K20 to 47K28 are shown in Fig. 9(a).
It is seen that while neutrons fill the 0 f7/2 single-particle orbital (the normal filling is assumed),
the splitting between the proton 0d5/2 and 0d3/2 orbitals is reducing.

We can notice similar trends of theoretical ESPE’s obtained from realistic interactions (full
interaction), which points out on the important role of the tensor component. For example, in
Fig. 2 we see that while protons fill the 0d5/2 orbital (from O to Si), the splitting between neutron
0 f7/2 and 0 f5/2 orbitals decreases. The opposite effect is observed when protons fill the 0d3/2
orbital (from S to Ca) i.e. the corresponding splitting increases. A similar but less pronounced
behavior is noticed for the neutron 1p3/2 and 1p1/2 orbitals.

The authors of Ref. [55] calculated the effect of the tensor force by estimating its strength as
given by (π + ρ)-exchange potential (two mesons which are responsible in the meson-exchange
picture of the nuclear force for the creation of a tensor component (62)). Since the radial part is
infinitely large when approaching zero, a radial cut-off at r = 0.7 fm was imposed. The tensor
force, estimated in such a way, could indeed account for the increase in the proton 0d5/2-0d3/2

energy splitting between 40Ca and 48Ca, as well as it could describe the increase of the neutron
0h11/2-0g7/2 energy splitting in N = 51 isotones and of the proton 0h11/2-0g7/2 energy splitting in
Sb-isotopes (Fig. 9(c,d)). The two latter cases were conjectured to be indirectly due to the effect
of the tensor force [55]. It has been thus suggested [55] that it is the tensor force which mainly
manifests in ESPE shifts and, therefore, governs evolution of the nuclear shell structure.

The work within the shell model has stimulated a large number of investigations using mean-
field approaches (see e.g. [6] and references therein). It is worth noting that standard phenomeno-
logical interactions, such as Skyrme or Gogny force, most frequently used in mean-field calcu-
lations, do not include a tensor term [7]. Provided its importance, a tensor term should be in-
troduced and the parameters re-adjusted, what up to now, is not satisfactorily reached yet (see,
e.g. Ref. [60, 74, 6]).

In spite of the indirect evidence, the role of the tensor force still needs to be clarified. It is
undoubtedly an important part of the bare NN force, however, as was discussed in section 5, the
NN interaction is subjected to a strong renormalization before it can be handled as an effective in-
teraction in many-body calculations within a restricted model space [33]. It is not straightforward
to trace how the tensor component will become renormalized amongst the other terms contribut-
ing to the NN interaction. Moreover, many shell-model interactions having high descriptive and
predictive power are of empirical type. Even the effective interactions, maximally preserving their
microscopic origin (based on a G-matrix), need further phenomenological correction (see e.g.,
[59, 50]).

In addition, recent shell-model studies based on large-scale calculations using a realistic ef-
fective interaction in the heavy Sn-nuclei region [49] conclude on the absence of a characteristic
effect expected to result from a tensor force component on the basis of the almost equivalence of
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two centroids, V̄ πν

0g9/20h11/2
and V̄ πν

0g7/20h11/2
.

These arguments lead to the application of yet another technique to analyze the structure of an
effective shell-model interaction and pin down the role of its different components.

8.2 Spin-tensor decomposition
In this section we will describe a method which allows to determine the role of different com-
ponents of the in-medium NN interaction in nuclear shell evolution. It is based on a spin-tensor
decomposition of the two-particle interaction, known for many years [25, 38, 61, 39, 73, 15, 52]. In
a given model space, a complete set of TBME’s determines the properties of nuclei ranging within
this space. Since the interacting particles are spin 1/2 fermions (nucleons), one can construct from
their spin operators a complete set of linear operators in a two-particle spin space:

S(0)
1 = 1, S(0)

2 = [~σ1× ~σ2]
(0) , S(1)

3 = ~σ1 + ~σ2 ,

S(2)
4 = [~σ1× ~σ2]

(2) , S(1)
5 = [~σ1× ~σ2]

(1) , S(1)
6 = ~σ1− ~σ2 .

By coupling the spin tensor operators with the corresponding rank tensors in the configuration
space one can construct scalar interaction terms. The most general two-body interaction can then
be written as

V (1,2)≡V = ∑
k=0,1,2

(
S(k) ·Q(k)

)
= ∑

k=0,1,2
V (k). (121)

Here, V (0) and V (2) represent the central and tensor parts of the effective NN interaction (see
eqs. (55) and (63), respectively). The V (k=1) term contains the so-called symmetric (S(1)

i=3) and

antisymmetric (S(1)
i=5,6) spin-orbit operators [39]. To obtain the matrix elements for the different

multipole components in j j-coupling, the following procedure can be exploited. First, one has
to transform the TBME’s between normalized and antisymmetrized states from j j-coupling to
LS-coupling in a standard way:

〈(nala,nblb) : LS,JMT MT |V (1,2)|(nclc,ndlc) : L′S′,JMT MT 〉=

1√
(1+δnanbδlalb)(1+δncnd δlcld)

∑
ja jb jc jd

 la 1/2 ja
lb 1/2 jb
L S J

 lc 1/2 jc
ld 1/2 jd
L′ S′ J

×√
(1+δab)(1+δcd)〈(ab)JMT MT |V (1,2)|(cd)JMT MT 〉 ,

(122)

where a = (na, la, ja) and so on, and the factor in the brackets is a generalized 9 j-symbol: la 1/2 ja
lb 1/2 jb
L S J

 =
√

(2 ja +1)(2 jb +1)(2L+1)(2S +1)


la 1/2 ja
lb 1/2 jb
L S J

 . (123)

The LS-coupled matrix elements of V (k) can be calculated from the LS-coupled matrix elements of
V :

〈(nala,nblb) : LS,JMT MT |V (k)|(nclc,ndlc) : L′S′,JMT MT 〉= (2k +1)(−1)J
{

L S J
S′ L′ k

}
∑
J′

(−1)J′(2J′+1)
{

L S J′

S′ L′ k

}
〈(nala,nblb) : LS,J′MT MT |V |(nclc,ndld) : L′S′,J′MT MT 〉,

(124)
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Finally, LS-coupled matrix elements of V (k), for each k, can be transformed to j j-coupled matrix
elements and used for further investigation. Note that for a given set of quantum numbers of two-
body states, the matrix elements of V are a sum of the matrix elements of its three components
V (k).

In addition, using the projection operators, one can select different components of the effective
interaction that connect two-nucleon states with specific values of the total spin S, isospin T and
parity (−1)L. This means that one can represent the central component V (0) as given by eq. (61),
the spin-orbit part of the vector component V (1) can be expressed in the form of eq. (66) and
the tensor component V (2) can be expressed as in eq. (64). Based on the selection rules in LS-
coupling, we can distinguish between all these terms, i.e. separate triplet-even (TE), triplet-odd
(TO), singlet-even (SE) and singlet-odd (SO) channels of the central part, as well as the even and
odd channels of the symmetric spin-orbit and tensor part.

Previously, the spin-tensor decomposition was applied to study the structure of TBME’s of
different interactions and/or their contribution in building nuclear spectra [38, 39, 73, 15, 52, 34].
It is very advantageous to apply the decomposition to study the monopole Hamiltonian, since the
contribution of the different terms to the two-body centroids is additive [68, 62].

Spin-tensor decomposition may give a quantitative answer to the question how each component
of the effective interaction contributes to the energy gap evolution in a series of isotopes and
isotones. The only drawback is that the decomposition described above requires that the model
space contains all spin-orbit partners within a given oscillator shell. This limits the region of
applicability to the lighter nuclei. However, many interesting observations can still be extracted,
as will be demonstrated below.

In Table 4 we analyze shell-gap variations in N = 20 isotones shown in Fig. 2. ESPE’s were
calculated using a recently elaborated interaction in (1s0d1p0 f ) shell-model space [50]. The total
energy shift (first line) is a sum of the central, vector and tensor contributions. For example, the
decrease of the splitting between neutron 0d3/2 and 1s1/2 by 2.57 MeV, going from 28O to 34Si
(Table 4, column 2), turns out to result from the combined effect of the central part (1.87 MeV), in
particular, in its triplet-even channel, and the tensor part of the nuclear interaction (1.06 MeV).

Similarly, the increase of the gap between the neutron 0d3/2 and 0 f7/2 orbitals when going
from 28O to 34Si and onwards from 36S to 40Ca (columns 3 and 4 of Table 4) is a joint effect of
the central and tensor component of the effective interaction. This is an important manifestation of
the tensor force in this region. Due to the fact that at N =20 the above two neutron orbitals have
(i) the same radial quantum number, and, (ii) a different spin-to-orbital orientation, a large and
negative tensor contribution of −1.93 MeV results for the variation of the gap between the 0d3/2

and 0 f7/2 orbitals when filling the 0d3/2 orbital with protons (from 36S to 40Ca). This large tensor
shift, however, is almost fully cancelled by the central contribution of 1.99 MeV. The combined
effect results in only a slight overall decrease of the N =20 shell gap from 40Ca to 36S and 34Si,
thereby preserving the semi-magic nature of the latter nuclei. At the same time, while filling the
0d5/2 orbital with protons (from 28O to 34Si), due to the change in the spin-to-orbital orientation
with respect the proton 0d3/2 orbital, the tensor contribution remains large but changes its sign
(1.96 MeV). This enforces the central contribution (2.17 MeV) and results in a rapid decrease of
the N = 20 shell gap below 34Si which is at the origin of the “island of inversion” around 32Mg
(deformed ground state).

Fig. 10(a) shows calculated proton ESPE’s in Ca-isotopes (one-hole states) using the same
interaction [50]. There is a crossing of the 1s1/2 and the 0d3/2 orbitals and, in addition, a lowering
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Table 4: Contribution of different spin-tensor operators to the energy splitting variations ∆( j, j′)≡
ε j− ε j′ in N =20 isotones.

Energy ν(0d3/2,1s1/2) ν(0 f7/2,0d3/2) ν(0 f7/2,0d3/2)
gap MeV MeV MeV

Filling π0d5/2 π0d5/2 π0d3/2
orbital 28O→34Si 28O→34Si 36S→40Ca
Total -2.57 3.68 0.21

Central -1.87 2.17 1.99
TE -1.58 2.23 2.48
TO -0.68 -0.31 -0.11
SE 0.71 -0.45 0.01
SO -0.32 0.70 -0.39

Vector 0.36 -0.45 0.15
LS -0.05 -0.10 -0.16

even -0.12 -0.06 0.25
odd 0.07 -0.04 -0.41
ALS 0.41 -0.35 0.31

Tensor -1.06 1.96 -1.93
even -0.78 1.31 -1.28
odd -0.28 0.66 -0.65

Table 5: Contribution of different spin-tensor operators to the energy splitting variations ∆( j, j′)≡
ε j− ε j′ in Ca-isotopes (columns 2-3) and in N =28 isotones (columns 4-5).

Energy π(0d3/2,0d5/2) π(0d3/2,1s1/2) ν(1p3/2,0 f7/2) ν(1p3/2,0 f7/2)
gap MeV MeV MeV MeV

Filling ν0 f7/2 ν0 f7/2 π0d5/2 π0d3/2
orbital 40Ca→ 48Ca 40Ca→ 48Ca 36O→42Si 44S→48Ca
Total -2.33 -3.16 1.60 1.81

Central -0.21 -1.58 2.03 1.31
TE 0.62 -1.19 2.03 1.02
TO -0.03 0.25 -0.25 -0.14
SE -0.50 -0.57 -0.02 0.18
SO -0.30 -0.07 0.28 0.25

Vector 0.61 0.06 0.23 -0.18
LS 0.09 -0.15 0.11 0.15

even 0.60 0.25 0.22 -0.27
odd -0.51 -0.40 -0.11 0.41
ALS 0.52 0.21 0.12 -0.33

Tensor -2.73 -1.64 -0.67 0.68
even -1.59 -0.96 -0.43 0.43
odd -1.14 -0.68 -0.24 0.26
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of the energy gap between the 0d3/2 and the 0d5/2 orbitals when going from 40Ca to 48Ca. This
is well confirmed experimentally. In Table 5 we present a detailed analysis of the role of different
components in the evolution of the gaps. It is seen (columns 2) that the lowering of the gap
between proton 0d5/2 and 0d3/2 orbitals as neutrons fill the 0 f7/2 orbital is mainly due to the
tensor force. However, it is the central part, combined with the contribution from the tensor force,
which reduces the gap between proton 0d3/2 and 1s1/2 orbitals when approaching 48Ca (column
3). Finally, let us consider the evolution of the N = 28 shell gap, i.e. the reduction of the neutron
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Figure 10: (a) Variation of ESPE’s for proton-hole states in Ca-isotopes; (b) variation of neutron
ESPE’s in N =28 isotones using the realistic interaction [50].

1p3/2–0 f7/2 energy difference from 48Ca to lighter isotopes (see Fig. 10(b)). To start with, these
two orbitals have different radial quantum numbers. Therefore, the radial overlap contributing to
the V̄ πν

0d3/20 f7/2
centroid is larger than the radial overlap contributing to the V̄ πν

0d3/21p3/2
centroid. As

can be seen from Table 5 (columns 4–5), the contributions from the central and tensor terms are
dominating. Since both the 0 f7/2 and 1p3/2 orbital are ’spin-up’ oriented ( j> = l +1/2), the tensor

term contributes in a similar way to the energy shift when protons fill the 0d3/2 orbital (V̄ (k=2)πν

0d3/20 f7/2

and V̄ (k=2)πν

0d3/21p3/2
are both positive). The same happens when protons fill the 0d5/2 orbital (V̄ (k=2)πν

0d5/20 f7/2

and V̄ (k=2)πν

0d5/21p3/2
are both negative). The overall difference in sign is due to the different relative

spin to orbital orientation of the neutron orbitals (both ( j>ν = lν + 1/2) relative to the proton
orbitals ( jπ = lπ ± 1/2)). Due to the difference in absolute value of the centroids, in particular,
due to different radial overlaps for ν0 f -π0d versus ν1p -π0d, the positive and negative tensor
contributions to the energy centroid do not cancel. They result in a shift of 0.68 MeV and −0.67
MeV while filling the 0d3/2 or 0d5/2 orbital, respectively. Adding this tensor energy shift to the
central plus vector energy shift results in a reduction of the N =28 shell gap going from 48Ca to
44S and from 42Si to 36O. This situation contrasts the N =20 shell gap evolution discussed above.

These examples illustrate that in the discussion of shell gap evolution, it is mandatory to take
into account what particular orbitals are considered. Both the central and tensor term represent
important ingredients, together with the magnitude of the radial overlaps involved.
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9 Conclusion
The nuclear shell model is applied to discuss the changes in the shell structure of nuclei ranging
from stable to very neutron-rich species. In particular, the special attention is payed to the com-
petition between magicity, inherent to closed-shell configurations, and deformation, developing in
open-shell configurations. The spherical single-particle energies and the shell gaps are defined by
the monopole part of the shell-model Hamiltonian, while the particle-particle correlations are con-
tained in the higher-multipole part. The interplay between these two terms determines the relative
energy of different configurations and, thus, helps to understand such phenomena as shape coexis-
tence in semi-magic nuclei and around and the appearance of “islands of inversion” in very-neutron
rich nuclei.

Variations of single-particle energies and the related shell gaps have been explored in a long
chain of isotopes or isotones in a few regions of nuclear chart. The question of whether a particular
force of an effective NN interaction drives changes in the shell structure is addressed. Analysis of
single-particle energy shifts obtained with realistic and schematic interactions, as well as a rigorous
spin-tensor decomposition of the TBME’s, indicate an important role played by the central and
tensor components of the nuclear interaction in the vanishing of N = 20, N = 28 shell closures in
neutron-rich nuclei (32Mg and 42Si and around) and creation of N = 16 magic number near 24O.
The main signature of the tensor force is confirmed to be the characteristic behavior of spin-orbit
partners (moving in opposite directions). However, the evolution of the gaps involving orbitals
with different nl quantum numbers, as well as formation of shell gaps in heavy nuclei, requires
more study.
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