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ABSTRACT 
An overview of mean-field-based and beyond-mean-field approaches is presented in the 
framework of the Energy Density Functional with a special attention paid to Skyrme 
functionals. Differences and commont points between the Energy Density Functional 
Theory and the Density Functional Theory are underlined.  
Applications to nuclei and neutron stars are shown. Nuclear matter properties are also 
analyzed in the context of the Energy Density Functional: isospin effects and spin 
instabilities are discussed.  
Finally, the predictive power of Energy Density Functional models is addressed. 
 
 
 
 
 
I – INTRODUCTION   
 
The description of many-body systems is one of the most difficult problems in physics 
owing to the huge number of degrees of freedom which are involved. Many-body methods 
and techniques constitute an interdisciplinary domain which relates several fields such as  
nuclear physics, solid state physics, atomic physics and quantum chemistry [FW71, Ma67, 
RS80].   
 
Nuclei are quantum many-body systems presenting a wide and diversified spectrum of 
properties. The rich phenomenology associated to nuclear systems is related to the 
complexness of the nuclear many-body problem. When attacking this problem from a 
theoretical point of view two main concerns have to be addressed: i) the way to deal with 
the nuclear interaction; ii) the choice of the degrees of freedom to explicitely take into 
account in the model in order to describe the phenomenon of interest. These two aspects 
are strictly related one to the other.  
As far as the interaction is concerned, in parallel with the traditional ways to deal with this 
issue (namely, the development of realistic and phenomenological effective interactions) 
new trends and perspectives are being explored nowadays aiming at introducing the 
nuclear interaction in a more fundamental way (see Lectures of E. Epelbaum and Th. 
Duguet). In this respect, the links with the underlying theory of quantum chromo-dynamics 
(QCD) are analyzed and used through the introduction of effective field theories [Bo01, Bo-
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1-03, Bo-2-03, Ep09]. This modern and very promising way to deal with the nuclear 
interaction will certainly provide a deeper and wider comprehension of its properties. 
However, the investigations based on more conventional approaches have certainly  to be 
pursued and developed in a complementary way so that the two frameworks can enrich 
each other in the coming years.  
As far as the phenomenological effective interactions are concerned, an important 
advantage in choosing them is that they can be easily used in quite sophisticated mean-
field and beyond-mean-field methods. The concern of using sophisticated beyond-mean-
field models is crucial especially within the perspectives of describing the properties of 
weakly bound exotic nuclei.  Indeed, in the exotic regions of the nuclear chart new and 
complex phenomena may manifest and a proper treatment of correlations within beyond-
mean-field models may become necessary.  
In nuclear physics, the phenomenological interactions which are currently used in a non-
relativistic framework are of Skyrme [Sk56, Sk59] (zero-range) and Gogny [Go75] (finite-
range with Gaussians) type. By applying the variational procedure to construct the mean 
field, phenomenological density functionals can be derived starting from these 
interactions. These functionals and the theoretical models which typically employ them 
constitute a formal framework known as the Energy Density Functional (EDF) theory.  
It is worth mentioning that also in the case of relativistic formulations several 
investigations are concentrated on the analysis of the functionals EDF, derived in this 
context from a Lagrangian and not from an interaction (see, for instance, Ref. [Ni08]). 
Relativistic EDF models inspired by low-energy QCD have also been recently proposed 
[Fi03, Fi04, Fi06, Fi07].  
 
In last years, new trends have started being explored aiming at connecting the EDF 
framework to that of the Density Functional Theory (DFT) which is widely diffused and 
currently used in solid state physics and chemistry to evaluate, for instance, band 
structure in solids and binding energies in molecules [DR90, Ko06]. Some examples of 
these bridges that are being constructed can be found in Refs. [Be-1-09, Be-2-09, Do07, 
Du09, En07, Gi-1-08, Gi-2-08, Ko08, La09, Me09] and  essentially concern two types of 
investigations: i) extensions of the DFT theorems to the nuclear case; ii) work on the 
functionals to understand which are the best forms and parameters to describe a large 
number of nuclei. In this respect, a reflection around the eventual inclusion of correlations 
in the functionals is pursued by the community and different issues are debated: for 
instance, one crucial point in the debate is whether the correlations related to the 
collective behavior or the dynamical degrees of freedom should also be taken into account 
in the functionals.  
 
In this manuscript, we first address the features of the two theoretical frameworks DFT 
and EDF. As far as EDF is concerned, we deal only with non-relativistic models. Links and 
differences between the two theories EDF and DFT are discussed and some examples of 
EDF mean-field-based and beyond-mean-field models are presented. In the manuscript, 
‘beyond mean field’ means that correlations are explicitely included in the theoretical 
framework in order to go beyond the mean-field description which is typically based on the 
use of an uncorrelated ground state. Due to the limited available space, the list of the 
shown examples and of the beyond-mean-field methods which we are going to mention 
and illustrate is far from being exhaustive. We have made a selection of topics and, 
following this selection, some extensions of the mean-field approach within the EDF 
framework will be explored.  
 
The manuscript is organized as follows: In Sec. II the independent-particle approximation 
on which the DFT and the EDF are based is discussed.  
An introduction to some basic topics of the DFT is provided in Sec. III.  
The most used phenomenological interactions and the associated energy density 
functionals (derived with the variational mean-field procedure in the framework of the 
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EDF) are introduced in Sec. IV, while some applications of the EDF models are shown in 
Sec. V. The role of correlations and isospin effects are discussed and the importance of 
going beyond-mean-field is commented in some cases, especially within the perspective 
of analyzing exotic nuclei.  
To conclude this part, differences and common points between DFT and EDF are 
summarized in Sec. VI. 
A first kind of correlations, namely pairing correlations (owing to the formation of Cooper 
pairs in some open-shell nuclei) and the associated model Hartree-Fock-Bogoliubov (HFB) 
are introduced in Sec. VII. This model is a first natural extension of the mean field Hartree-
Fock (HF) approach where the existence of Cooper pairs is modelled by the introduction of 
the concept of quasiparticles through the unitary Bogoliubov transformations. Different 
strategies to choose the pairing interaction can be followed and this is discussed in the 
second part of Sec. VII.  
From the small-amplitude limit of the time-dependent (TD) mean-field approach, TDHF(B), 
the (quasiparicle) random-phase approximation ((Q)RPA) equations can be derived in 
which collectivity is taken into account providing a way to deal with the coherent motion of 
nucleons in the system (Sec. VIII). The small-amplitude approximation which is adopted to 
derive the (Q)RPA equations allows one to describe only a limited class of dynamical 
features, namely, the small-amplitude oscillations around the ground state density.  
A way to go beyond mean-field models may be performed by coupling individual and 
collective degrees of freedom. This aspect is detailed in Sec. IX where the particle-
vibration coupling and the second RPA (SRPA) are introduced. In other beyond-mean-field 
models an explicitely correlated ground state is used: these models are based on 
extensions of the RPA (Sec. X). If the use of a correlated ground state is performed 
together with the coupling between individual and collective behavior, other beyond-
mean-field methods can be derived such as, for instance, the Generator Coordinate 
Method (GCM) or the variational multiparticle-multihole configuration mixing (also 
described in Sec. X). 
A scheme about how the topics which constitute the first ten sections of the manuscript 
are organized is displayed in Fig. 1 where the connections among all these topics are also 
shown.  
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Fig. 1 

 
Scheme about the formal aspects developed in the manuscript and connections among them 

 
 
Sec. XI is devoted to a brief presentation of nuclear astrophysics topics and in particular 
to neutron stars. Some applications of the EDF models in this framework are shown. A 
more detailed description of this topic can be found in the Lectures of P. Pizzochero. 
Finally, nuclear matter properties analyzed within the EDF are discussed in Sec. XII. 
Isospin effects in asymmetric matter and the presence of instabilities are briefly 
addressed. This topic and its experimental implications are presented in detail in the 
Lectures of M.-F. Rivet.    
As a conclusion, the EDF-models predictive power is discussed in Sec. XIII and this 
analysis opens several directions for perspectives.  
 
 
II – THE NUCLEAR MANY-BODY PROBLEM. THE INDEPENDENT-PARTICLE 
APPROXIMATION 
 
The solution of the many-body Schrödinger equation cannot be performed exactly owing 
to the huge number of degrees of freedom which are typically involved in a many-body 
problem. Procedures to simplify the problem must be used and a classification of the 
relevant degrees of freedom must be performed. According to the typical energy and 
length scales of the system, to the phenomenon under study and to the used theoretical 
tool, some degrees of freedom may be considered more important than others (which can 
be neglected or eventually included in an effective way). In some cases, a special 
separation of scales may be performed which allows one to treat in a full quantum way 
only some degrees of freedom and to deal with the others with a semiclassical 
approximation.  
The many-body Hamiltonian in second quantization is given by the following expression:  
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The first term describes the kinetic contribution plus an eventual external potential and 
the second term, which is a two-body term, represents the interaction among the 
constituents. In the context of the nuclear EDF, the degrees of freedom which are 
explicitely taken into account to deal with the many-body problem are the nucleons. 
Protons and neutrons are thus the A constituents of the system. Three-, four-, … A-body 
contributions to the interaction are often neglected in the Hamiltonian and have not been 
explicitely written in Eq. (1). 
One of the current approximations used to simplify the Schrödinger equation associated 
to the Hamiltonian, Eq. (1), is the so-called independent-particle approximation on which, 
for instance, both the mean field and the shell model are based. This approximation is valid 
when the system under study is dilute in the sense that the mean free path of its 
constituents is comparable with or larger than the typical length scale of the system. Due 
to the combination of the Pauli and the uncertainty principles, nuclei satisfy this property. 
Hence, one can imagine to treat each nucleon of the system as independent of the others 
and to introduce the interaction among the particles through a single-particle effective 
potential which describes on average the action of all the other particles on the single 
constituent. This effective potential, constructed by all the particles, can be viewed as an 
external potential. Within this picture, the system is equivalent to that of non-interacting 
particles in an external potential.     
 
 
III – A SHORT INTRODUCTION TO THE DENSITY FUNCTIONAL THEORY 
 
The DFT is based on very general concepts and theorems and this explains its huge 
diffusion and easy applicability to many domains [Ca06, Dr90, Fio03, Ma92, Pa89].  
This theory has been introduced to describe the properties of many-electron systems. It 
has been founded in the 60s with the formulation of the Hohenberg-Kohn (HK) theorem 
[HK64] and the introduction of the Kohn-Sham (KS) equations [KS65]. The KS equations 
provided a practical way to replace the minimization procedure implied by the HK theorem 
with the solution of an effective Schrödinger equation for a system of non-interacting 
particles. This means that the KS equations are based on the independent-particle 
approximation described in the previous section: the many-body problem is reduced to a 
one-body effective problem (where, however, correlations are actually included). In 1998 
the Nobel Prize for chemistry was attributed to W. Kohn, the father of the DFT, and to J. 
Pople for his important contribution in the numerical implementations of the DFT in 
computational chemistry.  
The procedure which is usually followed to treat a problem in quantum physics (i.e., first 
solving the Schrödinger equation with a given potential, getting a wave function and 
constructing with it the mean values of the operators, for instance, the density) is inverted 
in the DFT. The density plays a fundamental role in this theory and it is the starting point of 
the procedure. The knowledge of the density allows to evaluate the wave function and 
thus the potential.  
To develop this framework, functionals are used, which are functions of functions. 
Functional variations and derivatives are introduced as mathematical tools for the 
development of the theory.  
In the nest subsections, we present some aspects of the DFT following the Introduction to 
the DFT proposed in Ref. [Ca06]. 
 
 
 
Content of the Hohenberg-Kohn theorem 
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Let us consider a system of N interacting particles in an external potential. The many-body 
Hamiltonian is: 
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where U is the interaction and v the external potential.  
If the ground state density ρ0 is known, it is possible to determine, starting from this 
density, the external potential (up to an additive constant) and the ground state wave 
function Ψ0.  
The non degenerate ground state wave function is a unique functional of the ground state 
density ρ0: 
 

( ) ( )[ ]rr,...,r 0N10
rrr

ρΨ=Ψ .                                                               (3) 

 
Consequently, the expectation value of any observable in the ground state is a functional 
of  ρ0: 
 

[ ] [ ] [ ]0000 OÔO ρ=ρΨρΨ= .                                                            (4) 

 
This means that also the ground state energy is a functional of  ρ0.  
For each external potential v, a functional Ev[ρ] exists which is minimized by ρ0. The ground 
state energy E0 is equal to Ev[ρ0]. This variational property may be written as:  
 
Eν [ρ0] ≤ Eν [ρ]    if ρ≠ ρ0    
 
and is often called the second Hohenberg-Kohn theorem.  
All the other extrema of the functional correspond to physical densities (of excited states), 
but the excited states found in this way do not necessarily cover the whole spectrum of the 
Hamiltonian.  
If the ground state is degenerate, a unique functional Ψ[ρ] does not exist because different 
wave functions are associated to the same density, but a unique functional E[ρ] still exists 
even in this case.  
The HK theorem was originally proven by contradiction in the article of 1964: one assumes 
that the ground state wave function is not uniquely determined by ρ0 and shows that this 
hypothesis leads to a contradiction with the variational principle. Alternative proofs of the 
theorem have been proposed later.  
Within the HK theorem, the many-body problem to determine the ground state of a system 
may be solved by an energy minimization. A practical way to deal with this energy 
minimization is provided by the KS equations [KS65]: the energy minimization procedure is 
replaced by the solution of a Schrödinger equation for non-interacting particles. This 
procedure reduces the many-body problem into an effective one-body problem.  
 
Kohn-Sham equations 
 
The energy E, which is a functional of the density, may be written as: 
 

[ ] [ ] [ ] [ ]ρ+ρ+ρ=ρ VUTE ,                                                              (5) 
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where T is the kinetic contribution to the functional, U the interaction term and V the 
functional related to the external potential, 
 

[ ] ( ) ( )∫ ρ=ρ rvrrdV 3 rrr
. 

 
 For the kinetic part: 
 

[ ] [ ] [ ]ρ+ρ=ρ CS TTT  ,                                                                        (6) 

 

where TS[ρ] is the mean value of the operator T̂  calculated with the Slater determinant 
associated to the density. Since the wave function is a Slater determinant, the exchange 
contribution is fully taken into account. Hence, the term TC contains only contributions 
coming from correlations. If ϕ are the orbitals composing the Slater determinant, TS is 
written as: 
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All the functions ϕ are functionals of ρ (HK theorem). Thus: 
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The exact functional is written as: 
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EXC contains the differences T-TS and U-UHartree (these terms are typically much less 
important than TS and UHartree). The functional EXC is unknown (the HK theorem garanties 
only that it exists). It is called exchange-correlation term and is often written as the explicit 
sum of an exchange term EX and a correlation term EC. Approximations have to be used to 
write the exchange-correlation term (in extensions of the DFT the exchange term is 
sometimes treated exactly but the correlation term is always approximated).  
The minimization generating the KS equations is: 
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It is worth noticing that 
δρ
δ xcE

 can be explicitely evaluated only when an approximation for 

EXC is chosen.  
For a system of non-interacting particles in an external potential vS the minimization 
condition does not contain the Hartree and the exchange-correlation terms: 
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By comparing eqs. (10) and (11) one concludes that the two minimizations provide the 
same result if 
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The Schroedinger equation to solve is: 
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Where vs is given by eq. (12) and ε are the constraints related to the minimization 
procedure. With the solution of eq. (13) the density can be constructed: 
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where the coefficients f are the occupation numbers of each state. Eqs. (12) - (14) are the 
non-linear KS equations. They are solved iteratively up to the determination of the self-
consistent solution. Thus, the KS model looks like a mean-field theory with a self-
consistent effective one-body Schroedinger equation for the KS states but includes 
correlation effects on the ground-state density and total energy.  
It is important noticing that only the density and the total energy have a physical meaning 
in the KS problem. The single-particle energies which are found as a solution of the KS 
equations do not really correspond to the physical single-particle states.  
But how to solve in practice the KS equations, how to choose a form for the unknown 
functional EXC? This is an important and delicate point since in the exchange-correlation 
functional all the many-body physics is contained. As already mentioned, the exchange 
part can be written and treated exactly. To choose a form for the correlation part different 
strategies may be followed: perturbation theory was used in the first applications of the 
DFT while Quantum Monte Carlo calculations are currently employed nowadays for 
electronic systems. The local-density approximation (LDA) is adopted and, in the most 
sophisticated functionals, gradient-corrections with derivatives of the densities are added 
to implement the LDA and include finite-size effects (see, e.g., [Fio03, Pe96]). Other 
sophisticated examples of functionals may be found in Ref. [Pe05].  
 
 
IV – A MORE FAMILIAR FRAMEWORK IN NUCLEAR PHYSICS. THE ENERGY DENSITY 
FUNCTIONAL (FROM A PHENOMENOLOGICAL INTERACTION) 
 
Energy density functionals are very well known and currently employed in nuclear physics 
since several decades. In the non-relativistic case, they are derived from effective 
phenomenological interactions by applying the variational principle in the framework of 
the mean-field approach.  
While the DFT was introduced in the 60s, the Hartree-Fock (HF) mean field method was 
formulated in the 20s. As for the case of the DFT, the first applications have been 
performed for electronic systems.    
The HF mean-field model is based on the independent-particle approximation. This means 
that the many-body Hamiltonian is approximated by an effective one-body Hamiltonian. 
What is neglected with this approximation is called residual interaction. The ground state 
is chosen as a Slater determinant, i.e., 
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The derivation of the HF equations may be found in all many-body textbooks (see, for 
instance, [FW71, RS80]). The ground state wave function is determined in a variational 
way by a minimization of the energy:  
 

HFHF
HFHHF

EHF = .                                                                (16) 

 
This corresponds to solve the Dyson equation for the one-body Green’s function:  
 
 
 
                                                                 =                     + 
 
 
 
 
 
with the following approximation for the proper self-energy (first order): 
 
 
 
                                                              ~                                      +     
 
 
 
In the above diagrams, the solid thin (thick) lines represent the unperturbed or free (exact) 
Green’s function and the dashed lines represent the interaction. The two terms in the 
diagram for the proper self-energy are its direct and exchange contributions. For the 
details about the perturbative expansion (in the interaction V) and the diagrammatic 
representation of the one-body Green’s function, see Ref. [FW71]. The Dyson equation 
with the above approximation for the proper self-energy, i.e., the HF equations, can be 
explicitely written as:  
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where:  
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ΓH and ΓEx are the direct and exchange potentials depending on the local and the non-local 
densities, respectively. When the used interaction is density-dependent, rearrangement 
terms also appear in the above expressions for the potential. The equations are solved 
iteratively up to the derivation of the self-consistent solution.  
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In nuclear physics, the introduction of the first phenomenological interactions allowed in 
the 70s to perform the first sophisticated numerical applications of the HF method [Go75, 
Ne82, VB72]. The most used phenomenological interactions are of Skyrme (zero-range) 
and Gogny (finite-range with Gaussians) type. Their parameters are fixed by a fitting 
procedure in order to reproduce some properties of selected spherical magic nuclei 
(binding energies and radii) and to provide a reasonable equation of state for nuclear 
matter (in some cases also for neutron matter). The Gogny interaction has a more 
microscopic formal content with respect to the Skyrme interaction because it has been 
introduced starting from a realistic G matrix. On the other hand, Negele and Vautherin 
[NV72] have shown in the 70s that a Hamiltonian density derived with the Density Matrix 
Expansion techniques (these techniques are used to deduce a phenomenological 
interaction starting from a realistic G matrix) is analogous to the Hamiltonian density 
obtained with a Skyrme interaction.  
 
The standard forms of the Gogny and Skyrme interactions are very well known. For a 
detailed review of their expressions, properties and parametrizations see, for instance, 
Ref. [Me03].  
The Gogny interaction contains a central term given by the sum of two Gaussians and two 
additional zero-range terms: a density-dependent term and a spin-orbit contribution,  
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with the following notation: 
 

21 rrr rrr
−= ; ( )21 rr

2
1R rrr

+= ; ( )21i2
1P ∇−∇=

r
; 'P
r

cc of P
r

acting on the left,  

 

( )
⎩⎨
⎧

=−
=+=⋅+= 0S1

1S11
2
1P 21 σσσ  ; ( )

⎩⎨
⎧

=−
=+=⋅+= 0T1

1T11
2
1P 21 τττ  

21 σσσ +=  ; 21 τττ +=  
 
The first parametrization which has been introduced is D1 [De80] while the most used in 
present calculations is D1S [Be89] which has been adjusted to reproduce also fission 
barriers. More recently, the new parametrization D1N has been proposed where the fitting 
procedure has been implemented by including an adjustement on the neutron equation of 
state [Ch08]. A finite-range has been also introduced in the density-dependent term 
[Ch07]. A finite-range tensor contribution has been recently included and tested in HF 
calculations with a new parametrization proposed by Otsuka and collaborators [Ot06].  
 
In the Skyrme interaction all terms are of zero-range and the finite-range and non-locality 
are simulated by velocity-dependent terms:  
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with the same notation as for the Gogny interaction.   
Many Skyrme parametrizations exist (see, for instance, examples given in Ref. [Me03]).  
Let us consider the mean value of H, eq. (16), in the case of a Skyrme interaction. This 
mean value is minimized in the variational procedure and can be written as: 
 

∫ℵ= rd)r(H rr
,                                                                (22) 

where ℵ  is the Hamiltonian density or energy density. This Hamiltonian density is actually 
the energy density functional which is obtained, in the EDF case, starting from an 
interaction (in the non-relativistic framework). For the Skyrme interaction, the energy 
density functional is an algebraic function of the nucleon density ρq, the kinetic energy 

density τq and the spin-orbit density qJ
r

(q stands for neutron or proton): 
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where ϕ are the wave functions defining the ground state Slater determinant. For a 
detailed derivation of the functional see, for instance, Ref. [VB72]. The sums in the above 
three equations are taken over all the occupied states. One can separate the following 
different contributions in the functional:  
 

coulsgSOfineff30K ℵ+ℵ+ℵ+ℵ+ℵ+ℵ+ℵ+=ℵ ,                               (26) 

 
where the terms in the above equation stand for the kinetic part, the contribution coming 
from the central part, the density-dependent contribution, the effective-mass term, the 
contribution coming from gradient terms, the spin-orbit coupling, the spin-gradient 
coupling (containing the tensor contribution) and the Coulomb contribution, respectively. 
The detailed expressions for each of these terms can be found in Refs. [Me03, VB72] for 
the case where time-reversal invariance (even-even nucleus) and spherical symmetry are 
assumed.  
The spin-gradient term is often omitted in Skyrme mean field calculations and most of the 
available parametrizations have been obtained without this contribution. In the case of 
spherical symmetry and for an even-even nucleus the spin-orbit density is written as:  
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where ( )rϕ  are the radial parts of the wave functions. The sgℵ  contribution is given by:  
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where: 
 

TC α+α=α ; TC β+β=β .                                                   (29) 
 
αC and βC describe the central non-local contribution and can be written in terms of the 
other parameters of the Skyrme force,  
 

( ) ( )221121C xtxt
8
1tt

8
1

+−−=α ,                                          (30) 

 

( )2211C xtxt
8
1

+−=β .                                                   (31) 

 
These terms have been included in some Skyrme parametrizations like Sly5 [Ch98]; αT and 
βT are the parameters related to the tensor contribution. This contribution has been 
perturbatively included in some recent works on top of existing parametrizations (see, for 
instance, Ref. [Co07]). In a recent investigation, new global fits of all the parameters have 
been performed including this contribution and several sets of parameters have been 
introduced [Le07].    
Other non-standard terms may be included in the Skyrme interaction enriching in this way 
the energy density functional with new contributions. An example of this will be mentioned 
in Sec. XII where the ferromagnetic instabilities of the Skyrme force are briefly addressed.  
 
 
V – EXAMPLES OF APPLICATIONS OF THE EDF MEAN-FIELD MODELS TO NUCLEI  
 
The ground state of nuclei can be described with mean-field EDF models in the HF 
approximation or within the Hartree-Fock-Bogoliubov picture for open-shell nuclei (where 
pairing correlations are included; see Sec.  VII). We provide in this section some examples 
of results obtained with the Hartree-Fock-Bogoliubov model.  
An observable that can be evaluated within these models is the mass, related to the total 
binding energy B(N,Z) of the nucleus by the relation: 
 

M(N,Z)=Z Mp + N Mn - B(N,Z) 
 
where Mp and Mn are the proton and neutron masses, respectively. Masses are the first 
observables that are measured in nuclei and constitute thus the first piece of information 
which can be experimentally obtained about the properties of the nucleus under study. 
Theoretical mean-field models can actually be judged for their ability in accurately 
predicting masses of nuclei. As already mentioned, masses of some spherical magic 
nuclei are used in the fitting procedure of the parameters of the phenomenological 
effective interactions.  
Masses are interesting observables also from an astrophysical point of view. It is known 
that they are very important in r-process nucleosynthesis calculations [Ar07]. Accurate 
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and sophisticated Hartree-Fock-Bogoliubov mass-models have thus been elaborated for 
these astrophysical applications. We mention here two recent works of Goriely and 
collaborators where the fits of a new Skyrme and a new Gogny parametrizations have 
been performed; 2149 measured masses are used for the fitting procedure and, owing to 
this feature, the new parametrizations are expected to have a strong predictive power for 
masses in the unexplored regions of the nuclear chart. Figs. 2 and 3 are extracted from 
Refs. [Go-1-09] and [Go-2-09]. The differences between the measured [Au03] and the 
theoretical masses (obtained with the Gogny parametrization D1M in Fig. 2 and the 
Skyrme parametrization HFB-17 in Fig. 3) are represented as a function of the neutron 
number N.  
 

 
Fig. 2 [Go-1-09] 

 
Difference between the measured [Au03] and the theoretical masses obtained with the 

Gogny parametrization D1M as a function of the neutron number N 
 
 

 
Fig. 3 [Go-2-09] 
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Difference between the measured [Au03] and the theoretical masses obtained with the 

Skyrme parametrization HFB-17  as a function of the neutron number N 
 
 
The rms deviation with respect to the 2149 measured masses is equal to 798 (581) keV for 
the new Gogny (Skyrme) parametrization.  
 
Knowing masses, the one- and two-nucleon separation energies Sn, Sp and S2n, S2p may be 
evaluated and the drip line positions can be predicted. Experimental data on the drip line 
positions are unfortunately missing except for light nuclei. Hence, the theoretical 
predictions essentially concern unexplored regions of the nuclear chart . This is a very 
delicate point since it turns out that these predictions are very strongly model dependent 
and  this feature shows how poor in this respect is the predictive power of the available 
EDF models.  
An example of results obtained for the two-neutron separation energies is shown in Fig. 4 
where the binding energies (top) and the two-neutron separation energies (bottom) 
calculated within SLy4-HFB for Sn isotopes are plotted together with the experimental 
values (where available). The last bound isotope is 176Sn with this model. To give an idea 
about the different predictions on the drip line location obtained with different models, we 
mention that with Gogny D1S-HFB calculations the last bound isotope is 160Sn. Even within 
the same model, different (and sometimes inappropriate) choices for the pairing 
interaction may provide a strong model-dependence of the drip line position. 
 

 
Fig. 4 

 
Binding energies (top) and two-neutron separation energies (bottom) calculated within 
SLy4-HFB for Sn isotopes. The experimental values are also plotted (where available) 

 
 
Knowing the ground state structure and wave function, density profiles (and thus radii)  
and single-particle energies can be evaluated within the mean-field EDF models. Radii of 
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some magic nuclei are indeed the ingredients (together with the total binding energies) of 
the fitting procedure of phenomenological interactions.  
 
As far as the single-particle spectrum is concerned, there are two aspects to consider: 
 
1) by construction, the mean-field occupation probabilities are equal to 1 for the hole 
states which are occupied in the HF state and to 0 for the unoccupied particle states. 
These occupations are eventually changed around the Fermi energy within the Hartree-
Fock-Bogoliubov model if pairing is active in the considered nucleus (but only due to 
pairing; the other correlations are absent in the HFB model). This means that the mean-
field models are not able to describe one important observable which characterizes the 
single-particle spectra, i.e., the spectroscopic factors. Beyond-mean-field models are 
necessary to describe the fragmentation of the states and to evaluate the spectroscopic 
factors.  
 
2) As far as the energies of the single-particle orbitals are concerned, it is worth 
mentioning that a mean-field evaluation is not a precise prediction of these quantities. The 
coupling with collective excitations can be important in some cases and the effect of this 
coupling is a shift of the single-particle energies. The states which are expected to be 
more affected by this coupling are those located around the Fermi energy, which are in 
the energy region where the coupling with low-lying excitation modes can become strong. 
This issue may be crucial in some cases. Let us consider for instance the magicity 
modifications which have been observed in last years for several exotic nuclei (see, e.g., 
[Ba07]): some magic numbers desappear, new ones are found and, in general, the gap 
between the last occupied and the first unoccupied state may evolve along isotopic and 
isotonic chains of nuclei. Thus, if precise theoretical predictions are required to describe 
these features, beyond-mean-field models taking into account the particle-vibration 
coupling have to be employed .  
 
The conclusion we can draw for the above points 1) and 2) is that mean-field models are 
able to qualitatively predict single-particle spectra but not to make precise and accurate 
evaluations of their features.  
 
Another aspect related to the single-particle spectra and the shell evolution is the debated 
question of the tensor contribution. Otsuka first explored this contribution in the 
framework of the shell model [Ot05] and several analysis have been done later also within 
the mean-field models with Skyrme and Gogny interactions [Br06, BS07, Co07, Gr07, 
Le07, Ot06]. In the Skyrme case, the tensor contribution was already present in the first 
articles of Skyrme of the 50s [Sk56, Sk59]. However, during many years, this contribution 
has been neglected to simplify the calculations (with some exceptions, for instance, Ref. 
[SB77]). Apart from the numerical simplification, another reason for neglecting the tensor 
contribution was that some anomalous behavior had been predicted in Ref. [SB77] when 
the tensor contribution was included (when the tensor force was included, minor 
improvements were found in some cases and, in other cases, the agreement with the 
experimental results was deteriorated).  
In the relativistic case, the tensor contribution can be estimated only when the exchange 
term is included, i.e., in Hartree-Fock or Hartree-Fock-Bogoliubov calculations (and not in 
Hartree or Hartree-Bogoliubov cases) [Lo06].  
An example of the effect of the tensor contribution on single-particle states within the 
mean-field model is shown in Fig. 5 which is extracted from the work of Colò and 
collaborators [Co07]. The tensor contribution is included perturbatively on top of the 
Skyrme interaction Sly5. What is plotted in the figure is the difference of the single-neutron 
energies 1i13/2 and 1h9/2 for the N=82 isotones. This difference is compared with the 
experimental values of Ref. [Sc04].  
 



 16

 
Fig. 5 [Co07] 

 
Energy difference between the 1i13/2 and 1h9/2 single-neutron states for the N=82 isotones 

 
 
 
VI – DFT AND EDF.  DIFFERENCES AND COMMON POINTS 
 
Before starting to enlarge the formal scheme that we are constructing to define the EDF 
framework, we underline the main differences existing between the two theories EDF and 
DFT as well as the common points and remind the efforts which are being performed to 
link the two formalisms: 
 

a) Both the DFT and the EDF are based on the independent-particle approximation and 
propose a procedure to simplify the many-body problem by reducing it into a one-
body effective problem (however, in the DFT case, correlations are included).  

b) Both the HF and the KS equations are non-linear and are solved iteratively up to the 
derivation of the self-consistent solution.  

c) The ground state is a Slater determinant in both cases. 
d) In principle, the starting point in the EDF is an interaction (a Hamiltonian in the non-

relativistic case) and the functional is derived from the interaction by applying the 
variational principle. In the DFT, the functional (form and terms) is chosen and not 
derived from an interaction. 

e) In nuclear physics, many efforts are devoted to try to use the DFT concepts and 
procedures: for instance, some attempts to introduce directly the functionals (and 
not to derive them from an interaction) have been proposed (see, for instance, 
[Ca08]) 

f) The HK theorems are formulated and demonstrated for a system in an external 
potential. Nuclei are self-bound and this means that the concepts and theorems of 
the DFT cannot be exported directly to nuclear physics. Some generalizations are 
needed in order to formulate them for a self-bound system in the absence of an 
external potential [En07, Gi-1-08, Gi-2-08, Me09]. 

g) In the HF mean-field equations within EDF, the exchange term is exactly calculated 
while there is no correlation term. It is however worth mentioning that, even if 
correlactions are not explicitely introduced, they are in fact included in an effective 
way in the parameters of the interaction which are fitted to reproduce some 
observables. In the DFT the exchange term is included, but often in an approximate 
way,  and a correlaction term is always present in the functional. 
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h) The concept of symmetry breaking and the related procedures of symmetry 
restoration are commonly employed in the context of the EDF in nuclear physics. 
These concepts and procedures are not used in the DFT. 

i) When solving the HF and the KS equations, a single-particle spectrum is obtained. 
However, these energies have a real physical meaning only within the EDF-HF 
model, not within the DFT-KS approach. 

j) A time-dependent formulation of the DFT exists and is based on the Runge-Gross 
theorem. This means that, in principle, links and extensions between the DFT and 
the EDF are  possible also for all the methods based on time-dependent equations.  

 
 
VII – PAIRING WITHIN THE MEAN-FIELD MODEL. METHODS AND INTERACTION 
 
The formation of Cooper pairs [BCS57] composed by nucleons is a phenomenon which is 
well-known in nuclei and confirmed by several experimental observations. This kind of 
superfluidity manifests itself in many open-shell nuclei. Indeed, even if a conventional 
interpretation of superfluidity is not really applicable to nuclei because these systems are 
composed by a relatively small number of constituents, a typical superfluid behavior has 
been evidentiated by some observations, for instance by moment-of-inertia measurements 
in rotating deformed nuclei. In the community, the question whether superfluidity in nuclei 
could be interpreted in an analogous way as superconductivity in electronic systems is 
debated. Within this interpretation, an important issue for the comprehension of pairing 
correlations in nuclei would be the description of the exchange of phonons (which in 
nuclei are the nuclear excited states). For more details about this issue see, e.g., [Ba05]. 
In the context of the mean field, pairing correlations can be included by a simple extension 
of the HF model through the introduction of the quasiparticles. When quasiparticles are 
introduced, the number of particles is not conserved and this symmetry breaking allows 
one to describe pairing correlations. The derivation of the corresponding HFB or 
Bogoliubov-de Gennes equations may be found in different books (for example, in Refs. 
[dG66, RS80]).  
We provide here the main points of a derivation inspired by Ref. [dG66]. This derivation is 
developed for a simplified case: a spherical system, two spin states schematically 
indicated by ↑ and ↓, a central zero-range interaction acting only between opposite spins.  
If we call V the strength of the interaction and if we suppose that the interaction is well 
enough described by a two-body term, the Hamiltonian of the system is given by the sum 
of a one-body term:  
 

( ) ( )∫ ∑
α

+ αΨαΨ= rUrrdH 1
3

1
rrr

,                                                    (32) 

 
and a two-body term:  
 

( ) ( ) ( ) ( )∫ ∑
αβ

++ αΨβΨβΨαΨ= rrrrrdV
2
1H 3

2
rrrrr

,                                         (33) 

 
where α and β represent the two spin states and U1 is the sum of the kinetic term and of an 
eventual one-body external potential. In the spirit of the mean field, an effective one-body 
Hamiltonian is introduced:  
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where He is defined by the following relation:  
 

( ) ( )∑ ∫
α

+ αΨαΨ=λ− rHrrdNH e
3

1
rrr

;                                                  (35) 

 
N is the operator number of particles, 
 

( ) ( )∑ ∫
α

+ αΨαΨ≡ rrrdN 3 rrr
,                                                             (36) 

 
and λ is the chemical potential.  
Since Heff is a quadratic form in the operators Ψ and Ψ+, it can be diagonalized by a unitary 
transformation such as the Bogoliubov transformations:  
 

( ) ( ) ( )( )
( ) ( ) ( )( )∑

∑
+
↑↓

+
↓↑

γ+γ=↓Ψ

γ−γ=↑Ψ

n
n

*
nnn

n
n

*
nnn

.rvrur

,rvrur

rrr

rrr

                                                     (37) 

 
These transformations define the quasiparticles. They diagonalize Heff, which means:  
 

∑
α

α
+
αγγε+ε=

n
nnn0effH ,                                                         (38) 

 
where ε0 and εn are the energies of the ground state |0> and of the excited states |n>, 
respectively.  The previous equation may be alternatively written as: 
 

[ ]

[ ] .,H

,,H

nnneff

nnneff

+
α

+
α

αα

γε=γ

γε−=γ
                                                       (39) 

 
If one calculates [Ψ,Heff] by using eq. (34) and the anticommutation relations for the 
operators Ψ, one obtains:  
 

( )[ ] ( ) ( ) ( ) ( )
( )[ ] ( ) ( ) ( ) ( ).rr*r)r(WHH,r

,rrr)r(WHH,r

eeff

eeff
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+

rrrrr
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                              (40) 

 
If one uses now the Bogoliubov transformations and eqs. (39), one obtains the HFB 
equations:  
 

( ) ( )[ ] ( ) ( ) ( )
( ) ( )[ ] ( ) ( ) ( ).rur*rvrW*Hrv

,rvrrurWHru
e

e rrrrr
rrrrr

Δ++−=ε
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                                                     (41) 
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In the above equations, W and Δ are the mean field and the pairing field, respectively. They 
may be derived by applying the variational principle. One imposes that the free energy is 
stationary:  
 

,STHF0 δ−δ=δ=                                                            (42) 

 
where the mean value of H is defined as:  
 

( )
( ) TK

1,
Eexp

EexpH
H

B
=β

β−

β−φφ
≡

∑
∑

φ φ

φ φ
.                                               (43) 

 
By evaluating <H>=<H1+H2> with the Wick theorem, one can write an expression for δF. 
Then, if one supposes that also F1=<Heff>-TS (calculated with the states which diagonalize 
Heff) is stationary, an expression for δF1 can be obtained. By comparing it with the 
expression of δF, one concludes that F is stationary if:   
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) .rrVrrVr

,rrVrrVrW

↓Ψ↑Ψ−=↑Ψ↓Ψ=Δ

↓Ψ↓Ψ=↑Ψ↑Ψ= ++

rrrrr

rrrrr

                                             (44) 

  
One can thus define the particle and the pairing or anomalous densities :  
 

( ) ( ) ( ) ( ) ( ) ( )[ ]∑ +−=αΨαΨ≡ρ +

n

2
nn

2
nn rufrvf1rrr rrrr

,                                        (45) 

 

( ) ( ) ( ) ( ) ( ) ( )[ ]∑ −−=↑Ψ↓Ψ≡ρ
n

n
*
nn rurvf21rrr~ rrrr

,                                        (46) 

 
where fn is a Fermi function providing the temperature-dependence: 
 

( ) 1exp
1f

n
n +βε
=  .                                                               (47) 

 
In the nuclear case, these equations are usually used in the simpler case of zero 
temperature. However, the expressions for the interaction are  much more complicated 
than the one used in this simple derivation (see Sec. IV) leading to more complicated 
expressions for the potentials.  
If one imposes that the pairing field couples only time-reversed states, a simplification of 
the HFB equations is obtained corresponding to a simplified form of the Bogoliubov 
transformations and leading to the model of Bardeen, Cooper and Schrieffer which has 
been introduced in the 50s to describe Cooper pairs of electrons in superconductors 
[BCS57]. In nuclear physics, this approximation of the HFB model is called HF+BCS.  
 
When dealing with the HFB equations, a very important concern is the choice of the 
interaction to be used in the pairing channel of the equations. In the non-relativistic case, 
one distinguishes between the mean-field models with the Gogny and with the Skyrme 
interactions.  
For the Gogny case, the same interaction is introduced and fitted to be used in both the 
mean-field and the pairing channels. For the Skyrme case, the parameters of the 
interaction are usually fitted only at the Hartree-Fock level (with the exception of the 
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parametrization SkP [Do84]). A different interaction has thus to be introduced in the 
pairing channel of the equations and several strategies may be followed.   
We distinguish between fundamental and phenomenological procedures to construct 
these functionals and provide some examples. Among the more fundamental procedures, 
we mention the derivation of a non-empirical pairing functional obtained at lowest order in 
many-body perturbation theory [He09]. By assuming the validity of the LDA, another 
procedure as been recently proposed where the interaction is derived from a microscopic 
nucleon-nucleon interaction and a fit to reproduce the pairing gap in symmetric and 
neutron matter is performed [Ma08]. In this case, the form of the pairing interaction has 
been enriched (with respect to the usual zero-range density-dependent interaction) and a 
linear dependence on the isovector density has been added.  
When empirical pairing functionals are used, the starting point is a phenomeological 
interaction and its parameters are fitted to reproduce some observables. The interaction 
which is currently used has a zero-range and depends on the isoscalar density:  
 

( ) ( )21
0

0pair rrr1VV rr
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ρ

η−=
α

;                                                        (48) 

 
ρ0 is commonly chosen equal to the saturation density. The parameters V0, η and α are 
usually fitted by using constraints such as the odd-even mass staggering and/or  the 
separation energies. It is worth mentioning that also in the case of phenomenological 
interactions some attempts to enrich the interaction with a dependence on the isovector 
density (linear and quadratic) have been proposed [Ya09].  
Beyond the question of enriching and improving the form of the interaction, another issue 
is discussed, namely whether the fitting procedure should be eventually modified by 
introducing different constraints. For instance, there are some theoretical indications 
suggesting that experimental measurements of pairing vibrations (with two-nucleon 
transfer reactions) may guide towards a deeper comprehension of the pairing interaction. 
QRPA calculations with different pairing interactions (a different volume-surface mixing 
obtained by modifying the parameter η in eq. (48)) provide different  response functions 
and transition densties [Gr09, Kh09, Ma09].  
It is important noticing that the zero-range of the pairing interaction leads to a well known 
ultraviolet divergence in the pairing channel that is usually treated by choosing a 
numerical energy cutoff and by considering it as a parameter in the fitting procedure. A 
regularization method of the ultraviolet divergence is currently used in atomic physics 
[Br99, Gr03] and has been proposed for the nuclear case by Bulgac and Yu [Bu02]. It is 
based on the concept of  pseudopotential [Hu87]. In Fig. 6 the neutron pairing field profile 
is plotted for different cutoff energies EC. Upward various curves correspond to Ec = 20, 
30, 35, 40, 45 and 50 MeV, respectively. The last two curves are indistinguishable showing 
that the ultraviolet divergence has been regularized. The figure is extracted from Ref. 
[Bu02]. 
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Fig. 6 [Bu02] 

 
The neutron pairing field profiles are plotted for different cutoff energies EC. Upward 

various curves correspond to EC = 20, 30, 35, 40, 45 and 50 MeV, respectively. 
 

 
 
 
 
VIII – SMALL-AMPLITUDE EXCITATIONS FROM THE TIME-DEPENDENT MEAN-FIELD 
METHODS: (Q)RPA 
 
Time-dependent mean-field methods are suitable to treat the dynamical evolution of a 
system in the mean field approximation (see, for instance, Refs. [AS08, AW09, GS09, 
SAL07]).  
The TDHF and TDHFB equations are given by the following expressions:  
 

[ ]ρ+=
ρ ),t(fh

dt
dih ,                                                           (49) 

 

[ ]ℜ+=
ℜ ),t(fh

dt
dih ,                                                        (50) 

 
respectively, where f(t) is an external perturbation; ρ and h in eq. (49) are the density and 
the HF Hamiltonian, respectively. ℜ and h  in eq. (50) are the generalized density 
(containing also the pairing tensor [Kh02]) and the HFB Hamiltonian, respectively.  
 
An example of applications of time-dependent approaches is given in Fig. 7 [GS09]. The 
TDHF theory is used there to study the collision dynamics of two 238U nuclei.  
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Fig. 7 [GS09] 

 
238U + 238U central collision. Evolutions associated to 3 different initial configurations. See 

[GS09] for details  
 
 

In the limit of a weak perturbing field the linear response theory can be applied, i.e., the 
response of the system can be approximated by a linear variation with respect to the 
external field. In the limit of a weak perturbing field, within the linear response theory, the 
perturbed density performs small-amplitude oscillations. From the small-amplitude limit of 
the TDHF(B) model, the (Q)RPA equations may be derived (see [Kh02, RS80] for details). In 
this formal derivation use is made of the quasiboson approximation (QBA) [RS80]. The 
nature of this approximation is easier to understand in a different framework, where the 
RPA equations are obtained within the equations-of-motion method [Ro68, RS80]. 
The RPA ground state is defined as the vacuum of the operators Qυ: 
 

0RPAQ =ν ,                                                                  (51) 

where the operators +
νQ  are defined as superpositions of particle-hole and hole-particle 

configurations: 
   

( )∑ +
ν

+
ν

+
ν −≡

ph
ph

ph
hp

ph aaYaaXQ .                                                 (52) 

We use the conventional notation : p and h stand for the quantum numbers of particle and 

hole states (with respect to the HF ground state). The operators +
νQ  create the RPA 

phonons by acting on the RPA ground state:   
 

ν=+
ν RPAQ .                                                          (53) 

 
The presence of the term depending on the amplitudes Y in the expression for the 

operators +
νQ  (eq. (52)) means that the RPA ground state is in principle correlated and  

different from the HF ground state.  
Using the equations-of-motion method (starting from the stationary Schrödinger equation) 
the RPA equations may be derived: 
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The matrices A and B are defined as:  
 

[ ]
[ ] ,RPAaa,H,aaRPAB

,RPAaa,H,aaRPAA

'p'hph'h'p,ph

'h'pph'h'p,ph
++

++

−≡

≡
                                            (55) 

 
where H is the Hamiltonian of the system and  
 

[ ] [ ][ ] [ ][ ]( )C,B,AC,B,A
2
1C,B,A +≡ .                                                  (56) 

 
When the interaction is density-dependent, it can be shown that:  
 

( )
'h'p

ph
'hh'pphp'h'p,ph

h
A

ρ∂

∂
+δδε−ε= ,                                                      (57) 

 

'p'h

ph
'h'p,ph

h
B

ρ∂

∂
= .                                                                   (58) 

 
Since h (the HF Hamiltonian) is the derivative with respect to the density of the 
Hamiltonian density (the energy density functional), the RPA residual interaction in the 
above two expressions is the second derivative with respect to the density of the energy 
density functional. It means that the residual interaction contains rearrangement terms 
coming from the density-dependence of the interaction.  
The solutions of Eqs. (54) are the energies and the wave functions (X and Y amplitudes) of 
the excited states. To simplify the problem, the QBA approximation is employed in the 
evaluation of the matrices A and B. This approximation can be written as:  
 

[ ]

[ ] 'hh'pp'h'pph

p'p'hhh'h'pp'pp'hh

'h'pph

HFaa,aaHF

RPAaaRPARPAaaRPA

RPAaa,aaRPA
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δ−δ−δδ=

++

++

++

.                         (59) 

 
The use of the QBA generates two problems related one to the other:  
(i) the Pauli principle is violated because some terms are neglected in Eq. (59). The final 
expression would be correct if the pair of operators ‘a+a’ was a bosonic operator (from 
this feature derives the name of the approximation); 
 
(ii) in principle, the RPA ground state should contain some correlations but, in practice, it 
is replaced by the uncorrelated HF ground state. The Pauli principle violation is thus 
related to the use of the HF state instead of the RPA state. Hence, the violation is more 
important if  the ground state is actually strongly correlated.  
 
Some solutions to overcome these problems are mentioned in Sec. X.A. 
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The QRPA method is a generalization of the RPA model where pairing correlations are 
added through the introduction of the quasiparticles. The reference ground state is the 
HFB state instead of the HF state. As an illustration of QRPA applications we show in Fig. 8 
the isoscalar quadrupole strength function calculated for the nucleus 22O (solid line). The 
unperturbed strength is also shown (dotted line). The figure is taken from Ref. [Kh02].  
 

 
 

Fig. 8 [Kh02] 
 

QRPA isoscalar quadrupole strength function calculated for the nucleus 22O (solid line). 
The unperturbed strength is also shown (dotted line) 

 
 
IX – BEYOND MEAN-FIELD MODELS - I. COUPLING OF INDIVIDUAL AND COLLECTIVE 
DEGREES OF FREEDOM 
 
In a mean-field analysis of the ground state single-particle features are the relevant 
degrees of freedom which are explicitely taken into account: in the context of the HF 
model, the ground state is a pure Slater determinant, i.e., an uncorrelated state given by 
an antisymmetrized product of single-particle wave functions. On the other hand, the RPA 
allows one to treat collective degrees of freedom in order to describe the excited states.  
In nuclei and, in general, in all many-body systems collective and individual degrees of 
freedom coexist and may couple; a more complete treatment of nuclear properties should 
thus go beyond the simple HF and RPA schemes and should include this coupling 
(particle-vibration or particle-phonon coupling).  
The increasing interest and the efforts devoted to go beyond-mean-field in this direction 
are also justified by the manifestation of new phenomena in the excitation spectra of some 
neutron-rich nuclei. For instance, pygmy resonances represent exotic low-lying excitation 
modes related to the presence of a neutron skin in neutron-rich nuclei. The necessity to go 
beyond standard-mean-field models to describe these resonances has been demonstrated 
by the important effects found when the particle-vibration coupling is included (see, for 
instance, Ref. [Te07]). More in general, several low-lying excited states may be affected by 
the particle-phonon coupling. This coupling provides a shift of the excitation energies as 
well as a fragmentation of the excited states which allows one to partially describe the 
spreading widths of the excitation modes (see Ref. [Be83] for a review about the widthts of 
the excited states).  
In the SRPA model, the inclusion of the 2 particle-2 hole configurations also allows a 
partial description of the widths.  
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Due to this common point between the two approaches (the particle-vibration coupling 
and the SRPA), they are presented here in the same section. 
 
IX.A - Particle-vibration coupling 
 
In a particle-vibration coupling description, one should in principle couple the single-
particle degrees of freedom with both particle-hole and particle-particle excitations. 
However, it has been demonstrated by Bertsch and collaborators that the particle-particle 
vibrations contribute much less to the modification of the single-particle states [Be79]. 
The particle-vibration coupling, described by taking into account only particle-hole 
excitations (calculated with the RPA model), modifies the HF mass operator in the 
following way [Be80, Br05, Co01, Li07]:     
 

)E(M)E(M HF Σ+= ,                                                               (60) 
 
where: 
 

( ) )E()E(E )2(RPA Σ−Σ=Σ .                                                           (61) 
 
The correction ΣRPA in Eq. (61) is described by the following two diagrams:  
 

 
The diagram on the left is called polarization graph and that on the right is called 
correlation diagram. The second-order diagrams 
 

 
 
 
have to be substracted to correct for the double counting introduced because the RPA 
phonons are used to treat the particle-phonon coupling [Be80].  
The particle-vibration coupling generates a shift of the individual energies (and also of the 
energies of the excited low-lying modes) and a fragmentation of the single-particle states 
(as well as of the excited modes). The fragmentation of the excitation modes allows one to 
partially describe their width while that of the single-particle states provides a description 
of the spectroscopic factors.  

 

 RPA 

RPA 
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Effective masses are generated by the non-locality and the energy-dependence of the 
nuclear potential. The non-locality provides the k-mass m~ : 
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where M is the mass operator. The energy-dependence generates the E-mass m : 
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The effective mass m* is defined as: 

m
m

m
m~

m
*m

×= .                                                                 (64) 

 
It turns out that m/m  is the inverse of the spectroscopic factor Sα for a given state α: Sα  ≤ 
1 means that m/m ≥ 1. Thus: m*  ≥ m~ .  
In the HF model m/m = 1 because the potential does not depend on the energy and m* =  
m~ . When the particle-vibration coupling correction is added to the HF mass operator, an 
energy-dependence is included and the E-mass becomes larger than 1. The spectroscopic 
factors Sα may thus be evaluated.  
 
If the Skyrme interaction is used to describe the particle-vibration coupling an ultraviolet 
divergence occurs related to the zero-range of the interaction. The energy cutoff is thus a 
very delicate and important parameter in this kind of calculations.  
 
Two examples of the particle-vibration effect are shown in Figs. 9 and 10.     
Fig. 9 is extracted from Ref. [Be80] and shows the shift of the single-neutron energies in 
208Pb associated to the particle-vibration coupling (Eα in the figure).  
Fig. 10 shows the effect on the excited states. The figure is taken from Ref. [Li07]. The 
isovector E1 resonance is calculated with different models (see [Li07] for details) for 208Pb 
(left) and 132Sn (right). The results where the particle-vibration coupling is included are 
displayed by solid lines.   
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Fig. 9 [Be80]  

 
Neutron single-particle states for 208Pb. Left: HF; middle: HF + particle-vibration coupling; 

right: experimental values 
 
 

 
 

Fig. 10 [Li07]  
 

The isovector E1 resonance is calculated with different models (see [Li07] for details) for 
208Pb (left) and 132Sn (right). 

 
 
IX.B - SRPA 
 
The RPA is currently used to describe the excitation spectrum of a quantum many-body 
system. Its success in nuclear physics is well established and the method has been 
applied for many years to describe giant resonances and low-lying excitation modes. 
A natural extension of the RPA, also based on the approximation QBA, is the SRPA method 
where 2 particle-2 hole (2p2h) excitations are included together with the usual RPA 1 
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particle-1 hole (1p1h) configurations providing in this way a richer description of the 
excitation modes (for both the energies and the widths).  
The SRPA equations have been derived by following different procedures. Some examples 
are the derivation within the equations-of-motion method [Ya-1-86], the procedure 
employing a variational approach [Pr65] or the small-amplitude limit of the time-dependent 
density matrix (TDDM) [La04, To89]. However, up to very recently, the SRPA equations 
have never been fully and self-consistently solved because of the heavy numerical effort 
which they require. Some approximations have been adopted in the past, namely the 
SRPA equations have been reduced to a simpler second Tamm-Dancoff model (i.e., the 
matrix B is put equal to zero; see, for instance, Refs. [Ho76, Kn76, Ni95, Ni98]) and/or the 
equations have been solved with uncorrelated 2p2h states: the residual interaction terms 
in the matrix that couples 2p2h configurations among themselves have been neglected 
(diagonal approximation) [Ad78, Dr-1-86, Dr-2-86, Sc-1-84, Sc-2-84, Ya83, Ya-2-86].  
Very recently, this problem has regained a new interest; it is becoming now numerically 
more accessible and  the SRPA equations have been solved for closed-shell nuclei using 
an interaction derived from the Argonne V18 potential (with the Unitary Correlation 
Operator Method) [Pa-1-09, Pa-2-09], for small metallic clusters in the jellium 
approximation [Ga09] and for the nucleus 16O with the Skyrme interaction [Ga10].  
We briefly recall the main formal aspects of the SRPA model which may be found in 
several articles (see, for instance, Ref. [Ya-1-86}). The equations are a natural extension of 
the RPA problem where the excitation operators Q+υ are a superposition of 1p1h and 2p2h 
configurations: 
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The X's and Y's are solutions of the equations 
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where: 
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and the indices 1 and 2 are a short-hand notation for the 1p1h and 2p2h configurations, 
respectively. 
In Eq. (67), A11 and B11 are the usual RPA matrices, A12 and B12 are the matrices coupling 
1p1h with 2p2h configurations and A22 and B22 are the matrices coupling 2p2h 
configurations among theselves. If the QBA is used and the HF ground state is thus 
employed to evaluate these matrix elements, it can be shown that B12 and B22 are zero. The 
expressions for the other matrix elements may be found, for instance, in Ref. [Ya-1-86]. 
These expressions are valid in the case where the interaction is not density-dependent. 
Rearrangement terms should be included in the case of density-dependent forces. 
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Some comments about the use of the QBA in the SRPA model can be found in the literature 
[Ga06, La90]: it is said that the use of the QBA in the SRPA is a more drastic and severe 
approximation than in RPA. This can be easily understood within the variational derivation 
of the SRPA provided by Providencia [Pr65].  
The usual way of writing the RPA ground state is 
 

Φ=Ψ Ŝe ,                                                                          (69) 

 
where: 
 

∑ +=
ph

hpph aa)t(CŜ ,                                                                      (70) 

 

the operator Ŝ  being a superposition of 1p1h configurations built on top of HF ground 
state |Φ>. The expression of the SRPA ground state in Ref. [Pr65] is the same as Eq. (69) 

where now the operator Ŝ  also contains  2p2h terms: 
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This means that the ground state is no longer a Slater determinant. Due to this, the use of 
the HF ground state to calculate the matrix elements (QBA) is a stronger approximation 
than in RPA. Extensions to cure this problem in the context of SRPA have been proposed 
and applied to a simple model [Ga06] and to metal cluster [Ga09]. Future applications to 
nuclei are in progress. 
We show now in Fig. 11 one example of SRPA strength distributions obtained for the nuclei 
48Ca and 16O. We refer to the papers [Pa-1-09, Pa-2-09] for the details of the calculations. 
One observes that the strongest effect in SRPA is a several-MeV shift of the strength 
distribution to lower energies with respect to RPA. This result seems to be a general 
feature of the SRPA and has been found also in SRPA calculations performed for metallic 
clusters [Ga09]. 
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Fig. 11 [Pa-2-09] 

 
Top: isoscalar quadrupole response for 48Ca. Bottom: isovector dipole response for 16O 

 
 
 
X – BEYOND MEAN-FIELD MODELS - II. A CORRELATED GROUND STATE  
 
In order to go beyond standard mean-field based approaches, two directions (among 
several others) may be explored: i) coupling single-particle and collective degrees of 
freedom; ii) introducing in an explicit way correlations in the ground state. The first issue 
has been discussed in the previous section. This section is devoted to the second issue.   
It has been stated above that the RPA ground state is supposed to be correlated; in 
practice, however, the QBA approximation (see Section VIII) is employed in the standard 
RPA corresponding to the use of the uncorrelated HF ground state in the evaluation of the 
matrix elements. As it has been previously underlined, this leads to a lack of consistency 
in the model as well as to a violation of the Pauli principle. 
Several extensions and procedures to go beyond and improve the treatment of the 
correlations have been introduced in the past decades.  
 
 
X.A – EXTENSIONS OF RPA AND SRPA 
 
A possible way to explicitely introduce correlations in the ground state consists in 
costructing an RPA-like formalism where the violations of the Pauli principle related to the 
use of the QBA are cured. Two main lines have been developed in the past decades using 
either boson expansion methods [Be92, Ca89, Ga-1-06, Gr02, Sa95, Sa97, Sa99, Vo99] or 
extensions in the fermionic space [Ca98, Du90, Du96, Ga06, Ka93, Kl91, Kr98, Ra98, Ta04, 
To07]. Many of these approaches are based on the so-called renormalized RPA (RRPA) 
method starting from the hearly works of Hara and Rowe in the 60s (see Ref. [Ha64]). In all 
these RRPA models: (i) the ground state is explicitely correlated with occupation numbers 
different from 1 and 0 appearing in some renormalization factors; (ii) the Pauli principle is 
satisfied because the QBA is not adopted. However, all the models based on a RRPA are 
strongly limited by the fact the the Energy Weighted Sum Rules (EWSRs) 
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are not satisfied, where F is a 1-body hermitian operator. Some possible lines to overcome 
this drawback have been proposed in Refs. [Ga-1-09, Gr00].  
 
X.B – GCM AND MULTIPARTICLE-MULTIHOLE CONFIGURATION INTERACTION METHOD 
 
In both the GCM and the multiparticle-multihole configuration interaction method a 
correlated ground state is explicitely considered (superposition of mean-field states).  
 
The GCM is a variational method which extends the configuration mixing to the case of a 
continuous collective variable. It turns out that all the projection methods which are used 
to restore broken symmetries are special forms of the GCM. For a detailed introduction of 
the formalism of the GCM, Ref. [Bo90] is recommended.  
The wave functions are expressed as linear combinations of a family of wave functions 
depending on some collective variables. For this particular feature, the GCM is suitable to 
describe collective phenomena and large amplitude deformations. Given a family of N-
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body wave functions |Φ(q)> depending on a collective variable q, the GCM determines 
approximate states of the Hamiltonian of the form:  
 

( ) ( )∫ Φ=Ψ qqdqfkk .                                                             (73) 

 
The coefficients fk are found by imposing that 
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is stationary with respect to the variations δfk.  
The coupling between collective and single-particle degrees of freedom is implicitely 
taken into account in the GCM (in the use of the deformed mean field). However, only 
collective degrees of freedom have been considered so far as generating coordinates 
(quadrupole, octupole, pairing,…). Some efforts are devoted to try to use indices of 
quasiparticles as generator coordinates; in this way, an explicit coupling between single-
particle and collective coordinates would be introduced.  
For many applications, the most important generator coordinate is the quadrupole 
deformation, but other degrees of freedom have been considered as well [Be-1-08, Eg04]. 
Nowadays, GCM-type configuration mixing is almost always combined with projection on 
particle number and angular momentum. Such approach gives a correlated ground state 
and a spectrum of excited states for each angular momentum, and allows for the 
calculation of transition moments that respect selection rules. There exist 
implementations using Skyrme and Gogny interactions, as well as relativistic Lagrangians. 
Typical results can be found in Refs. [Be-2-08, Be04, Ni-1-06, Ni-2-06, Ro02, Ro05].   
Exact symmetry-restored GCM is numerically heavy, in particular when several generator 
coordinates are considered simultaneously (recent applications [Be-2-08,Ro10] consider 
7 generator coordinates: the 5 components of the quadrupole tensor and two gauge 
angles that correspond to particle-number projection). It can be used, however, as the 
starting point to derive a microscopic Bohr Hamiltonian (see [Kl08, Li99, Ni09] and 
references therein) that is numerically much simpler to handle and that allows easily to 
add higher-order corrections to the moments of inertia. 
Both the symmetry-restored GCM [Be-3-08] and the mapped collective Hamiltonian [De10] 
have been used for large-scale investigations of ground-state correlations and properties 
of characteristic excited states. 
It has to be mentioned that some technical problems (jumps and divergences) have been 
found in applications of the GCM [An01, Do07] that employ an energy functional that 
cannot be mapped onto an underlying effective interaction (by contrast, a GCM based on a 
non-density dependent Hamilton operator is not subject to these difficulties). A 
regularization scheme to solve these problems has been proposed and applied in Refs. 
[Be-1-09, Du09, La09]. 
 
In a multiparticle-multihole configuration mixing approach, the correlations are included 
by considering a ground state given by a superposition of Slater determinants. A Higher 
Tamm Dancoff approximation [Bo07, Qu04, Si07] and a variational multiparticle-multihole 
configuration mixing  approach [Pi08] have been proposed in the literature. It should be 
mentioned that in the Higher Tamm Dancoff case the model is not developed in the 
framework of the EDF (the residual interaction is not derived from the energy density 
functional). 
In Ref. [Pi08], the wave function of the system is chosen as a superposition of a finite set of 
Slater determinants which includes the HF state and multiple particle-hole excitations of 
this state. Both the configuration-mixing coefficients and the single-particle states are 
found with a variational procedure. This formal scheme is developed in the framework of 
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the EDF. The Gogny interaction is used to construct the energy density functional and the 
residual interaction is derived from the Gogny interaction.  
 
 
XI – NUCLEAR ASTROPHYSICS. NEUTRON STARS. SOME APPLICATIONS OF THE EDF 
MODELS 
 
Neutron stars, the most compact stellar objects after black holes, are the remnants of 
core collapse supernovae [Be90, Gl97]. A detailed description of the structure and the 
properties of neutron stars can be found in the Lectures of P. Pizzochero.  
The physics of neutron stars is a multidisciplinary domain where nuclear physics plays a 
very important role. The description of those neutron-star properties which are not 
directly linked to the observations such as, for instance, their internal composition, 
requires the development of theoretical models where the ingredients coming from 
nuclear physics are very important. Furthermore, the comprehension of several 
properties of neutron stars may be obtained from the study of the properties of atomic 
nuclei. In a natural way, the link between neutron stars and nuclei is made via the nuclear 
matter: it turns out that asymmetric nuclear matter is rather similar to the matter found in 
neutron stars which is called neutron-star matter. Recently, more direct relations between 
neutron-rich nuclei and neutron-star matter have been proposed.  
 
Isospin asymmetry is a common feature characterizing both neutron-rich nuclei and 
neutron stars; this asymmetry can be ~ 0.95 in the interior of the star. The dependence of 
several properties of nuclear systems on the isospin asymmetry may be related to the 
symmetry energy, Esym, defined by an expansion of the energy with respect to the 
asymmetry δ=(ρn-ρp)/ ρ,  
 
E(ρ, δ) ~ E0(ρ) + Esym(ρ) δ2  +…,  
 
where ρ is the total density and ρn and ρp are the neutron and proton densities, 
respectively.  
It turns out that the pressure of neutron matter (which is not so different from neutron-star 
matter) is related to ρ2∂Esym/ ∂ρ. The density-dependence of the symmetry energy is thus 
very important in determining all the properties associated to the pressure. Due to this 
feature, some relations between neutron-rich nuclei and neutron-star properties have 
been found. To mention some examples: (a) Lattimer and Prakash found the existence of 
correlations between the neutron star radius and the pressure evaluated at densities 
above the equilibrium density [LP00, LP01]; (b)  Typel and Brown pointed out the existence 
of correlations between the neutron skin thickness in nuclei and the pressure of neutron 
matter evaluated at sub-nuclear densities [Br00, TB01]; (c) Horowitz and Piekarewicz 
found a relation between the neutron skin thickness in nuclei and the neutron star radius 
[HP01].  
What is shown in Fig. 12 is the calculated neutron skin thickness δR of nuclei as a function 
of the radius of stars of mass equal to 1.4 solar masses (left panel) and as a function of the 
radius of maximum-mass stars (right panel). The figure is extracted from the work of 
Steiner and collaborators [St05]. Symbols represent results of EDF model calculations and 
provide thus a first example of applications of EDF models to astrophysical issues, namely 
the description of neutron star properties (see [St05] for details about the shown results).   
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Fig. 12 [St05] 

 
Calculated neutron skin thickness of nuclei versus the radius of stars of mass equal to 1.4 

solar masses (left panel) and versus the radius of maximum-mass stars (right panel) 
 
 

Another very direct link exists between nuclei and neutron stars: some exotic neutron-rich 
nuclei produced in nuclear facilities are actually also located in the outer crust of neutron 
stars surrounded by electrons (while the inner crust is composed by beyond-drip-line 
nuclear systems surrounded by a neutron gas and by electrons). Thus, the comprehension 
of the properties of these nuclei (for instance, the description of pairing correlations) has 
a direct impact on the comprehension of neutron star properties.  
 
Neutron stars evolve with time and new phenomena occur. Neutron stars do not produce 
energy but lose the gravitational energy gained during the core collapse by neutrino 
emission. This cooling determines the slowing down of the rotation motion in pulsars. 
Neutrinos and anti-neutrinos mainly produced by beta decay and inverse beta decay carry 
out the energy of the core. This is called the URCA process [Ga41]. Actually, the URCA 
process is strongly suppressed by energy and momentum conservation unless a minimum 
amount of protons, around 11% of the baryonic density, is present [La91]. This minimal 
amount is strongly related to the symmetry energy. It turns out that: 
 

( )ρ−≈∂−∂=μ−μ=μ=μ μ sympne E)x21(4x/E ,                                            (75) 

 
where  ρρ= /x p is the proton fraction. Eq. (75) is valid for beta-equilibrated matter, where 

μe, μμ, μn  and μp are the electron, muon, neutron and proton chemical potentials, 
respectively. Eq. (75), together with the charge neutrality condition ρp = ρe + ρμ, allows 
determining the equilibrium proton fraction. This shows how the proton fraction is related 
to the symmetry energy. Relativistic mean-field models, having typically larger values of 
the symmetry energy, satisfy the criterium of minumum amount of protons around the 
saturation density while most of non-relativistic mean-field models do not.  
However, URCA process is too efficient to explain the cooling with time which is observed 
for several neutron stars. It has been for instance suggested that superfluidity leading to 
the presence of a neutron pairing gap may quench cooling from the URCA process [Mo07]. 
A modified URCA process is also considered where adding an additional neutron as a 
spectator of the process allows momentum and energy conservation. It should be noted 
that the specific heat of the crust is an important ingredient in the cooling modelization. 
Specific heat actually depends on the excitation spectrum (vibrations in the crust) which is 
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different in the superfluid and in the normal phases (pairing correlations would affect the 
specific heat and, consequently, the cooling time [Mo07]).  
A typical example of excitation spectra calculated in an inner-crust Wigner-Seitz cell of 
neutron stars [NV73] is displayed in Fig. 13 [Gr08]  (we refer to P. Pizzochero’s Lectures 
for the details about the Wigner-Seitz modelization of the Coulomb lattice present in the 
neutron-star crust). This is another example of applications of the EDF models to neutron 
star physics: the vibrations in the crust are described with the HFB + QRPA approaches 
and the quadrupole excitation spectrum shown in the figure is calculated for the Wigner-
Seitz cell having a radius of 19.6 fm, a number of protons Z = 40 and a number of neutrons 
N = 1460. A very collective low-energy excitation mode is found. Similar results have also 
been found for other Wigner-Seitz cells at different baryonic densities in the crust of the 
star [Kh05].  
In Fig. 14 the transition density associated to this collective low-lying mode is displayed 
showing that the strongest contribution to this excitation comes from the free gas of 
neutrons located outside the central nuclear cluster of the Wigner-Seitz cell with Z = 40 
protons. The nature of this excitation mode is thus very different from that of a low-lying 
quadrupole excitation mode in a finite nucleus.  
 

 
Fig. 13 [Gr08] 

 
Neutron quadrupole QRPA strength distributions for the Wigner-Seitz cell with Z = 40 and 

N = 1460 (inner crust of a neutron star)  
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Fig. 14 [Gr08] 

 
Neutron transition density in units of fm−3 for the low-energy mode in the Wigner-Seitz cell 

described in Fig. 13 
 
 
On the theoretical side, the mass and the radius of a neutron star are determined by 
solving the hydrostatic equilibrium equation. The equation of state is required for this. It is 
important noticing that equations of state are typically constrained around the saturation 
density because the observables used for fitting the parameters are measured in nuclei. In 
neutron stars, the density ranges from subnuclear densities in the crust up to several 
times the saturation density in the core. Furthermore, the isospin asymmetry can be as 
large as 0.95 in the interior of the star. This means that the equations of state are used at 
densities and isospin asymmetries very different from the values where the fits are done. 
This is a delicate point related to the predictive power of the models. Several equations of 
state have been checked (and some of them rejected). In Fig. 15 [LP01] a mass-radius 
diagram for different equations of state is shown.  For notations and futher explanations 
see Ref. [LP01]. 
 

 
Fig. 15 [LP01] 

 
Mass-radius diagram for different equations of state 
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XII – APPLICATIONS TO NUCLEAR MATTER. ISOSPIN EFFECTS: ASYMMETRIC MATTER. 
SPIN INSTABILITIES 
 
Symmetric nuclear matter is an ideal infinite system equally composed of neutrons and 
protons where the Coulomb interaction is not active. The isospin asymmetry Yp=Z/A is 
equal to 0.5.  By reducing the value of Yp, neutron-rich matter is obtained and the value Yp 
= 0 characterizes pure neutron matter. An illustration of the equation of state (EoS) of 
symmetric matter is plotted in Fig. 16 together with examples of EoSs for asymmetric and 
neutron matter. The differences between the symmetric-nuclear-matter EoSs and the 
neutron-rich-matter EoSs are typically related to the symmetry energy, which is a crucial 
quantity for determining the properties of nuclear systems and for the astrophysical 
implications (as we have seen, for instance, in neutron-star structure and time-evolution).  
 

 
Fig. 16 

 
Left: EoS for symmetric matter. Right: EoSs for symmetric, asymmetric and neutron 

matter 
 
 
Different equations of state, different values and density-dependences of the symmetry 
energy are provided by each theoretical model. This means that each model predicts a 
specific isospin-dependent and density-dependent behavior for nuclear matter.  
In Tables 1 and 2 the properties of infinite nuclear matter obtained with several Skyrme 
effective forces are shown [Me03].   
 

 
 

Table 1 [Me03] 
 

Properties of nuclear matter obtained with some Skyrme forces 
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Table 2 [Me03] 
 

Properties of nuclear matter obtained with some Skyrme forces 
 
 
Among these quantities which characterize nuclear matter, we consider here more in 
detail the saturation density ρ0, the incompressibility K∞, the effective mass m*/m and the 
symmetry energy aI. We briefly discuss how these properties are known (from which 
empirical constraints they are extracted). For a more detailed review, see Ref. [Me03].  
 
XII.A – SYMMETRIC MATTER 
 
The empirical values of the saturation point are known by electron scattering experiments. 
The saturation density corresponds to the central density of heavy nuclei and its value is 
independent of the considered nucleus (owing to the saturation properties of the nuclear 
interaction). In the EoS of symmetric matter, the saturation density is the value associated 
to the equilibrium point (the minimum point of the curve).  
The empirical values associated to the saturation point are:  
 
ρ0 = 0.16 ± 0.002 fm -3   
 
E/A(ρ0) = -16.0 ± 0.2 MeV 
 
In a Skyrme-mean-field model, the EoS for symmetric matter is written as:  
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where:  
 

( )221S x45tt3 ++=Θ .                                                      (77) 

 
Thus, each Skyrme parametrization provides slightly different values of ρ0 and E/A(ρ0) 
according to the different values of the parameters in each model.  
 

-------- 
 
The incompressibility is the curvature of the EoS at the saturation point. From the Skyrme 
EoS: 
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From theoretical and experimental studies on monopole giant resonances the value of the 
incompressibility can be extracted. Recently, it has been suggested that pairing could 
play a role in this context [Kh-1-09]. The commonly accepted values have been extracted 
from a systematic analysis of Blaizot within the RPA method [Bl80]:  
 
K∞ = 210 ± 30 MeV 
 

-------- 
 
Nucleons in a nuclear medium (in nuclei or in matter) acquire an effective mass. The 
effective mass can be defined by the following relation:  
 

( )
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p 2
p
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r
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This quantity is very important, for instance, for its impact on the level density of nuclei 
around the Fermi energy. One can write: 
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From the Skyrme functional: 
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with:  
 

( ) ( )2211V x2tx2t +++=Θ  ,                                             (81) 

 
The accepted empirical values can be extracted, for instance, by relating this quantity to 
the isoscalar quadrupole giant resonances: 
 
m*/m = 0.8 - 0.9 
 
XII.B – ASYMMETRIC MATTER AND SYMMETRY ENERGY 
 
The isospin effects can be analyzed in asymmetric matter. The EoS derived from the 
Skyrme interaction for asymmetric matter is written as: 
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where: 
 

( ) ( )[ ]m
p

m
p

1m
pm Y1Y2YF −+= − .                                            (83) 

 
-------- 

 
As far as the isospin effects are concerned, a very important quantity which strongly 
characterizes them is the symmetry energy aI. Its accepted empirical values can be 
extracted from masses by using models:  
 
28 MeV ≤ aI  ≤ 32 MeV 
 
From the Skyrme EoS: 
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The importance of the density-dependence of the symmetry energy has been underlined 
several times in this manuscript; some words about this dependence have to be spent. 
First, it has to be mentioned that some quantities which characterize the properties of 
nuclear matter are correlated one to the other [Me03]. A study of the correlations among 
the incompressibility, the saturation density and the symmetry energy {K,ρ0, aI}, for 
insance in the Skyrme case, would allow a better control on some terms of the Skyrme 
interaction, namely on its density-dependent term (and thus a better control on the 
density-dependence of the symmetry energy). The density-dependence could be 
constrained by heavy-ion collision experiments (see Lectures of M.-F. Rivet). One of the 
objectives of such experiments would also be to enrich the scenario by using neutron-rich 
exotic ions. The dependence on neutron/proton asymmetry could also be analyzed in this 
way.  
Some suggestions to extract informations about the symmetry energy from the study of 
collective modes in asymmetric nuclei have been made [Mo01, Re99].  
To conclude, we underline again that, in the neutron-star context, the density-dependence 
of the symmetry energy has a big impact on predictions of masses, radii, URCA process 
and neutron-star cooling time (see Sec. XI).  
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XII.C – SPIN INSTABILITIES IN MATTER 
 
In Landau theory of Fermi liquids, nuclear matter properties can be written in terms of the 
matrix elements of the interaction at the Fermi surface,  
 

( ) ( ) ( ) ( )[ ]21212121
1

02121 'GG'FFNkkVkk τ⋅τσ⋅σθ+σ⋅σθ+τ⋅τθ+θ= −rrrr
.            (85) 

 

The coefficients F, F’, G and G’ are functions of the angle between 1k
r

 and 2k
r

. A multipole 
expansion provides the Landau-Migdal parameters Fl,F’l, Gl and G’l (l = 0 and 1 in the case 
of a zero-range Skyrme interaction). The stability of the HF solution constrains the values 
of these parameters and generates sum rules that have to be satisfied. If these 
requirements are not satisfied instabilities are generated.  
As far as spin or ferromagnetic instabilites (the magnetic susceptibility becomes negative) 
are concerned it has been shown by Margueron and collaborators that they systematically 
occur, for Skyrme and Gogny effective interactions, at high densities or large isospin 
asymmetries [Ma01, Ma02]. High densities and large isospin asymmetries actually define 
the typical scenarios of astrophysical interest in neutron stars and the use of some of 
these forces in this context may thus become delicate and even inappropriate. 
Furthermore, an eventual ferromagnetic transition would have a strong impact on the 
evolution of a protoneutron star via the mean free path of neutrinos which would be equal 
to zero [Na99].  
In Fig. 17 the densities where a ferromagnetic instability occurs as a function of the 
neutron/proton asymmetry are shown for some effective forces. The figure is extracted 
from Ref. [Ma02].   
 

 
 

Fig. 17 [Ma02] 
 

Densities where a ferromagnetic instability occurs as a function of the neutron/proton 
asymmetry for some effective forces  

 
 
It has to be mentioned that ferromagnetic instabilities are not predicted by microscopic 
Brueckner-Hartree-Fock calculations with realistic nucleon-nucleon interactions. An 
illustration of this is shown in Fig. 18 which is extracted from the work of Vidana and 
collaborators [Vi02].  
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Fig. 18 [Vi02] 
 

Ratio χ/χF (where χ is the susceptibility) as a function of the density  
 
 
A way to cure this kind of instabilities for Skyrme forces has been suggested in Ref. [Ma-1-
09] and checked for the ground state of nuclei in [Ma-2-09].  
New terms depending on the spin and spin-isospin densities have been added to the 
Skyrme interaction:  
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3

st
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3
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γ
σ ,              (86) 

 
with the same notation which has already been introduced in Sec. IV. The spin and spin-
isospin densities are defined as:  
 

↓↑ ρ−ρ≡ρs ,                                                               (87) 

 

↓↑↓↑ ρ+ρ−ρ−ρ≡ρ ppnnst .                                                  (88) 

 
 
XIII – PREDICTIVE POWER WITHIN EDF. PERSPECTIVES 
 
We have addressed several times the issue of the predictive power of the EDF models.  
As it has been underlined, these models are constrained to reproduce some properties of 
known nuclei and to give a reasonable equation of state of matter around the saturation 
density. Extrapolations to unknown regions of the nuclear chart, to very large isospin 
asymmetries and to densities very different from the saturation densities are thus not 
straightforward.  
Two aspects have to be considered:  
 
1) the predictive power of the available models in the unexplored regions of the nuclear 
chart for describing the properties of unstable exotic nuclei;  
 
2) the predictive power of the available models in extreme regions of densities and isospin 
asymmetries of astrophysical interest. 
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1) In Fig. 19, the two-proton and two-neutron separation energies for Tin isotopes are 
displayed (the figure is extracted from the Lectures of D. Lacroix). The pink area 
represents the region where experimental data are available. It is important to underline 
that the binding energies of some nuclei are used in the fitting procedures. Large 
uncertainties are found in the unknown region for the two-neutron separation energies. 
The prediction for the location of the drip lines is thus a strongly model-dependent result.    
 

 
 

Fig. 19 [La-2-09] 
 

Two-proton and two-neutron separation energies for Tin isotopes. The pink area 
corresponds to the region where experimental data are available 

 
 
2) In Fig. 20, the density-dependence of the symmetry energy is shown for different 
models [St05]. Strong discrepancies are visible far from the saturation point, especially at 
high densities.  
 

 
 

Fig. 20 [St05] 
 

Symmetry energy as a function of the density for different models 
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1) and 2) are only two illustrations and many other results and analyses could be reported 
and commented. The conclusion that may be drawn about the predictive power of the EDF 
models is that the extrapolations in unknown regions have typically very large error bars. 
The necessity of improving the predictive power is evident and several directions may be 
followed.  
An important contribution is expected from the studies aiming at a more fundamental 
formulation of the nuclear interaction (links with QCD) which should guide in a rigourous 
way our understanding of the nuclear properties. Also the work on the functionals (links 
with the DFT) is important in the perspectives of building a more global view of the nuclear 
properties and of using the tools of the DFT in the nuclear framework. The improvement of 
the available models can provide a better description of the nuclear correlations in stable 
and unstable nuclei. The formulation of more sophisticated beyond-mean-field approaches 
can thus lead to important advances. Finally, in some cases, the adopted conventional 
procedures used for fitting the parameters in phenomenological models could be 
eventually reconsidered. For instance, the fitting criteria for the phenomenological 
interactions could be modified and/or new constraints could be included (this issue is 
briefly mentioned in the manuscript for the case of the pairing interaction). All these 
efforts and systematic analysis can provide an implementation of the description of the 
nuclear many-body problem within the Energy Density Functional theory.    
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