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Abstract. Isospin symmetry is one of the fundamental symmetries we can identify in
nuclei. This is related to the approximate charge symmetry and charge independence
of the strong interaction. On this hypothesis, the level schemes of mirror nuclei (with
exchanged number of protons and neutrons) should be identical. Of course some dif-
ferences appear due to the fact that the Coulomb interaction breaks isospin symmetry.
Energy differences between excited states in mirror nuclei can therefore be explained to
a large extent in terms of the Coulomb effects. Recent investigations, however, suggest
the need to introduce a non-Coulomb isospin symmetry breaking term to get a satisfac-
tory quantitative description of the available data. In the last decade or so, the study
of energy differences in isobaric nuclei as a function of angular momentum has been
done systematically for nuclei in the f 7

2
shell. This has been possible due to important

experimental developments in the identification of proton-rich nuclei produced with
very low cross sections. Contemporaneously, state-of-the-art shell-model calculations
have been produced for the description of these data. The synergy between theory and
experiment for the study of energy differences of mirror and isobaric analogue nuclei
has allowed the investigation of the evolution of the nuclear wave functions with in-
creasing spin. The alignment process, related to changes of the spatial correlations of
nucleons along a rotational band, together with changes of the nuclear radius or shape
as a function of the angular momentum are examples of the type of phenomena that
can be studied from the analysis of Coulomb energy differences. It is also possible to
identify particular wave-function configurations of the states. In summary, the study
of mirror energy differences has now become established as a very powerful tool to
understand nuclear properties in nuclei. While most of the investigations so far have
been concentrated mainly in nuclei of the f 7

2
shell, extensions to other shells are be-

coming available, which allows us to develop a more general view and description of
the different properties that can be deduced from the data.

1 Introduction

The atomic nucleus is a complex quantum system formed by two different
fermions, the proton and the neutron. Therefore, the theoretical description and
interpretation of the properties of such a many-body system can be cumbersome.
The identification of symmetries in the physics of the nucleus can help to un-
derstand the nuclear behavior, and constitutes a very powerful tool. Symmetries
are intimately related to conservation laws and to conserved quantities which, in
quantum mechanics, translate into good quantum numbers. Among the different
symmetries that have been identified in nuclear physics, the isospin symmetry is
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related to the identical behavior of protons and neutrons in the nuclear field. At
the very beginning of nuclear physics only charged particles were known, but the
nuclear mass could not be accounted for taking into account only these particles.
In 1920, Rutherford suggested the existence of a neutral particle with a mass
very similar to that of the proton and in 1932 Chadwick discovered the neutron.
It was soon clear that the nuclear force acted similarly on protons and neutrons.
This induced Heisenberg to propose treating them as the two quantum states of
a particle called the nucleon. The quantum number associated to this symmetry
was called “isospin” with the value t = 1/2, in analogy to the spin quantum
number. Its projection on the z axis characterizes the two different nucleons:
tz = −1/2 for the proton and tz = 1/2 for the neutron. In practice, the angu-
lar momentum algebra we know for treating the spin can be easily applied to
isospin, but whereas the spin state of an elementary particle is determined by the
projection of its spin in real space, the isospin state of the nucleon is determined
by the projection in an abstract space: the isospin space. The isospin T of the
nucleus is given by the vector sum of the single nucleon isospins. In a nucleus
formed by N neutrons and Z protons the total projection Tz = (N − Z)/2 is
well defined and therefore |N − Z|/2 ≤ T ≤ (N + Z)/2.

The strong interaction is, with good approximation, charge-symmetric and
charge-independent. Charge-symmetric means that the interaction between two
protons is identical to that between neutrons (Vpp = Vnn), while we say that it
is charge-independent if Vpp + Vnn = 2Vpn. Of course, the Coulomb interaction
breaks isospin symmetry as it acts only between protons. Putting the Coulomb
interaction to one side, the concepts of charge symmetry and independence can
result in identical behavior of two nuclei with the same total number of nucleons
(isobaric nuclei), but with different numbers of neutrons and protons. Of course,
the Pauli Principle puts obvious constraints on the available configurations and
hence on the range of the symmetries observed. The isospin quantum number,
T , directly couples together the two concepts of charge symmetry/independence
and the Pauli principle. Isospin thus becomes a good quantum number to char-
acterize analogue states in isobaric multiplets (Wigner, 1937). These states are
termed isobaric analogue states, IAS, and the near-identicality of such states
demonstrates the power of the isospin concept. In particular, nuclei with the
same mass but with the numbers of protons and neutrons interchanged, mirror
nuclei, would have identical structure, with all analogue states at the same exci-
tation energy. Energy differences between IAS are due to isospin non-conserving
forces, such as the Coulomb interaction.

For many decades the study of these energy differences was confined to low ex-
citation energy and angular momentum [1]. Thanks to the advance in gamma-ray
detection efficiency and resolving power achieved with large Ge multi-detector
arrays, in combination with other ancillary devices it has been possible to extend
these studies to high-spin yrast states. This allows to follow the IAS and their en-
ergy differences as a function of the angular momentum, and in particular, along
the yrast line, that is the line that connects the lowest energy states at the high-
est angular momentum. The most studied isobaric multiplets are those of the f 7

2
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shell, where collective structures have been observed up to the band-terminating
states. The structure of these nuclei can be described with very good accuracy
by the shell model. This has encouraged the extension of these calculations to
the description of excitation energy differences between IAS to investigate the
origin of isospin-symmetry-breaking (ISB) effects. It turns out that such energy
differences – usually called Coulomb energy differences (CED) – yield detailed
information on changes in nuclear structure with increasing energy and angular
momentum. More recently, experimental and theoretical efforts have allowed to
extend these studies to nuclei in the sd and upper fp shells. In these lectures
the CED in the region of nuclei between A ∼ 40 and A ∼ 60 will be discussed
in detail.

We will start with the description of some properties of the isospin symmetry
and the application of the isospin concept to energy differences between analogue
states in isobaric multiplets. Technical developments in both experimental tech-
niques and the nuclear shell model that have enabled the rapid progress in this
field will then be discussed. Finally, some examples of the experimentally mea-
sured energy differences that show the role of the different terms that contribute
to the energy differences will be presented.

2 The isospin symmetry in isobaric multiplets

2.1 Basic concepts

The general concept of the charge invariance of the nuclear force can be sub-
divided into two properties: charge symmetry and charge independence. As
stated above, charge symmetry requires that the nuclear proton-proton inter-
action (Vpp) is equal to that between neutrons, Vnn. Recently, accurate data of
nucleon-nucleon scattering experiments have shown evidence for a slight charge
asymmetry in the measured scattering lengths of −18.9 ± 0.4 fm (nn) and
−17.3± 0.4 fm (pp) [2]. Of course, these data refer to free-nucleon interactions,
and not to the effective nucleon-nucleon interaction in the nuclear medium. The
origin of the observed charge-symmetry breaking (CSB) is not yet fully settled,
and models based on the effects of nucleon mass splitting and meson mixing have
been applied to this problem ([2,3], and references therein). The more stringent
condition of charge-independence also requires that (Vpp + Vnn)/2 = Vnp, which
is also known to be broken slightly [4]. Nevertheless, the concepts of charge sym-
metry and charge independence will be expected to result in clear symmetries
in the nuclear behavior.

Isospin selection rules put some constrains to the electromagnetic transi-
tions and the weak interaction. Certain decays are forbidden if isospin is a good
quantum number for hadronic forces. In particular, electromagnetic Eλ and Mλ
transitions can only connect states with ∆T = 0,±1. Electric E1 transitions
between ∆T = 0 states are forbidden in N = Z nuclei, and have equal strengths
in mirror nuclei. Quadrupole E2 transitions have a linear dependence on Tz in
an isobaric multiplet. Moreover, magnetic Mλ transitions between states of the
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same T in an N = Z nucleus are hindered. For the beta-decay, Fermi transitions
are allowed only along isobaric multiplets.

The value of T is not an observable quantity, though for nuclei near N = Z
(where the concept of isospin is most relevant) it can usually be “assigned” using
logical arguments. This can be done easily if it is remembered that states of a
given T can only occur in a set of nuclei with Tz = T, T−1, ...,−T (since |Tz| > T
is forbidden). We start our consideration of isospin with the simplest systems,
formed by two nucleons: nn, pp and np. Here, Tz is 0,±1 and so the value of
T is restricted to 0 and 1. Charge-independence dictates that any state that
can be constructed in the pp (or nn) system must also exist in the np system.
However, the inverse statement cannot be made. That is, there are some states
in the np system that are forbidden by the Pauli principle in the pp (or nn)
system composed by identical particles. The ground state of the deuteron (np)
with Jπ = 1+ is such a state and, therefore, must have T = 0 as the isospin
projection is limited only to Tz = 0. Similarly, any state in the nn system (and
its equivalent state in pp) must have T = 1 as the projection is Tz = 1 (−1 for
pp). However, as a T = 1 state can have a Tz = 0 projection, this state must
also exist in the np system. Thus, there are three identically-constructed T = 1
states which can be found in the nn, np and pp systems (i.e. with Tz = 1, 0,−1
respectively). These states form an isospin triplet, and the lowest Jπ = 0+ states
in these three two-nucleon systems form such a triplet. In fact, as we know, all
three of these states are unbound. This classification argument can easily be
extended to states in many-particle systems, where it is also useful to remember
that, in general, the lowest energy states (e.g. the ground state) of a nucleus
will have the lowest available value of isospin (i.e. T = |Tz|) (Exceptions to this
“rule” are, for example, N = Z odd-odd nuclei in the f 7

2
shell and 34Cl, where

Tz = 0 and the ground state has T = 1.) Thus, for example, one finds four nuclei
with Tz = ± 1

2 ,
3
2 all four of which contain an identically-constructed T = 3

2 state
– an isospin quadruplet. The two “outer” nuclei with Tz = ±3

2 have T = 3
2

ground states (which are mirror states - see below), and for the other two nuclei
with Tz = ± 1

2 the T = 3
2 analogue states are excited states, as the ground states

of these two nuclei will be expected to have T = 1
2 .

The simplest example of an isobaric multiplet is a pair of mirror nuclei.
In a mirror pair, the total number of pp interactions in one member of the
pair is the same as the number of nn interactions in the other. Hence only
the charge-symmetry of the nucleon-nucleon interaction is required to provide
isospin symmetry in a mirror pair. This is generally not the case for any set
of IAS, where the isospin symmetry across a multiplet relies on both charge
symmetry and charge independence. Let’s look at the isobaric triplet of mass
A = 22 formed by the odd-odd N = Z nucleus 22Na and the two mirrors 22Mg
(Z = 12) and 22Ne (Z = 10) (Fig. 1). As in the case of the deuteron, the ground
state of 22Na is a T = 0 state, but the spin and parity are Jπ = 3+, as the odd
proton and neutron are filling the d 5

2
orbital and the nucleus is deformed. The

first T = 1, Jπ = 0 state lies at 693 keV excitation energy and is the isobaric
analogue state of the ground states of 22Mg and 22Ne. Due to the Pauli Principle,



Isospin symmetry breaking in mirror nuclei 5

the N=Z nucleus has more excited states than the other members of the triplet.
The small differences between the excited states are a consequence of the effect
of the isospin breaking terms of the interaction such as the Coulomb force. Once
this effects are taken into account, the size of remaining differences constitutes
a test of the charge independence of the nuclear interaction.
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Fig. 1. The isobaric triplet A = 22

Another interesting case of isospin triplet is that formed by the N = Z 20Ne,
and the odd-odd 20Na (Z=11) and 20F (Z=9). Also here, the g.s. of 20Ne is a
T = 0 state, but the first T = 1 state, analogue to the ground state of the
other two members of the triplet lies at 10723 keV. This is much higher than in
the previous example just due to the fact that in odd-odd N=Z nuclei T = 0
and T = 1 states lie nearer in energy (in heavier nuclei the lowest state is in
general a T = 1 state). As a last example we take the isospin quadruplet of mass
A = 21. This quadruplet is formed by 21F, 21Ne, 21Na and 21Mg. The nuclei
(mirror) 21Ne and 21Na have Tz = ±1/2, while 21F and 21Mg have Tz = ±3/2.
Therefore, there will be T = 1/2 states in the first pair and T = 3/2 states in
all members of the quartet. We expect, however, that the T = 3/2 states will
be higher in energy in the Tz = ±1/2 pair. The level schemes of the isospin
quarter is reported in Fig. 2. In this figure, as in the previous one, the ground
states and/or the lowest states for a certain isospin multiplet are put at the same
level. This allows a clear comparison of the level schemes and to appreciate the
small differences in the excitation energy of analogue states. The study of these
differences, called Coulomb energy differences (CED), mainly due to the effect
of the electromagnetic interaction, is the main subject of these lectures. These
energy differences are of the order of tens of keV. In the following paragraph, on
the other side, we discuss the differences in the binding energy of analogue states
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in a multiplet, that is, we do not refer to the excitation energy with respect to
the ground state but consider the absolute binding energy of the states. These
differences are called Coulomb displacement energies (CDE) and amount to the
order of tens of MeV. As we will see, there is a very simple formula that largely
accounts for these differences.
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Fig. 2. The isobaric quadruplet A = 21

2.2 Coulomb Displacement Energies and the Isobaric Multiplet
Mass Equation

The difference in binding energy of two nuclei (CDE), members of an isobaric
multiplet, can be obtained from the mass difference (there is only a change in the
sign). Based on the concept of isospin symmetry, in nuclear physics, E.P. Wigner
introduced in 1957 [5] the so-called isobaric multiplet mass equation (IMME).



Isospin symmetry breaking in mirror nuclei 7

This is a fundamental prediction that describes the dependence of the mass (or
binding energy) of a set of IAS with Z (or Tz). The largest effect on the CDE is
always due to the Coulomb interaction, which lowers the total binding energy of
a state in one member of the multiplet relative to the IAS in the neighbouring
lower-Z isobar.

A full description of the IMME can be found in several papers and reviews
(e.g. [1,6–8]). We present an outline derivation of the IMME here, as it serves as
an example of the power of the isospin formalism. We start with the eigenstates
|αTTz⟩ of the charge-independent Hamiltonian HCI , where α contains all the
additional quantum numbers that define the state. Since HCI , by definition,
conserves T , the eigenvalues are independent of Tz - i.e. the isobaric analogue
states are completely degenerate. A charge-violating interaction will lift this
degeneracy and can be treated as a perturbation if the total energy splitting
induced is small compared with the binding due to the nuclear force – as is the
case with the Coulomb interaction. The total binding energy can be determined
by:

BE(αTTz) = ⟨αTTz|HCI +H
′

CV |αTTz⟩ (1)

where H
′

CV , represents the charge-violating interaction(s). If two-body forces

alone are responsible for the nature of H
′

CV , then it can be written as,

H
′

CV =

2∑
k=0

H
(k)
CV (2)

where k = 0, 1, 2 correspond to the isoscalar, isovector and isotensor components
of this interaction respectively. The total energy splitting of the isobaric multiplet
is given by

∆BE(αTTz) = ⟨αTTz|
2∑

k=0

H
(k)
CV |αTTz⟩. (3)

The application of the Wigner-Eckart theorem can then extract explicitly the
Tz-dependence of the energy splitting of the multiplet:

∆BE(αTTz) =
2∑

k=0

(−)T−Tz

(
T k T

−Tz 0 Tz

)
⟨αT∥H(k)

CV ∥αT ⟩ (4)

where the double-bars in the final term denote matrix elements reduced in
isospin. The above Wigner 3 − j symbols for the three values of k have well
known analytic forms, and we obtain

∆BE(αTTz) =
1√

2T + 1
[M (0)

+
Tz√

T (T + 1)
M (1)

+
3T 2

z − T (T + 1)√
T (T + 1)(2T + 3)(2T − 1)

M (2)]

= a+ bTz + cT 2
z (5)
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where M (k) are the three sets of reduced matrix elements ⟨αT∥H(k)
CV ∥αT ⟩, the

values of which are independent of Tz but otherwise dependent on T and α.

With this re-ordering of the terms, the IMME acquires a quadratic form.
The conclusion then is that the binding energy splitting (and hence mass) of
an isobaric multiplet is quadratic in Tz where the coefficients a, b and c depend
only on T and sets of reduced matrix elements. In addition, the derivation of
Eq. (5) shows that the coefficients are directly related to the three tensor com-
ponents of the interaction. The a coefficient depends mostly on the isoscalar
component, with a small contribution from the isotensor one. The b and c coeffi-
cients are related only to the isovector and isostensor components, respectively.
Put another way, the values of b and c (which can be determined experimen-
tally) can potentially yield separate information on the charge-symmetry and
charge-independence, respectively, of the attractive nucleon-nucleon interaction.

The IMME is valid in the presence of any charge-violating (i.e. isospin non-
conserving) interaction or set of interactions, provided they are of two-body
character. Of course, the Coulomb interaction is expected to be the dominant
contributor. However, the quadratic nature of the IMME would be valid even
in the presence of charge-asymmetric and charge-dependent components of the
attractive nucleon-nucleon potential. Only the values of the coefficients would
be affected by the presence of such effects. Deviations from IMME would be
expected, of course, if higher-order perturbations and/or the inclusion of three-
body terms are important. In addition, as pointed out by Auerbach [9], a signifi-
cant component of isospin mixing could also result in deviations from the IMME
quadratic behaviour.

As the IMME is such a basic prediction leading from the isospin concept,
testing the validity of the equation is clearly of fundamental importance. The
most effective way is examine isobaric multiplets with at least four members (i.e.
T ≥ 3

2 ), and fitting a cubic expression by inclusion of a d T 3
z term. Of course,

the value of the d coefficient should be consistent with zero if the quadratic
nature of the IMME is valid. New experimental data are available that have
now allowed the validity of the IMME to be tested this way – see Britz, Pape
and Anthony [10] for a comprehensive compilation. Fig. 3 contains data taken
from Ref. [10] for all the known T = 3

2 isobaric quadruplets. Firstly, Fig. 3
clearly shows that the d coefficients, extracted from the data following the cubic
fit described above, have values consistent with zero over all the measured masses
so far. Thus, the agreement with the prediction of the quadratic nature of the
IMME is quite remarkable. Only one exception appears, once the magnitude

of the error bars is taken into account, that of the T = 3
2 , J

π = 3
2

−
isobaric

quadruplet for A = 9. In recent experiments of mass measurements in the A=32
quartet, the data do not agree with the quadratic form of the IMME and a
cubic term has been introduced to fit the data [11]. This cubic term has been
suggested to be due to isospin mixing of the states, second-order Coulomb effects
and charge-dependence of the nuclear interaction [11].

The coefficients of the IMME can be determined experimentally but this does
not yield any direct information on the nature of the two-body interaction. Put
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quadruplets (data taken from [10]). The
experimentally determined b, c and d coefficients along the predictions of the simple
charged sphere model - see text and Eq. (7) - where r0 is taken to be 1.2 fm.

another way, a detailed understanding of the charge-violating components of the
interaction is required to reproduce theoretically the values of the coefficients of
the IMME. Here we make a rough estimate of the coefficients taking into account
only the Coulomb interaction as the isospin breaking force.

Assuming that the nucleus can be treated as a uniformly charged sphere,
we derive a simplistic estimate of the coefficients of the IMME as a function of
mass. The Coulomb energy of such a uniformly charged sphere is given by

EC =
3e2Z(Z − 1)

5RC
=

3e2

5r0A
1
3

[
A

4
(A− 2) + (1−A)Tz + T 2

z

]
. (6)

Hence we arrive at the expressions

a =
3e2A(A− 2)

20r0A
1
3

, b = −3e2(A− 1)

5r0A
1
3

, c =
3e2

5r0A
1
3

. (7)
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The predictions of this crude estimate are shown in Fig. 3 along with the b and c
coefficients extracted from the T = 3

2 isobaric quadruplets [10]. We note that the
proton-neutron atomic mass difference ∆nH also contributes to the b coefficient,
and the prediction has been modified to account for this. The overall magnitude
and trends of the charged-sphere prediction are clearly fairly good, although
there is a ≈ 1MeV over-estimate of the magnitude of the b term. As has been
known for a long time (e.g. Bethe and Bacher 1936 [12]) such classical estimates
of the Coulomb energy stored in a nucleus need to be modified to account for the
effect of antisymmetrisation. Effectively, the average result of the Pauli principle
is to keep the protons further apart than would be allowed classically, and this
accounts for at least some of the discrepancy in the b coefficient in Fig. 3.

The total binding energy difference (Coulomb Displacement Energy, CDE)
between a particular state and its analogue state in another member of the
isospin multiplet of isospin T, transformed through exchange of k protons for
neutrons is given by

CDE(T, Tz) = MT,Tz −MT,Tz+k + k∆nH (8)

where M is the atomic mass (that includes the excitation energy of the state on
interest if this is not the ground state), ∆nH is the neutron-Hydrogen atomic
mass difference and Tz is the isospin projection for the larger-Z isobar.

-170

-165

-160

-155

-150

-145

8 9 10 11 12 13

B
E

 (
M

e
V

)

Z

A =21 Isobars

Isobaric Analogue States

Ground States

CDE
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2
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An example is shown in Fig. 4 for the A = 21 isobars with Tz = ± 1
2 ,

3
2 ,

where the ground-state binding energies form the usual Weizsäcker parabola.
The T = 3

2 isospin quadruplet shown includes the ground states of the two
Tz = ± 3

2 nuclei, and the corresponding excited (isobaric analogue) states of
the two nuclei in between. We have seen above, in the discussion of the IMME,
that the binding energies of the IAS are also parabolic in Z – the dashed line in
Fig. 4. The CDE indicated is the total binding energy difference between the two
neighbouring members of the multiplet. Here, as is conventional, we associate the
CDE specifically with the lowest-energy set of IAS in a multiplet, whilst keeping
in mind that bound excited-state sets of IAS will also exist in all probability in
the multiplet.

In a refined calculation, the CDE is the most basic quantity one would want
to reproduce theoretically. The CDE is, of course, directly related to the IMME
coefficients: for any two IAS in a multiplet we have

CDE(T, Tz) = −p(b+ c[2Tz + p]−∆nH) (9)

where again we have exchanged p protons for neutrons and Tz is the isospin
projection for the larger-Z isobar. The CDE has been the subject of much the-
oretical work – most notably the reviews of Nolen and Schiffer [13], Shlomo [14]
and Auerbach [9]. In these reviews, CDE have been calculated for wide ranges
of IAS for which experimental data exist for comparison. In the original work of
Nolen and Schiffer [13], a charge-symmetric and charge-independent interaction
was assumed – and thus it is assumed initially that b and c originate entirely
from the Coulomb interaction. The difference in Coulomb energy between adja-
cent members of the multiplets was computed using independent particle models.
Here the dominant Coulomb shift was determined by computing the density dis-
tribution of the neutron excess in one member of the multiplet, and calculating
the Coulomb shift when one of the neutrons is transformed into a proton. To
this are added two further contributions - an exchange term (the result of the
Pauli effect described above) and an electromagnetic spin-orbit term. The lat-
ter term turns out to be very significant in the interpretation of excited states
energy differences, and we will discuss this later. These three terms combined
do not account fully for the experimental CDE, and so a number of corrections
were computed. The largest corrections included the Coulomb distortion of ana-
logue wavefunctions, isospin impurities in the core and intrashell interactions.
When all the corrections were taken into account, there remained a consistent
under-estimate of the CDE by around 7% on average - amounting to several
hundred keV. This is the so-called “Nolen-Schiffer” anomaly. Much theoretical
work on this anomaly has followed – especially in the comprehensive reviews of
Shlomo [14] and Auerbach [9]. Here the calculations were revisited and refined,
and further corrections were introduced - including effects associated with con-
figuration mixing and polarisation of the core due to particle-vibration coupling.

Further studies have identified a number of phenomena that could account
for the discrepancy. For example, it has been suggested [15,16] that this anomaly
could be principally associated with a charge-asymmetric component of the
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nucleon-nucleon interaction although Shlomo earlier showed [14] that this can
only account for about half of the discrepancy in heavy nuclei, and that the
effect of differences in neutron a proton radii could contribute significantly to
the anomaly. Duflo and Zuker [17], studying the neutron skin, also show that
a proper quantum treatment of the Coulomb and charge-symmetry breaking
interactions gives a very good description of the CDE, reducing the anomaly
significantly. Whatever the source of the Nolen-Schiffer anomaly, it seemed from
these studies that a detailed structural understanding of Coulomb effects at the
level of less than, say, 100 keV was likely to be very difficult.

2.3 Energy differences between excited IAS.

We come now to the main subject of these lectures: The differences in excitation
energy between excited IAS, generically termed Coulomb Energy Differences or
CED. In determining CED between excited states, we effectively “normalise”
the absolute binding energies of the ground states, thus the CED only reflect
the change in CDE in relation to the ground state. The bulk of the CDE (e.g.
the difference in bulk Coulomb energy) will simply cancel in this process. The
CED between IAS in two members of a multiplet obtained through exchanging
k protons for neutrons is given generically by

CEDJ,T = E∗
J,T,Tz

− E∗
J,T,Tz+k. (10)

It is interesting to examine how the Coulomb energy (and other charge-
dependent phenomena) vary as a function of excitation energy and angular mo-
mentum (spin) for a set of IAS. In particular, the IAS are expected to show slight
differences with increasing spin associated with the influence on the Coulomb en-
ergy of the changing of the wave functions of the excited states. These measured
CED are typically 100 keV or less and, due to these small values, are remark-
ably sensitive to quite subtle nuclear structure phenomena which, with the aid
of shell-model calculations, can be interpreted quantitatively at the level of 10
keV. This is especially true when we restrict the study to excited structures in
nuclei whose wave functions have major contributions from a single-j shell - such
as in the f 7

2
-shell. In these cases, the CED can be reliably interpreted in terms of

structural phenomena such as changes in the spatial correlations of pairs of va-
lence protons and/or changes in radius/deformation as a function of spin. When
the excitations involve significant changes in the single-particle contributions to
the configurations, then larger CED (few hundred keV) can be observed. This,
in turn, yields valuable information on the single-particle structure of the states
and the nature of the excitations involved.

In the last decade, the study of CED between IAS has been pursued in
considerable detail, yielding some remarkable results. This has been possible due
to important developments in both theoretical and experimental techniques. It
has been possible to examine CED between many T = 1

2 doublets and T = 1
triplets up to the highest accessible excitation energy and angular momentum
and more recently, these studies have been extended to T = 3/2 and T = 2 IAS,
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using radioactive beams. The most extensively studied cases are the Tz = ±1
2

isobaric doublets (mirror pairs), where the CED can be followed up to very high
spin states. For a pair of mirror nuclei, the CED are specifically referred to as
mirror energy differences (MED), defined, for any pair of mirror nuclei, as the
difference in excitation energy as a function of spin:

MEDJ,T = E∗
J,T,Tz=−T − E∗

J,T,Tz=T = −k∆bJ (11)

where we have assumed that the lowest isospin states are being studied – i.e.
T = |Tz|. Here, again, k protons have been exchanged for neutrons, and in this
specific case k = 2T = 2|Tz|. Here, we have used Eq. (5) to link the MED to the
coefficients of the IMME, and we define ∆bJ as the change in the b coefficient
as a function of spin in relation to the ground state. We see that the MED give
us isovector energy differences, the interpretation of which relies entirely on the
concept of charge-symmetry.

To test the charge-independence of the interaction we consider an isobaric
T = 1 triplet (i.e. T = 1, Tz = 0,±1). The triplet energy differences (TED) are
defined as

TEDJ = E∗
J,Tz=−1 + E∗

J,Tz=+1 − 2E∗
J,Tz=0 = 2∆cJ , (12)

where we see that the TED depend only on the variation of the c coefficient with
spin, hence these isotensor energy differences yield information on the Coulomb
energy if charge independence of the nuclear interaction is assumed (cf. charge-
symmetry for MED). Conversely, deviations of the calculations from the exper-
imental data will give evidence of violations of the charge symmetry and/or
charge independence of the nuclear interaction. This turns out to be, however,
quite difficult. For example, one essential ingredient in modelling Coulomb phe-
nomena is the set of matrix elements that describe the Coulomb energy of a
pair of protons as a function of their angular momentum – Coulomb Matrix
Elements, CME. These either have to be modelled or extracted from the data
– neither of which is particularly reliable. Nevertheless, a consistent picture of
spin-dependent Coulomb phenomena (and other isospin non-conserving effects)
is now emerging, which is discussed in the following sections.

3 Experimental tools

In terms of the experimental tools used to study such isobaric analogue states,
we find that it is no coincidence that the rapid progress in spectroscopy of
excited states in proton-rich nuclei happened at the same time as the develop-
ment of large Compton-suppressed gamma-ray spectrometers. A good review
can be found in Lee et al. [18] for the arrays used with stable beams and fusion-
evaporation reactions - such as the Gammasphere array [19], (based in the US
at either the Lawrence Berkeley National Laboratory or the Argonne National
Laboratory), the European spectrometer Euroball [20,21] (based at either IReS
Strasbourg or Legnaro National Laboratory) and the GASP array [22] based at
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Legnaro National Laboratory. With radioactive (fragmentation or ISOL) beams
arrays such as Exogam [23], RISING [24] or SeGA [25] have been more recently
used. These are all arrays of hyper-pure germanium detectors (HpGe) – either
single-crystal or composite detectors and are based on the principle of max-
imising the total gamma-ray detection efficiency whilst maintaining a sufficient
granularity to enable multiple gamma-ray coincidences to be recorded and to
reduce the probability of more than one gamma ray hitting any crystal.

For studying proton-rich nuclei at the extremes of stability the resolving
power of these arrays is not usually sufficient to extract the weak gamma-ray
signals from the data. Thus highly selective ancillary detectors for identifying the
final nucleus are normally employed - and this information is used to “tag” the
observed gamma decays. This is essential for proton-rich nuclei, where cross sec-
tions in fusion-evaporation reactions are no higher than the millibarn level (i.e.
roughly 1 reaction in 103 leading to the nucleus of interest) down towards the
few microbarn level. Moreover, in general, no gamma-ray transitions will have
been identified previously in that nucleus. Thus, we require high gamma-ray
efficiency and clean nucleus identification to measure weak gamma-ray transi-
tions and assign them to a particular nucleus. Below we discuss two different
examples, both using large gamma-ray arrays but each using a different reaction-
channel selection method. The first uses stable beams, and the second relativistic
fragmentation beams.

The first method discussed here is the selection of weak reaction residues from
fusion evaporation reactions using stable beams through A and Z determination
of the recoiling nucleus. This requires a 0◦ mass separator downstream of the
target, coupled to a device for determining Z. The example shown here is the
identification of excited states in Tz = −1 44V [26], for which the Argonne
Fragment Mass Analyser (FMA) was used in conjunction with the Gammasphere
array. The FMA uses a combination of electric and magnetic dipoles to give
velocity selection to remove the beam particles and provide dispersion in A/Q
(Q being the atomic charge state). A/Q is therefore determined on an event-
by-event basis from the horizontal position at the focal plane - thus providing
an initial mass measurement. For low cross-section studies of proton-rich nuclei,
determination of A is not sufficient and nuclear charge is required. For the 44V
case, and other studies such as the A=48 T = 1 mirrors [27] this was achieved
using a split-anode ionisation chamber after the focal plane. The chamber is
filled with isobutane gas, enabling energy loss in the first part of the chamber
(∆E), in addition to the total energy (E) to be recorded. Two-dimensional gates
on such a plot provide a clean selection on Z as long as the recoils have sufficient
energy.

For the 44V experiment, the reaction used was 36Ar(10B,2n)44V at a beam
energy of 95 MeV and was ideal for this purpose as the recoiling 44Mn nuclei were
highly energetic due to the inverse nature of the reaction. Thus, the different
Z values in the Ion Chamber spectra were distinct and clean gates could be
placed without the need for tricky background subtractions. However, even in
this case, the A and Z selection methods described above were insufficient due
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Fig. 5. A plot of gamma-ray energy measured using Gammasphere versus ET 2 measured
for the nuclei recoiling through the FMA for the 44V experiment – see text. The plot
was created selecting A/Q ≈ 3 which allows A = 44 and A = 47 recoils through in
charge states 15 and 16 respectively. The plot also is gated on Z = 23 from the ionisation
chamber. The lines indicate the expected positions for the A=44 desired recoils and the
A=47 contaminants,

to the very low (few hundred µb) cross-section. In the experiment, reactions
with the very low levels of oxygen contamination on the target were many times
stronger than the reactions of interest, and the main contaminant (47V from the
36Ar(16O,αp)47V reaction) had a value of A/Q similar to that of the charge-state



16 S.M.Lenzi and M.A.Bentley

of 44V selected. This isobaric contamination is well known in separator physics
and is known as a charge-state ambiguity. Such ambiguities can be removed by
using the recorded total energy E and time-of-flight T of the recoils. Classically,
mass is proportional to ET 2, and the recorded ET 2 information has sufficient
resolution to distinguish three mass units difference. This can be seen from Fig. 5
where an ET 2 versus gamma-ray energy plot is provided. This has been created
requiring A/Q ≈ 3 and Z = 23. The two lines indicate the expected positions
of the 44V required recoils and the 47V contaminants. When an additional ET 2

gate is applied, following suitable background subtraction, the spectrum of the
lower part of Fig. 6 is finally obtained. The gamma rays can now be entirely
associated with 44V – the excited states for which are largely unknown. The 44Sc
spectrum, produced the same way, is shown in the upper spectrum of Fig. 6.
The comparison shows the expected mirror symmetry, and comparison of the
upper and lower spectra enables assignments of energies and angular momenta
on mirror symmetry arguments. It is interesting to note the factor of 1000 in the
cross sections between the two nuclei in this reaction.

Fig. 6. The spectra for the 44V experiment using Gammasphere and the FMA.
These have been generated following selection for A/Q ≈ 3, Z=23 (lower) and
Z=21 (upper) and an appropriate gate on ET 2 to remove charge-state ambiguities.
The four transitions marked are analogue transitions, with the assignments in 44V
made through mirror symmetry arguments made using this spectrum.
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The example above, the N = Z − 2 system in medium mass nuclei, proba-
bly represents the limit for spectroscopy using conventional methods with sta-
ble beams. With the advent of radioactive beams, new methodologies become
available for accessing the most proton-rich systems. With ISOL beams this is
achieved through pursuing fusion-evaporation reactions with radioactive beams
of neutron deficient radioactive isotopes - closer to the nuclei of interest, yield-
ing large cross sections. However, high energy fragmentation reactions probably
provide the most productive method at present. One example of this is described
below, where states in the Tz = − 3

2 nuclei 49Fe and 53Ni were observed [28] for
the first time using “mirrored” fragmentation reactions.

At facilities such as the National Superconducting Cyclotron Facility (NSCL)
at Michigan State University or at GSI Darmstadt, high energy beams (several
GeV and above) can be used to impinge on a thick Be production target to
produce a wide range of relativistic exotic nuclear fragments. These are directed
into mass spectrometers to select and identify exotic nuclei which are then se-
lected as the “radioactive beam”. In the example cited here, a 58Ni beam of
160 MeV per nucleon energy at the NSCL facility impinged on thick Be target
at the entrance of the A1900 spectrometer [29] which was tuned to provide a
beam of radioactive 56Ni at about 100 MeV/u with the incoming beam identified
event-by-event through time-of-flight measurements. This then was directed onto
the Be reaction target at the centre of the SeGA gamma-ray array [25] where
the nuclei of interest are created through a second reaction - e.g. fragmentation,
knockout or charge exchange. Gamma rays recorded from these nuclei are tagged
with the identified A and Z of the final fragment, which were determined by the
S800 spectrograph [30] downstream of the reaction target. The final nuclei were
identified through time of flight (giving A/Q) and energy loss at the focal plane
of the spectrograph (giving Z).

The advantages of this technique are that (a) a wide range of exotic nuclei can
be produced at the final target, (b) non-yrast states are more readily populated,
and (c) the high energy of the recoiling fragments makes particle identification
through energy loss and time-of-flight very clean. The disadvantages for this
kind of spectroscopy is that only a limited number of states are populated, it
is difficult to achieve high spin, and that precision gamma-ray spectroscopy is
required at v/c ≈ 0.4, which is very challenging due to high backgrounds from
atomic processes and large Doppler broadening.

The wide range of proton-rich systems populated can be seen from the S800
fragment identification plot shown in Fig. 7 following fragmentation of the sec-
ondary 56Ni beam. A wide range of nuclei with Z > N are produced, as can
be seen by the indicated lines of constant Tz.

53Ni is the uppermost nuclide
in the plot on the Tz = −3

2 line. The highest “row” corresponds to Ni iso-
topes (56-53), the next row down corresponds to Cobalt, etc. The wide range of
cleanly-identified proton-rich fragments is clearly seen. All of these have associ-
ated gamma-ray spectra recorded.

Simple gating on these nuclides in the particle identification plot will yield,
following suitable Doppler correction, a “singles” spectrum of the isotope of



18 S.M.Lenzi and M.A.Bentley

Fig. 7. The particle identification plot from the S800 from the 53Ni and 49Fe
experiment [28]. The measurements on the axes correspond directly to Z (from
energy loss) and A/Q (from time of flight) - and so each blob corresponds to a
specific nuclide. The dashed lines indicate locus of constant Tz.

interest. In this experiment, to aid with the assignment of specific states to
the observed gamma decays, the analogue spectra for the mirror partners were
also created. This was achieved through “mirrored” fragmentation reactions. For
example, 53Ni – populated through the 3n removal reaction has a mirror nuclide,
53Mn, populated through an analogue 3p removal from 56Ni. The S800 was tuned
to accept these fragments in a different setting, and in this way pairs of mirrored
spectra, created through analogue reactions, were created. The example shown
here is the mirror pair 53Ni/53Mn - populated through these mirrored reactions
– see Fig. 8. This short test run was rather low on statistics, but nevertheless
two excited states were observed in 53Ni for the first time. The plot shows the
importance, in this technique, of having the analogue spectrum present to enable
the one-to-one correspondence between the states to be established visually. We
will return to the significance of this result in Sect. 5.

4 Theoretical description of Coulomb Energy Differences

In the hypothesis of charge symmetry and charge independence of the nuclear
force, differences in excitation energy between analogue states in mirror nuclei
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Fig. 8. The spectra for the 53Ni experiment using the SeGA array at NSCL Michi-
gan State University, selected by the S800 and populated by the three-neutron
removal from 56Ni. The lower spectrum is the 53Ni spectrum, and the upper spec-
trum is the analogue spectrum populated through 3p removal from 56Ni.

should be of purely electromagnetic origin. The Coulomb interaction only acts
between protons, which induces an isospin dependence of the total interaction.
The Coulomb field gives a contribution of the order of hundreds of MeV to the
nuclear mass, and it is the Coulomb energy which plays the main role in the mass
shifts between isobaric analogue states (Coulomb displacement energy (CDE),
see Sect. 2.2), which are of the order of tens of MeV. Other contributions to
the CDE are the difference between proton and neutron masses and other minor
effects of electromagnetic character. Compared with all these contributions to
the CDE, isospin breaking terms of the nuclear interaction are expected to be
small [13].

When measuring the difference between excited states in isobaric multiplets,
the large contributions due to the Coulomb field almost cancel out, as the ground
states are normalised to zero excitation energy. Only small effects remain. In the
f 7

2
shell, the measured energy differences between mirror nuclei (MED) amount

to tens of keV and do not generally exceed 100 keV. Larger values (200-300 keV)
have been encountered for some particular states in nuclei of the sd shell. For
energy differences in T = 1 isobaric triplets in the f 7

2
shell, the measured TED

values are smaller than 200 keV. Nevertheless, these rather small energy differ-
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ences have demonstrated to act as a magnifying glass that highlights specific
nuclear structure features. Moreover, if the Coulomb effects can be theoreti-
cally estimated, isospin-breaking effects due to the nuclear interaction could be
revealed.

Given the small values of the mirror and triplet energy differences, it is
very challenging from the theoretical point of view to get a good quantitative
description. There have been pioneering calculations in the framework of the
cranked shell model [31] that have given a qualitative interpretation of the first
experimental results of MED in deformed nuclei in the middle of the f 7

2
shell.

It was in the middle of the nineties when important advances in the theoretical
techniques allowed to perform large scale shell model calculations that were able
to reproduce for the first time the rotational spectra of these nuclei [32–34]
and to allow a better description of Coulomb energy differences. This was not
only due to the constant improvement in computational power but also to the
development of new codes for shell model calculations [35–37]. Since then, the
remarkable synergy between theoretical and experimental groups has allowed
detailed studies of several physical properties of light- and medium-mass nuclei
to be undertaken. The reliability of shell-model calculations in describing the
spectroscopy of medium-light nuclei, and in particular those in the f 7

2
shell,

encouraged the extension of these calculations to the description of such small
energy differences as the experimental MED and TED in isobaric multiplets.
This constitutes a stringent test of the calculations due to the subtle details
under examination.

Three are the main ingredients of a shell model calculation. The first is the
model space. Ab initio calculations are only possible for light nuclei, but for
medium and heavy nuclei, only a certain number of levels can be considered in
the calculation. An “inert” core has to be assumed, limiting the model space to
some few orbitals and, in general, limiting the number of valence particles that
can be excited within this space. The choice of the valence space is, therefore,
limited by the capability of the computational procedure to deal with the di-
mension of the matrix to be diagonalised. Presently, exact large-scale shell-model
calculations in the m-scheme, using the Lanczos method for the diagonalisation
of the matrices, can cope with dimensions of the order of 1010. This is the method
used by the code ANTOINE, developed by the Strasbourg group [35,38]. Higher
dimensions can be dealt with by quantum Monte Carlo techniques, such as the
Monte Carlo Shell Model (MCSM) code developed by the theoretical nuclear
group in Tokyo [36,39].

The second ingredient is the effective interaction valid in the chosen model
space. A variety of effective interactions have been developed, and continue to
be developed, to describe different mass regions in the table of isotopes. They
mock up the general Hamiltonian in the restricted basis. The f 7

2
shell, between

the doubly magic nuclei 40Ca and 56Ni, constitutes a very special case, as it
can be considered to be an isolated shell. This simplistic approximation allows
straightforward predictions to be made [40]. However, it is clear that the 1f 7

2

shell-model space is not sufficient to describe the spectroscopy of these nuclei



Isospin symmetry breaking in mirror nuclei 21

with good accuracy – in particular the collective states – and that the rest of the
fp orbitals, 2p 3

2
, 1f 5

2
and 2p 1

2
, have to be taken into account in the calculations.

In this respect, the most reliable interactions in the full fp valence space for
the description of f 7

2
-shell nuclei are KB3G [41] and GXPF1A [42]. The USD

interaction [43,44], in the d 5
2
,s 1

2
,d 3

2
shell-model basis, gives a good description

of the spectroscopy of positive-parity states of light sd-shell nuclei. An improved
version, called USDB, has been recently developed by B.A. Brown [45]. Beyond
the middle of the shell, however, particle-hole excitations to the fp shell become
important in the configuration of natural-parity states and are absolutely nec-
essary for constructing negative-parity states. An exact calculation in the two
main shells implies a large valence space and the dimensions of the matrices to
be diagonalised become extremely large. Suitable truncations of the basis are
therefore needed. For the upper sd shell, an effective interaction in the reduced
valence space composed by the s 1

2
d 3

2
f 7

2
p 3

2
orbitals, the sdfp interaction, has

been introduced by Caurier and collaborators in Ref. [46]. This proves to give
a good description, along the N = Z line, of the spectroscopy of A ∼ 35 nuclei
such as 34S [47] and 35Cl [48], and for neutron-rich nuclei. Around A = 30, the
closed shell at N = Z = 14 does not hold and excitations from the d 5

2
shell

have to be considered. In these cases, the SDFP-M interaction [49] in the larger
d 5

2
s 1

2
d 3

2
f 7

2
p 3

2
valence space can be used within the MCSM [36].

The third ingredient are the single particle energies. They are in general
taken from the experimental value for the core plus one nucleon. The difference
between proton and neutron single particle energies are in general ignored as
they introduce, together with the Coulomb interaction, small corrections to the
energy levels. When computing the Coulomb energy differences, these differences
result very important and it is necessary to understand there origin.

In the next subsections we present some details on how the MED and TED
are obtained in the shell-model framework for nuclei in the f 7

2
shell. Extensions

to other mass regions can be found in the review article [50]. We describe the
different contributions to the excitation energy differences, following the studies
in the shell model framework by Zuker and collaborators [17,51–53]. For these
calculations we have used the code ANTOINE [35]. The effective interaction
used is the KB3G [41] for the fp shell.

4.1 Electromagnetic effects

The Coulomb field or, more generally, the electromagnetic interaction is the main
interaction responsible for differences in excitation energy between isobaric ana-
logue states. This interaction yields several effects on the MED and TED and
depending on the nuclear structure properties of the different nuclei, some ef-
fects can be more evident than others. The possibility of having a rich quantity
of good experimental data allows for a detailed study of these effects. In the next
paragraphs we describe the several terms that contribute to the excitation en-
ergy differences. Following the formalism developed in Refs. [38,52], the effective
shell model Hamiltonian is divided into a monopole plus a multipole component.
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While the monopole part determines the single particle energies and the unper-
turbed energy of the different configurations, the multipole part has to do with
correlations and configuration mixing.

The multipole Coulomb term: test of nucleon alignment. The role of
the multipole Coulomb interaction in the MED of deformed nuclei in the middle
of the f 7

2
shell was put in evidence for the first time by Cameron et al. [54].

Studying the mirror nuclei 49Mn/49Cr they explained the enhancement of the
MED with increasing spin in terms of the alignment of the spins of pairs of
nucleons.

J=0 J=2 J=6J=4

Fig. 9. A calculation of the probability distribution for the relative distance of two
like-particles in the f 7

2
shell as a function of their coupled angular momentum. The

calculations were undertaken in Ref. [55]. The centre of each plot corresponds to zero
separation.

This results from the fact that the Coulomb interaction between two protons
coupled in time-reversed orbits is larger than for any other coupling, as the spa-
tial overlap of their orbits is maximum. This can be seen in Fig. 9, which shows
how the average separation of two like-particles in the f 7

2
shell increases with

their coupled angular momentum [55]. Thus, when two protons coupled to J = 0
re-couple their angular momenta, the Coulomb energy decreases. In particular,
when a pair of protons aligns to the maximum value (2j − 1) in a single j-shell,
the Coulomb energy between them reaches its minimum value as their spatial
separation is largest. As the Coulomb interaction is repulsive, the effect of the
alignment reduces the excitation energy of the nuclear state where the align-
ment occurs. Of course, the alignment of any pair of nucleons along a rotational
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band causes changes in the energy sequence, which is called back-bending as, in
a spin vs. transition energy plot, the smooth behaviour is interrupted due to a
decrease in the transition energy. This nuclear effect, however, will be equal in
both mirror partners in the hypothesis of isospin symmetry of the nuclear inter-
action. On the other hand, only in the nucleus where the proton pair aligns will
the Coulomb effect occur. Due to the isospin symmetry, in its mirror partner,
a pair of neutrons will align at the same state – without any Coulomb effect.
Thus, just by looking at the experimental MED of a rotational mirror pair, one
would be able to deduce which type of nucleons are aligning at the back-bend. A
significant increase (decrease) of the MED would mean that a neutron (proton)
pair is aligning in the proton-rich nucleus and, consequently, a proton (neutron)
pair in its mirror partner. This is schematically shown in Fig. 10.
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Fig. 10. Two rotational bands in mirror nuclei where a pair of neutrons in the nucleus
on the left is aligning at I = 8 whilst a pair of protons due to the isospin symmetry is
aligning in the nucleus on the right. The Coulomb effect on the latter one manifests as
a “jump” on the MED.

In the schematic picture described above, it is the re-coupling of the angular
momentum vectors that triggers the change in the MED. In general terms, this
multipole Coulomb effect will have a large impact on the MED whenever any
re-coupling of the angular momenta of a pair of protons occurs. A very clear
example of this effect can be seen in the mirror pair A = 51 described in detail
in Sect. 5.1. Another example are the mirror pair A = 50 reported in Fig. 11. In
panel a), the MED curve for the mirror nuclei 50Fe-50Cr is shown in comparison
with the shell model calculation where the Coulomb interaction has been added
to the effective interaction (KB3G) in the fp shell. In these calculations the single
particle energies for protons and neutrons have the same values, taken from the
spectrum of 41Ca, and the matrix elements for the Coulomb interaction have
been obtained in the harmonic oscillator basis. The theoretical curve does not fit
well the data but the trend is reproduced. This indicates that other ingredients
are missing in the calculation of the MED but also shows that a re-coupling
of neutrons (protons) in 50Fe (50Cr is going on up to J=8 while at J=10 the
alignment of the other type of nucleons occurs.



24 S.M.Lenzi and M.A.Bentley

The alignment process can be accounted for by shell-model calculations in
the following way. Consider the operator Aπ = [(a+π a+π )

J=2j+1 (aπ aπ)
J=2j+1]0,

that “counts” the number of proton pairs in a j orbital coupled to the maximum
spin (J = 2j − 1). In the f 7

2
shell, J = 6. We can then calculate the expectation

value of this operator at each excited state. Doing this for both nuclei, one can
then calculate the difference ∆pp = Aπ(Z>)− Aπ(Z<) for the mirror pair, as a
function of the angular momentum. If the alignment of a pair of protons in the
nucleus with charge Z> – and, consequently, the alignment of a pair of neutrons
in the Z< – occurs first, ∆Aπ will increase, whilst it will decrease if the opposite
happens. This was introduced by Poves and Sánchez-Solano in Ref. [56]. The
numerical results of −∆pp for the mirror pair A = 50 are reported in Fig. 11b).
The choice of plotting the inverse (minus sign) is to compare directly with the
Multipole Coulomb contribution to the MED. The two curves have a very similar
behaviour and the interpretation of the MED changes as a function of the angular
momentum can be clearly deduced.
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Fig. 11. a) Experimental MED and the Multipole Coulomb effect for the mirror pair
50Fe-50Cr; b) shell model calculation of the “alignment”. See text for details
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The monopole Coulomb contributions: shape changes and single-particle
energies. As discussed above, to get a good quantitative description of the ex-
perimental MED other terms are required in the calculation of the MED. In
particular, an important contribution to the comprehension of the origin of the
MED was given, for the first time, in Ref. [51] for the case of the A = 50 mirror
pair of Fig. 11. It was pointed out that, in addition to the multipole Coulomb
interaction between valence protons, there was a small but significant monopole
Coulomb effect due to the change of the nuclear radius along the rotational band.

In a rotational band, the mechanism of generating angular momentum by
aligning the valence-particle spins in a high-j orbit becomes energetically favoured
with increasing rotational frequency. In f 7

2
-shell nuclei, the occupation of orbits

different from the f 7
2
, important to create collective states near the ground state,

decrease along the rotational bands producing changes of the nuclear radius. This
affects the MED as valence protons in orbitals with smaller radii are nearer to
the charged core and have more Coulomb energy.

Following Refs. [51,52], the monopole Coulomb contribution to the MED can
be deduced by considering the Coulomb energy of a uniformly charged sphere of
radius RC

EC =
3

5

Z(Z − 1)e2

RC
(13)

The difference between the energy of the ground states of Tz = ±k
2 mirror nuclei

(Z> = Z< + k, Z = Z>) is

∆EC = EC(Z>)− EC(Z<) ≃
3

5

k(2Z − k)e2

RC
. (14)

This energy difference amounts to tens of MeV and is the main ingredient
in the evaluation of CDE (see Sect. 2.2 and Ref. [17]). When calculating the
mirror energy differences for each state of spin J as a function of the angular
momentum, we refer the MED(J) values to the ground state. On doing so, the
monopole effect of ∆EC almost vanishes. A small contribution remains, however,
due to the change in charge radius with the angular momentum, as discussed
above. The monopole Coulomb radial contribution to the MED can thus be
written:

∆M < VCr(J) >= ∆EC(J)−∆EC(0) = −3

5
k(2Z − k)e2

∆R(J)

R2
C

(15)

where ∆M is the MED and ∆R(J) = RC(J)−RC(0) and we assume, following
Refs. [17,51,52], that it is the same in both mirror nuclei.

Nuclei that lie near the middle of the f 7
2
shell are well deformed at low spin.

These states are more collective than the high-spin members of the rotational
band and the wave functions have an important contribution of the p 3

2
orbit.

In fact, it is the coupling between the f 7
2
and the p 3

2
orbits what gives rise

to the quadrupole collectivity in this mass region [57]. With increasing angular
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momentum, the yrast bands evolve by progressively aligning the valence nucleons
in the f 7

2
shell up to the band terminating state. On doing that, the occupation

of the p 3
2
orbit decreases and the bands terminate in non-collective, high-spin

states with all the valence particles in the f 7
2
shell. The role of the other orbits,

f 5
2
and p 1

2
, is less important, and does not change very much as a function of

the angular momentum.

In the fp shell, p-orbits have larger radius than f -orbits and therefore, the
Coulomb repulsion increases as the protons pass from the p 3

2
to the f 7

2
orbit. In

other words, at high spin, when all nucleons are filling the f 7
2
shell, the monopole

Coulomb contribution is larger than at low spin, where there is a significant p 3
2

contribution to the wavefunction. How to account for this effect in the shell-
model framework will be discussed in Sect. 4.3, together with the other terms.
It is important to note that the effect of the change of deformation in the MED
was also introduced in Ref. [58] and calculated within the Liquid Drop model.

The monopole term of the Coulomb interaction has also an effect on the
single-particle energies. It modifies not only the energy of the protons but also
that of the neutrons, in different ways [13,17]. In Ref. [17], Duflo and Zuker
show that the contribution of the monopole Coulomb interaction to the CDE
can be expressed as the energy of a charged sphere (Eq. (13)) with single-particle
corrections that account for shell effects. They affect the energy of the proton
orbits proportionally to the square of the orbital momentum l in the harmonic
oscillator representation. The expression for the single-particle splittings for a
proton in a main shell, with principal quantum number N , above closed shell
Zcs results [17]

Ell =
−4.5Z

13/12
cs [2l(l + 1)−N(N + 3)]

A1/3(N + 3
2 )

keV. (16)

The effect on the single-particle energies is sizable. In 41Sc (Zcs=20, N=3),
proton f orbits are lowered by ∼45 keV while the energy of p orbits is raised by
∼105 keV with respect to the neutron levels. The relative energy between the
proton f 7

2
and p 3

2
orbitals is therefore increased by ∼150 keV with respect to

the neutron energy difference.

Another interaction that affects the single-particle energies is the relativistic
electromagnetic spin-orbit force (EMSO) [13,59]. This interaction, analogous to
the atomic case, results from the Larmor precession of the nucleons in the nu-
clear electric field due to their intrinsic magnetic moments and to the Thomas
precession experienced by the protons because of their charge. The effect of the
nuclear spin-orbit hamiltonian in the single-particle spectrum is very well known.
It amounts to several MeV and acts on both protons and neutrons. The EMSO
effect is about 50 times smaller than the nuclear spin-orbit potential and has
been in general ignored in MED calculations. However, as it acts differently on
neutrons than on protons, its effect does not cancel when computing MED values
and can become very important for some particular states [60,53].
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The general expression of the electromagnetic spin-orbit potential [13,59] is:

Vls = (gs − gl)
1

2m2
Nc2

(
1

r

dVC

dr
)l · s, (17)

where gs and gl are the gyromagnetic factors, VC is the Coulomb potential and
mN is the nucleon mass. The term proportional to gs is the Larmor term. It can
be deduced by considering the potential energy of a spin magnetic moment µs

in an effective magnetic field due to its motion in the electric field generated by
the protons in the nucleus. The second term in Eq. (17), proportional to gl, is
the relativistic Thomas term associated with the orbital magnetic moment µl,
that vanishes in the neutron case.

To have a rough estimate of the energy shift produced by the relativistic elec-
tromagnetic spin-orbit term we assume that the Coulomb potential is generated
by a uniformly charged sphere of radius RC [13]

Els ≃ (gs − gl)
1

2m2
Nc2

(−Ze2

R3
C

)⟨l · s⟩. (18)

Using for example the free values of the gyromagnetic factors gπs = 5.586, gπl = 1
and gνs = −3.828, gνl = 0 for the proton and the neutron, respectively, it is easy
to see that the energy shift will have different sign for a proton orbit than for a
neutron one. The sign will also depend on the spin-orbit coupling, as ⟨l ·s⟩ = l/2
when j = l + s and ⟨l · s⟩ = −(l + 1)/2 when j = l − s. When considering, for
example the f 7

2
and the d 3

2
which are involved in excited states of nuclei in the

upper sd shell. The effect of the EMSO is to reduce the energy gap between the
proton orbitals by ∼120 keV and to increase it for neutrons by roughly the same
amount. Therefore, in one nucleus the energy of a state whose configuration
involves the excitation of one proton from the d 3

2
to the f 7

2
will be smaller than

that of the analogue state in its mirror nucleus where a neutron undergoes the
excitation. The MED for such states will reach large values. On the contrary,
small MED will be obtained whenever the configuration of the state involves the
excitation of one proton or one neutron with similar probabilities, as the effect
is compensated. The negative parity bands in the mirror nuclei 35Ar-35Cl are a
good example of the effect of the electromagnetic spin orbit on the MED, where
large values (about 300 keV) have been measured for several states.

4.2 A new isospin-breaking term

Taking into account the different Coulomb terms introduced in the previous
sections in the calculation of the MED, the theoretical curves do allow still
a good quantitative agreement with data. This can be seen, for example, in
Fig. 12, where the MED for the rotational bands in the mirror pair 49Mn-49Cr
are displayed in comparison with the calculations. In ref. [51] a renormalization of
the Coulomb interaction in the fp shell was proposed to improve the description.
However, it was seen that a single renormalization could not account for all the
available data in the f 7

2
shell. A satisfactory solution was then proposed by
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49Mn-49Cr

VCM

VCm

VCM+VCm

Exp

Fig. 12. MED for the mirror pair 49Mn-49Cr. The addition of the monopole (VCm)
and the multipole Coulomb (VCM ) contributions give rise to a theoretical curve that
is compared to the experimenatl MED (Exp).

Zuker, as described in Ref. [52]. Analysing the data for the A = 42 isobaric
triplet, it was shown that the MED and TED values could not be reproduced
by just considering the electromagnetic interaction and an additional isospin
non-conserving term was thus called into play [52].

Let us consider the yrast states J = 0, 2, 4, 6;T = 1 in the three isobaric nuclei
42Ti, 42Sc and 42Ca and assume that they have essentially f2

7
2

configurations. In

this hypothesis, a two-body effective interaction in the f 7
2
shell can be obtained

from the experimental data. In fact, the isovector term of the interaction can be
deduced from the MED whilst the TED give the isotensor component as follows,

MEDJ (A = 42, T = 1) = V
(1)
CM,f 7

2

(J) + V
(1)
B,f 7

2

(J)

TEDJ(A = 42, T = 1) = V
(2)
CM,f 7

2

(J) + V
(2)
B,f 7

2

(J), (19)

where an isospin symmetry breaking VB term is considered, in addition to the
Coulomb component. Here, we consider only the multipole Coulomb term, as
no changes in deformation are expected along the yrast sequence. The multipole
Coulomb term can be calculated for two protons in the f 7

2
shell. By subtracting

this term from the MED and TED data in Eq. (19), we would expect that, in the
hypothesis of isospin symmetry and independence respectively, the contribution

of V
(1)
B,f 7

2

and V
(2)
B,f 7

2

for all J values should be negligible.

This is not at all the case. Large differences are found which means that the
isospin symmetry breaking VB term cannot be ignored in the calculation of the
excitation energy differences. The larger differences are found in the TED at
J = 0 for the while for the isovector (MED) components the peak is obtained
for two f 7

2
nucleons coupled to J = 2. This effect was already noted in early
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studies performed by Brown and Sherr in Ref. [61] but the origin of this charge-
dependent interaction is still an open question.

We do not enter into details now on the deduction of the VB term, a complete
discussion can be found in Ref. [52]. A very schematic and simple ansatz was
proposed in Ref. [52] that consists on constructing an isospin breaking interaction
(ISB) in the fp shell by just taking one f2

7
2

matrix element with a strength

determined by the data for A = 42.

V
(1)
B,fp = β1VB,f 7

2

(J = 2)

V
(2)
B,fp = β2VB,f 7

2

(J = 0) (20)

where VB,f 7
2

(J) are matrix elements with unit value. The choice of VB,f 7
2

(J = 2)

for the isovector and VB,f 7
2

(J = 0) for the isotensor components is based on

the leading terms (see ref. [52,50]). In Ref. [52], the strengths used were β1 =
β2 = 100 keV. These schematic interaction showed to be essential to describe
all the MED and TED hitherto known in the f 7

2
shell, without changing the

strength [50]. To illustrate this with an example, we can see in Fig. 13, that the
experimental curve is now very well described by the theory when the VB term
is added to the electromagnetic contributions. It is interesting to note that the
ISB contribution to the MED in mass A = 49 is of the same magnitude of the
others, a fact that was in principle unexpected, under the assumption of charge
symmetry of the effective interaction.

Fig. 13. MED for the mirror pair 49Mn-49Cr. The addition of the calculated monopole
(VCm), the multipole Coulomb (VCM ) and the ISB (VB) contributions give rise to a
theoretical curve (SM) that compares very well with the experimental MED (Exp).
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4.3 Calculation of MED and TED

Taking into account the different contributions described above to the MED and
TED, monopole and multipole Coulomb and the ISB terms, can be written as,

MED(J) = ∆M < V J
CM + V J

Cm + V
(1,J)
B > (21)

TED(J) = ∆T < V J
CM + V

(2,J)
B > (22)

where ∆M means the difference between the mirror nuclei (Eq. (11)) and ∆T

stands for the difference in the triplet (Eq. 12). The brackets indicate that we
can rely on the fact that isospin non-conserving effects are small and therefore
they can be treated in first order perturbation theory. We can thus perform a
diagonalisation of the nuclear effective interaction and calculate the contribution
of the different terms by means of the expectation values.

The calculation of the contributions of the multipole Coulomb and the VB

terms is straightforward. The effect of the modification of the single-particle
energies can also be obtained by considering different energies for the protons
and the neutrons following the formulas introduced above. Finally, changes in
the charge radius can be accounted for, within the shell model, by considering the
evolution of the occupation numbers of the different orbits as a function of the
angular momentum along the yrast bands [51]. For nuclei in the f 7

2
shell, it is the

relative occupation of the p 3
2
orbit which determines the main changes of radii.

The assumption of equal radii of the mirror partners means that a calculation of
the average of proton and neutron occupation numbers of the p 3

2
, mπ and mν ,

respectively, is required: mπ+mν

2 . The contribution of the monopole Coulomb
radial term to the MED of mirror nuclei with |Tz| = k/2 can be parameterised
as,

∆M < V J
Cm > = k αr(

mπ(0) +mν(0)

2
− mπ(J) +mν(J)

2
) (23)

where the constant αr can be deduced from the data in mass A = 41. In the f 7
2

shell the value adopted is 200 keV.

It is important to note that the radial term in the calculation of the MED
is not a single-particle effect and therefore it cannot be accounted for by setting
different single-particle energies for protons and neutrons in the shell-model cal-
culation. The radial contribution vanishes in the calculation of the TED [52].
Monopole Coulomb single-particle contributions to the MED are proportional
to the difference between the proton and the neutron occupation numbers. This
difference is small in most of the Tz = ± 1

2 and Tz = ±1 mirror nuclei stud-
ied in the f 7

2
shell. On the other hand, for nuclei in the upper sd shell, the

promotion of nucleons to the fp shell becomes important already at low spin
and excitation energy. In these cases, the difference of occupation numbers be-
tween protons and neutrons are significant and single-particle Coulomb effects
can become important.



Isospin symmetry breaking in mirror nuclei 31

5 Case Studies: The MED components in action

In this section we consider the effects of the terms identified in the calculation
of MED and TED and described in Sect. 4.1, 4.2 and 4.3. We cite individual
examples where the effects are clearly present and where they make a key contri-
bution. It should be noted that the consistent calculations presented here are all
calculated the same way - no effects are “switched off”. However, it is observed
that the various terms can have a lesser or greater importance depending on
location in the shell. For example, it is seen that the Cm term tends to be more
pronounced in the middle of the f 7

2
shell and has a lesser effect when the shell

gaps are approached. However, it is always included.

5.1 The Multipole Coulomb interaction at work: the mirror pair
51Mn-51Fe

The multipole term, CM is associated with the recoupling of angular momenta
of pairs of nucleons. Generally, this re-coupling occurs gradually as a function
of increasing spin as we increase excitation energy and angular momentum, al-
though occasionally a sudden re-coupling occurs. When a pair of protons have
their angular momentum vectors realigned (say from J = 0 to the maximally
aligned (for f 7

2
shell) value of J = 6), there is a reduction of their overlap and a

concomitant reduction in the Coulomb energy of the pair. As there is no Coulomb
effect for pairs of neutrons, this means that although the binding energy of both
proton and neutron pairs decreases with increasing alignment, the binding en-
ergy of the pair decreases less for protons than for neutrons. The difference is
about 100 keV for a full recoupling in the f 7

2
shell) and this appears clearly in

the MED. This effect was first noted by Cameron et al. [54] and has been used
in the interpretation of MED ever since [50].

The Coulomb multipole effect is always important when considering the pro-
gression of MED with increasing spin, although it is not always dominant. A good
example to show the effect is the 51Mn-51Fe mirror pair, the MED for which are
shown in Fig. 14. In Fig. 14(a) the experimental MED can be compared with
the total shell-model calculation using the complete prescription described ear-
lier. The agreement between the experiment and model is spectacularly good.
The main trends of the MED were discussed in Bentley et al. [56] and Ekman
et al. [62] and explained in terms of the multipole component CM . The main

feature is the sudden dip in the MED at Jπ = 17
2

−
followed by a rise as the

band termination at Jπ = 27
2

−
is approached. The Jπ = 17

2

−
state in 51Fe is

interpreted as a pair of f 7
2
protons coupled to the maximum J = 6 coupled to

the Jπ = 5
2

−
ground state. As the re-coupling occurs, the Coulomb energy of the

pair of protons reduces. In 51Mn the re-coupling occurs, instead, with neutrons
– with no such Coulomb effect of course. The net effect is that states associated
the proton alignment become more strongly bound than their analogue states -

hence the negative MED. Beyond Jπ = 17
2

−
in 51Fe, the proton valence space

is maximally aligned, and so any further angular momentum must be generated
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Fig. 14. The calculated and experimental mirror energy differences for the 51Mn-51Fe
T = 1

2
mirror pair. (a) The experimental [56,62] and calculated MED - see text for

details. The lower panel (b) shows a comparison of the experimental data with just the
CM (Coulomb multipole) component of the calculations.

by re-coupling of neutrons (hence protons in 51Mn). Thus, the MED effect must
reverse and head towards zero at the band termination. This interpretation was
confirmed [56] through calculations of the “alignment” as described in Sect. 4.1
and Fig. 11 – it was observed that the major trends in the MED correlated well
with the calculated quasi-alignment effects.

Fig. 14(b) shows the comparison of the experimental data with just the
Coulomb multipole (CM ) term. It is clear that the major trends of the MED are
very well described in trend, although it is obvious that the other terms help to
bring the calculations more in line with experiment.
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5.2 The Monopole Coulomb interaction at work: the mirror pair
48Mn-48V

Monopole Coulomb contributions to the MED are of two types, as discussed in
Sect. 4. The radial term, associated to changes in the charge radius as a func-
tion of the angular momentum, and the single-particle energy shifts due to the
electromagnetic spin-orbit and orbital terms. As stated in Sect. 4, changes in the
single-particle energies have an impact in the MED only when the configuration
of the state involves a pure single particle spin-flip excitation. This is not the
case in most of the nuclei studied in the f 7

2
, except in very few cases. The mirror

pair we choose to illustrate the monopole effects, is one of these cases. We will
first concentrate on the radial term and come to the single-particle effects below.

48Mn 48V

Fig. 15. The level schemes of the mirror nuclei 48Mn and 48V. Data from Ref. [27]

The effect of the radial term is put in evidence in a spectacular way in the
odd-odd T = 1 mirror pair, 48Mn/48V [27]. This is due to two main reasons.
The first one is that these nuclei lie in the middle of the shell and therefore
can develop a sizable deformation. Alignment of nucleons along the yrast bands
will make the occupation of the p 3

2
orbital decrease and so the radius. The

second effect is that multipole effects such as the multipole Coulomb and the
ISB terms almost completely cancel out in the MED. In fact, in a pure f 7

2

valence space, then both 48Mn and 48V have three active valence protons (holes
and particles respectively) and three active valence neutrons (particles and holes
respectively). As a result the contribution of the multipole terms in each nucleus
must be identical. Thus, even though a pure f 7

2
structure is unrealistic, we still

expect the (usually dominant) multipole contributions to the MED variations to
be much reduced. This is seen clearly in the multipole components of the model
(CM and VB – see Fig. 16(b)) which are small and, in fact, of the opposite sign
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to the trend of the data in Fig. 16(a). The monopole effect we consider here
(Cm) is clearly the remaining dominant component.
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Fig. 16. The experimental (Exp.) and predicted (SM) MED for the odd-odd Tz =
±1, A = 48 mirror pair. In the lower panel the single contributions to the theoretical
curve.

From the figure, it is clear that the Cm term steadily increases with spin
because the occupancy of the p 3

2
orbit decreases with spin causing the reduction

of the effective nuclear radius. This has the effect of increasing the Coulomb
energy for both members of the pair, but by more for the Tz = +1 member of
the pair due to the larger Z. A rise in the MED is therefore observed. This rise
is almost entirely associated with the monopole radial effect.

In Fig. 15, two negative parity bands are shown for both mirror partners.
From shell model calculations, these states result to be formed by a nucleon
excitation from the d 3

2
to the f 7

2
orbitals. These two bands are more deformed

than the ground state band. We can interpret the data in the framework of the
Nilsson Model, where the f 7

2
odd particle and the d 3

2
hole can couple together

to give states with Jπ = 1− and Jπ = 4−. While these excitations in 48Mn
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involve a neutron excitation, a proton will excite in 48V. For such a single-particle
excitation, as expected, a large, positive MED is observed, of the order of 170
keV. The value is stable for all the observed states, indicating that the intrinsic
structure of the states remains mainly unchanged. The largest contribution arises
from the electromagnetic spin-orbit term Els, that reduces the proton gap by ∼
220 keV (in a schematic calculation) with respect to the neutron gap. The orbital
Ell contribution does not significantly change the results in the present cases. Its
effect on the proton single-particle energies is to further reduce the gap between
the f 7

2
and the d 3

2
by ∼ 30 keV. These estimates agree well with observed MED

for the two negative parity bands, indicating, just from the observed values the
single-particle character of the wave functions configurations.

5.3 The isospin-breaking term at work: the mirror pairs 53Co-53Fe
and 53Ni-53Mn

The isospin non-conserving term (VB) described in Sect. 4.2 turns out to be
important in many cases across the whole shell [50]. The effect can be considered
as an additional repulsive isovector matrix element added to pairs of protons
coupled to J = 2 (or an attractive component for neutrons). Naturally, as this
corresponds to a low-spin coupling, the effect tends to be more important (or at
least more obvious) at lower spins. This is seen, for example in Fig. 13 in Sect. 4.1
where it is clear for the A = 49 mirrors that the low-spin behaviour of the MED
is completely inexplicable without the inclusion of the VB term. It is also, not
surprisingly, important where only a few valence particles or holes are involved
in the major components of the configurations – where the low spins states near
the ground states are likely to have large components of J = 2 of one type of
nucleon. An obvious case where the effect would be expected to be significant is
the A = 54 mirror pair where the structures are dominated by two-neutron hole
or two-proton hole configurations. The work of Gadea et al.[63] and Rudolph et
al. [64] showed that the effect was indeed important in the Jπ = 2+ states, and
also for the states involing cross-shell excitations at higher spins [64].

The examples chosen here are the A = 53 Tz = ± 1
2 mirror pair 53Co-53Fe [65]

and the A = 53 Tz = ±3
2 mirror pair 53Mn-53Ni [28]. The 53Co-53Fe pair were

studied by Williams et al. [65] using the Gammasphere array at the Argonne
National Laboratory. The 53Mn-53Ni pair was studied by Brown et al. using a
two-step fragmentation reaction and the National Superconducting Cyclotron
Laboratory, Michigan State University. The latter results from the analysis of
the technique described in Sect. 3 and the data presented in the spectrum in
Fig. 8. In Fig. 17(a) we present the MED data for the Tz = ±1

2 pair and the
full shell-model result. Again the agreement is excellent. The interpretation of
the MED trend here is straightforward [65] – in 53Fe (Z = 26, N = 27) the
angular momentum is generated through a gradual re-coupling of the single pair
of proton holes - neutron holes in 53Co. The MED reflects this trend well with
a gradual MED rise. In Fig. 17(b) we show the effect of the same calculation
without the VB term included. Here we see that the exclusion of the VB term
significantly worsens the agreement at low spin – and for the Jπ = 9

2

−
and
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Fig. 17. (a) The experimental data for the A = 53 Tz = ± 1
2
mirror pair [65] compared

with the full shell model calculations. (b) the same data as (a), but compared with the
shell-model calculation withe VB term removed. (c) and (d) – the same as (a) and (b)
but for the A = 53 Tz = ± 3

2
mirror pair [28]

11
2

−
states in particular which might be expected to have (for 53Fe) a dominant

configuration based on a J = 2 proton-hole coupling added to the Jπ = 7
2

−

ground state. The opposite configuration applies to 53Co. The large component
of J = 2 in these low spin states makes the VB term crucial here.

Fig. 17(c) shows the results from the A = 53 Tz = ± 3
2 mirror pair 53Mn-

53Ni [28]. Only a few states were accessible experimentally here - but again the
agreement is impressive for the two states where the MED has been confidently
determined. Fig. 17(d) shows again the result of the calculation without the VB

term. Here, although the Jπ = 11
2

−
state is well described, the calculation fails

completely for the Jπ = 5
2

−
state.

The remarkable feature about this term is that it is prevalent across the
entire shell - no cases have been seen where the inclusion of this term is not
necessary or where it worsens the agreement with the data (see [50]). It is also
noteworthy that the effect is equally important in the deformed region in the
mid-shell region, as it is in the upper and lower ends of the f 7

2
shell. This in

turn implies that the effect is a systematic physical phenomenon that cannot be
easily explained away by a failing of the shell-model prescription.

6 Conclusions and outlook

In these lectures we have shown that the study of energy differences between
analogue states can give valuable information on different nuclear structure prop-
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erties of these nuclei. They provide a level of consistency in detail that might
seem surprising, given the long standing issues regarding modelling of Coulomb
effects in nuclei (e.g. the Nolen-Schiffer anomaly). We have concentrated much
of the discussion on the f 7

2
shell, where the Coulomb energy differences can

be followed up to high-spin states and interpreted by means of state-of-the-art
shell-model calculations. These studies have now developed into a mature field,
and the systematic investigation of energy differences between analogue states
is starting to yield some fascinating questions – such as the J = 2 anomaly.

In this contribution, we have concentrated on energy differences as a test of
isospin symmetry. As a result, some other important aspects of isospin symme-
try of isobaric multiplets have not been discussed. For example, subtle informa-
tion on the isospin degree of freedom can be derived through the study of the
Tz-dependence of electromagnetic transition matrix elements (see, for example,
Refs. [66,67] for the f 7

2
shell). Mirror nuclei also provide an ideal laboratory

for measurement of effective charges, as lifetimes of analogue states can be ac-
curately determined - see for example the work of Du Reitz et al. [67] where,
information on isoscalar and isovector effective charges has been deduced from
the lifetimes in the A = 51 mirror pair 51Fe/51Mn. Another key result relates
to E1 decays in mirror nuclei. Because E1 decays are purely isovector in ori-
gin, in the limit of good isospin symmetry, ∆T = 0 E1 transition strengths in
mirror nuclei should be identical - i.e. have identical strengths. However, it now
appears that E1 transitions have shown some anomalous results. For example,
in the A = 35 [53,68], A = 31 [69,70] and A = 45 [71] mirror nuclei, strong
E1 decays have been observed from certain states in one member of the mirror
pair, which are either absent, or highly hindered, in the other. Recently, differ-
ent E1 strengths have been determined in the mirror pair 67As-67Se [72]. The
breakdown of the isospin selection rule has been interpreted in terms of isospin
mixing [53,72].

The development and availability of the first generation of radioactive beam
facilities has allowed for further access to exotic nuclei. These, and the planned
next generation of ISOL and fragmentation facilities, will open up unprece-
dented access to proton-rich nuclei. As we proceed towards spectroscopic study
of proton-rich nuclei of both larger isospin and heavier mass, one may expect
other effects to come into play. For example, the assumption has been made so
far that the wave functions of the analogue states are essentially identical. When
the analogue states of interest in the proton-rich member of the multiplet are
weakly bound, this is no longer expected to be the case, and some part of the
energy difference observed will be due to the different spatial distributions of
the analogue wave functions. This shift, the Thomas-Ehrman shift [73,74], will
become more significant as the proton-rich states become more weakly bound.

Exploration of the isospin degree of freedom is certain to be one of the key
nuclear-structure objectives of the new generation of radioactive beam facilities.
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