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ABSTRACT  
 
Strangeness adds a new dimension to the evolving picture of nuclear physics giving us an 
opportunity to study the fundamental baryon-baryon interactions from an enlarge perspective. The 
presence of hyperons in finite and infinite nuclear systems constitute a unique probe of the deep 
nuclear interior which makes possible to study a variety of otherwise inaccessible nuclear 
phenomena, and thereby to test nuclear models. Furthermore, there is a growing evidence that 
strange particles can have significant implications for astrophysics. In particular, the presence of 
hyperons in the dense inner core of neutron stars is expected to have have important 
consequences for the equation of state, struture and evolution of such compact objects.  In this 
lecture we will disuss several topics of hypernuclear physics. After a introduction and historical 
overview, we will address different aspects of the production, spectroscopy and decay of 
hypernuclei. Then we will present several models for the hyperon-nucleon interaction, and finally, 
we will examine the role of hyperons on the neutron star properties. 
 
 
I – INTRODUCTION  AND HISTORICAL OVERVIEW  
 
Hypernuclei are bound systems composed of neutrons, protons and one or more hyperons (i.e., 
baryons with strange content). They were first observed in 1952 with the discovery of a 
hyperfragment by Danysz and Pniewsli in a balloon-flown emulsion stack [1]. The initial cosmic-ray 
observations of hypernuclei  were followed by pion and proton beam production in emulsions and 

then in 4He bubble chambers. The weak decay of the  particle into a 
-
 plus a proton was used to 

identify the -hypernuclei and to determine binding energies, spins and lifetimes for masses up to 
A=15 [2,3]. Average properties of heavier systems were estimated from spallation experiments, 

and two double-  hypernuclei were reported from 
- capture [4,5]. More systematic investigations 

of hypernuclei began with the advent of separated K- beams, which permitted the realization of 
counter experiments [6]. 
 
Although major achievements in hypernuclear physics have been taken very slowly due to the 

limited statistics, the in-flight (K
-
,

-
) counter experiments carried out at CERN [7,8]  and 

Brookhaven (BNL) [9] have revealed a considerable amount of hypernuclear features such as that 

the  particle essentially retains its identity in a nucleus, the small spin-orbit strength, or the 

nowadays discarded, narrow widths of -hypernuclei, injecting a renewed interest in the field.  

Since then, the experimental facilities have been upgraded and experiments using the (
+
,K

+
) and 

(K
-
stopped,

0
) reactions are being conducted at the Brookhaven AGS and KEK accelerators with 

higher intensities and improved energy resolution of the beams.  



 
The electromagnetic production of hypernuclei at the Thomas Jefferson National Laboratory 

(JLAB), through the reaction (e,e’K
+
), promises to provide a new high-precision tool to study -

hypernuclear spectroscopy, with resolutions of several hundred keV [10]. In addition, the study of 
electromagnetic decay of hypernuclear levels using large-solid angle germanium (Ge) dectectors, 
should help to define the spectra of lighter hypernuclei. It is also possible that more intense beams 
of kaons and heavy ions, coupled with new detection technologies, may provide the means to 
detect multi-strange hypernuclei [11].  
 

In connection with this latter aspect, much less is known about -hypernuclei or double  
hypernuclei [12]. From the point of view of the conventional many-body problem, a study of the 
hyperon-hyperon interaction is very important, and it can be done within a multi-strange 
hypernucleus. Of course a direct study of the hyperon-hyperon scattering would be extremely 
valuable, but because these paricles have very short lifetimes, this is not possible. Still, there are 

emulsion events which have been interpreted as either - or double-  hypernuclei. These events, 

if interpreted correctly, would give the well depth for the  potential [13]. 
 
From the theoretical side, one of the goals of hypernuclear research is to relate hypernuclear 
observables to the bare hyperon-nucleon (YN) and hyperon-hyperon (YY) interactions. The 
experimental difficulties associated with the short lifetime of hyperons and low intensity beam 

fluxes have limited the number of N and N scattering events to less than one thousand [14-18], 
not being enough to fully constraint the YN interaction. In the absence of such data, alternative 
information on the YN and YY interactions can be obtained from the study of hypernuclei.  One 

possibility is to focus on light hypernuclei, such as 3H ,
3
He  and 

4
He , which can be treated 

“exactly” by solving the 3-body Faddeev [19,20] and 4-body Yakubovky [21] equations. However, 
the power of these techniques is limited by the scarce amount of spectroscopic data. Only the 
ground states energies and a particle stable excited states for each A=4 species can be used to 
put further constraints on the interaction. Another possibility is the study of hypernuclei with larger 
masses. 
 
Attempts to derive the hyperon properties in a finite nucleus have followed several approaches. 

Traditionally, they have been reasonably well described by a shell-model picture using -nucleus 
potentials of the Woods-Saxon type that reproduce quite well the measured hypernuclear states of 
medium to heavy hypernuclei [22-24]. Non-localities and density dependent effects, included in 
non-relativistic Hatree-Fock calculations using Skyrme YN interactions [25-29] improve the overall 
fit to the single-particle binding energies. The properties of hypernuclei have also been studied in a 
relativistic framework, such as Dirac phenomenology, where the hyperon-nucleus potential has 
been derived from the nucleon-nucleus one [30,31], or relativistic mean field theory [32-39]. 
 
Microscopic hypernuclear structure calculations, which provide the desidered link of the 
hypernuclear observables to the bare YN interaction, are also available. They are based on the 
construction of an effective YN interaction (G-matrix) which is obtained from the bare YN potential 
through a Bethe-Goldstone equation. In earlier microscopic calculations, Gaussian 
parametrizations of the G-matrix calculated in nuclear matter at an average density were 
employed [40-43]. A G-matrix obtained directly in finite nuclei was used to study the single-particle 
energy levels in various hypernuclei [44]. Nuclear matter G-matrix elements were also used as an 

effective interaction in a calculation of the 
17

O  spectrum [45]. The s- and p-wave  single-particle 

properties for a variety of -hypernuclei, from 
5
He   to 

208
Pb , where derived in Refs. [46-47] by 

constructing a finite nucleus YN G-matrix from a nuclear matter G-matrix. 
 
In addition to hypernuclei, nuclear physicist have also been interested in hyperonic matter (nuclear 
matter with nucleonic and hyperonic degrees of freedom), especially in connection with the 
physics of neutron star interiors. These objects are an excellent observatory  to test  our 
understanding of the theory of strong interacting matter at extreme densities. The interior of 



neutron stars is dense enough to allow for the appareance of new particles with strangeness 
content besides the conventional nucleons and leptons by virtue of the weak equilibrium. There is 
a growing evidence that hyperons appear as the first strange baryons in neutron star matter at 
around twice normal nuclear saturation density [48], as has been recently confirmed with effective 
non-relativistic potential models [49], the Quark-Meson Coupling Model [50], extended relativistic 
mean field approaches [51,52], relativistic Hartree-Fock [53] and Brueckner-Hartree-Fock theory 
[54,55]. 
 
Properties of neutron stars are closely related to the underlying Equation of State (EoS) of matter 
at high densities. These properties are affected by the presence of strangeness [56,57]. A strong 
deloptenization of neutron star matter occurs when hyperons appear, since it is energetically more 

convenient to maintain charge neutrality through hyperon formation than from -decay. In addition, 
it is clear that the main effect of the presence of  hyperons in dense matter is to soften the EoS, 
which translates into a lower maximum mass of the neutron star [55]. Other properties, such as 
thermal and structural evolution of neutron stars, are also very sensitive to the composition and, 
therefore, to the strangeness content of neutron star interiors. From the observational point of 
view, measurements of the surface temperature of neutron stars, with satellite-base X-ray 
observatories, could tell us whether these exotic components of nuclear matter are playing a role 
in cooling processes. Furthermore, one of the major goals of the Laser Interferometer 
Gravitational-wave Observatory (LIGO) is to measure gravitational waves emitted in the 
coalescence of two neutron stars. The pattern of the emitted waves just prior to the merging is 
sensitive to the structure of the stars and to the EoS.  
 
Although hyperonic matter is an idealized physical system, the theoretical determination of the 
corresponding EoS is an essential step towards the undertanding properties of neutron stars. In 
addition, the comparison of theoretical predictions for the properties of these objects with the 
observations can provide strong constraints on the interactions among their constituents. 
Therefore, a detailed knowledge of the EoS over a wide range of densities is required [58]. This is 
a very hard task from the theoretical point of view. Traditionally, two approaches have been 
followed to describe the baryon-baryon interaction in the nuclear medium and to construct from it 
the EoS of dense hadronic matter: the so-called phenomenological approach and the microscopic 
approach. 
 
In the phenomenological approach the input is a density-denpendent effective interaction which 
contains a certain number of parameters adjusted to reproduce experimental data, such as the 
properties of nuclei, or the empirical saturation properties of nuclear matter. There exists an 
enormous number of different phenomenological interactions such as the Migdal [59] and Gogny 
[60] forces. But the most popular of them is the Skyrme interaction [61-62]. This force has gained 
so much importance because it reproduces the nuclear binding energies and the nuclear radii over 
the whole periodic table with a reasonable set of parameters [62]. There is a connection [63] 
between this force and the more fundamental G-matrix. Balberg and Gal [49,64] have recently 
derived an analytic effective EoS using density-dependent baryon-baryon potentials based on 
Skyrme-type forces including hyperonic degrees of freedom. The features of this EoS rely on the 
properties of nuclei for the nucleon-nucleon (NN) interaction, and mainly on the experimental data 
from hypernuclei for the YN and YY interactions. It reproduces typical properties of high-density 
matter found in theoretical microscopic models.  
 
An alternative phenomenological approach involves the formulation of an effective relativistic 
mean field (RMF) theory of interacting hadrons [65-66]. This approach treats the baryonic and 
mesonic degrees of freedom explicitely, is fully relativistic, and is, in general, easier to handle 
because it only involves local densities and fields. The EoS of dense matter with hyperons was 
first described within the RMF by Glendenning [48,67,68]. The parameters of this approach are 
fixed by the properties of nuclei and nuclear bulk matter for the nucleonic sector, whereas the 
coupling constants of the hyperons are fixed by symmetry relations and hypernuclear observables. 



 
In a microscopic approach, on the other hand, the input are two-body baryon-baryon interactions 
that describes the scattering observables in free space. These realistic interactions have been 
mainly constructed within the framework of a meson-exchange theory, although recently a new 
approach based on chiral perturbation theory has emerged as a powerful tool. In order to obtain 
the EoS one has to solve the complicated many-body problem. The main great difficulty of this 
problem lies in the treatment of the strong repulsive core, which dominates the short-range 
behaviour of the interaction. Various methods have been considered to solve the many-body 
problem, the most employed ones being the variational approach and the Brueckner-Bethe-
Goldstone theory.  Nevertheless, although both methods have been  extensively applied to the 
study of nuclear matter, only the Brueckner-Bethe-Goldstone theory has been extended to the 
hyperonic sector [54,55].  
 
To conclude we would like to stress that although hypernuclear physics is almost 60 years old, it is 
still a very active field of research. New experimental facilities under construction at GSI, JLAB, J-
PARC and other sites will soon allow a much more precise determination of the properties of 
hyperon-nucleon and hyperon-hyperon forces than is currently available. 
 
 
II – PRODUCTION, SPECTROSCOPY AND WEAK DECAY OF HYPERNUCLEI 
 
In the following we will describe different production mechanis of hypernuclei. After that we will 

discuss some aspects of hypernuclear -ray spectroscopy. Finally, we will briefly present the 
different weak decay modes of hypernuclei.  
 
IIa-. Production mechanisms of hypernuclei 
  

Single-  hypernuclei can be produced by several mechanism such as:  
 
Strangeness exchange reactions:  
 

K A Z AZ ,                                                                                                                                       (1)    

 

where a neutron hit by a K
-
 is changed into a  hyperon emiting a 

-
. These experiments measure 

mainly the hyperon binding energies and allow the identification of excited hypernuclear levels. 
The hypernuclear mass, from which the hyperon binding energy can be deduced as 
 
B A Z

BA Z
M A Z

M MN M A Z
,                                                                                                        (2) 

 

is obtained by measuring both the incident K
-
 momentum and the out-going 

-
 momentum as 

follows 
 

M A Z
E E

K
M A Z

2

p p 
K

2

.                                                                                           (3) 

 
Therefore, two magnetic spectrometer systems both with good energy resolution are required in 
order to achieve a good hypernuclear mass resolution. 
 
In some cases a K

-
 beam, with  rather low-momenta, is injected on thick nuclear targets that stop 

the K
-
 before it decays. The K

-
 looses its energy in the target, and is eventually trapped in atomic 

orbits of a kaonic atom through various atomic processes. The K
-
 is absorbed in the final stage by 

the atomic nucleus. The kaon capture process proceeds mainly with the emission of a pion an the 
formation of a the hypernucleus  
 



                                                      
 

Figure 1. Hypernuclear spectrum of the 
12

C , 
132

La  and 
12

B  hypernuclei obtained respectively in a 

(K
-
stopped,

-
) experiment (left panel), a (

+
,K

+
) reaction (middle panel) and by electro-production 

(right panel). Figures are adapted from Refs. [69], [70] and [71], respectively. 
 
 

Kstopped

A Z A Z .                                                                                                                                 

(4) 
 
Since the reaction occurs essentially at rest, in this case it is necessary be to measure only the 
momemtum of the emitted pion in order to determine  the hypernuclear mass  
 

M A Z
E M

K
M A Z

2

p2 .                                                                                                         (5) 

 

Therefore, one magnetic spectrometer for 
-
 or a 

0
 spectrometer detecting two gamma-rays from 

0
 decay with good energy resolution is enough. The left panel of Fig. 1 shows as example the 

energy spectrum of the 
12

C  hypernucleus obtained in a (K
-
stopped,

-
) experiment. 

 
 
Associate production reactions: 
 

A Z AZ K .                                                                                                                                       (6) 

 

Here, an ss  pair is created from the vacuum and a K
+
 and a  are produced in the final state (the 

so-called associate production). The production cross section is reduced, compared to the 
strangeness exchange reaction, however this drawback is compensated by the greater intensities 

of the 
+
 beams. The hypernuclear mass is obtained by measuring the 

+
 momentum and the K

+
 

with two spectrometers as in the case of the (K
-
,

-
) reaction. The middle panel of Fig. 1 shows as 

example the energy spectrum of the 
139

La  hypernucleus. 
 
Electro-production reactions: 
 

e A Z e' K A(Z 1).                                                                                                                          (7) 

 

This process is relatively new and promises to provide a new high-precision tool to study -
hypernuclear spectroscopy, with energy resolutions of several hundred keV [10]. At the present 
moment only two laboratories in the world, the JLAB (USA) and MAMI-C (Germany), have the 
instrumental capabilities to perform experiments on hypernuclear spectroscopy by using electron 
beams. The electron beams have excellent spatial and energy resolutions, so this reaction is used 
for studies of hypernuclear structure.  A schematic layout of the experimental setup together with 
the experimental geometry is shown in Fig. 2. 



        
 
Figure 2. Schematic layout of the experimental set up and experimental geometry of the (e,e’K

+
) 

reaction. Figures adapted from Ref. [72]. 
  
 
The electro-production of hypernuclei can be well described by a first order perturbation 
calculation as the exchange of a virtual photon between the electron and a proton of the nucleus, 

which is changed into a  hyperon (see Fig. 2).  Although the cross section for kaon electro-

production is about 2 orders of magnitude smaller than the (
+
,K

+
) reaction, this can be 

compensated by larger electron beam intensities. 
 
Since the cross section falls rapidly with increasing transfer momentum Q (see Fig. 2) and the 
virtual photon flux is maximized for an electron scatterig angle near zero degrees, experiments 
must be done within a small angular range around the direction of the virtual photon. The 
experimental geometry requires two spectrometers, one to detect the scattered electrons which 
defines the virtual photons, and one to detect the kaons. Both of these spectrometers must be 
placed at extremely forward angles. Because of this, a magnet is needed to deflect the electrons 
and kaons away from zero degrees into their respective spectrometers. In addition, since many 
pions, positrons and protons are transmitted through the kaon spectrometer, it is required an 
excellent particle identification not only in the hardware trigget, but also in the data analysis. By 
measuring the type of out-going particles and their energies (Ee’, EK

+
), and knowing the energy of 

the in-coming electron (Ee) it is possible to calculate the energy which is left inside the nucleus in 
each event: 
 
Ex Ee Ee E

K
,                                                                                                                                     (8) 

 
from which it can be deduced the energy of the produced hypernuclei.  
 

An example of the binding energy spectrum for the 
12

B  hypernucleus is shown in the right panel 

of Fig. 1. The two prominent peaks represent the nuclei in the ground state with the  particle in 
the s- and p-shell, respectively. The other peaks between them are the core excitations with 
nucleons in p-shell [73].  
 
The kinematics for these elementary processes is shown in Fig. 3. As it can be seen in the figure, 

the n(K
-
,

-
)  and n(K

-
,

-
)  reactions can have low, essentially zero, momentum transfer to a 

produced  or  hyperon. Thus the probability that this hyperon will interact with, or be bound to, 

the spectator nucleons is large. On the other hand reactions such as n(
+
,K

+
) or p( ,K

+
)  have 

high momentum transfer with respect to the Fermi momentum, and produced recoil hyperons  
have a high probability of escaping the nucleus. The cross sections to bound states are reduced, 
when the momentum transfer is high. 
 



                                                       

Figure 3. The recoil momentum of a hyperon in various elementary reactions at 0º as a function of 
the inciden particle momentum. Figure adapted from Ref. [72]. 

It is known that a K
-
 strongly interacts with nucleons through various resonant states (e.g., 

(1405)). Therefore, incident kaons in a (K
-
,

-
) reaction attenuate rapidly in nuclear matter, the K

-
 

mostly interacts with an outer shell neutron with little momentum transfer, simply replacing it with a 

 in the same shell. On the other hand, energetic 
+
 and K

+
 have longer mean free paths in 

nuclear matter, and give longer momentum transfer to the hyperon. Thus they can interact with 
interior nucleons, and there can be significant angular momentum transfer. 
 

-hypernuclei are produced by the same mechanisms described above. Double-  hypenuclei 

cannot be produced in a single step process. To produce them, first it is necessary to create a 
-
 

through the reaction 
 

K p K ,                                                                                                                                         

(9) 
 
or 
 

p p .                                                                                                                                         

(10) 
 

The 
-
 should be then captured in an atomic orbital and interact with the nuclear core producing 

two ´s particles for example by  
 

p 28.5MeV.                                                                                                                

(11) 
 

This reaction provides about 30 MeV of energy that is equally shared between the two ´s in most 
cases, leading to the escape of one or both from the nucleus.  
 

IIb-. Hypernuclear -ray spectroscopy 
 
Hypernuclei can be produced in excited states if a nucleon in a p- or higher shell is replaced by a 
hyperon. The energy of this exicted states can be released either by emitting nucleons, or, 

sometimes, when the hyperon moves to lower energy states, by the emission of -rays. 

Measurements of -ray transitions in -hypernuclei allow to analyze excited levels with an 
excellent energy resolution. 



 

Nevertheless, there have been some technical difficulties to apply -ray spectroscopy to 

hypernuclear spectroscopy, mainly related with the detection efficiency of -ray measurements and  

                  
 

Figure 4. Left: Various decay schemes of -hypernuclei. Right:  transitions and the level schemes 

of 
16

O  measured recently at BNL. Figures adapted from Refs. [74] and [75]. 
 

with the necessity of covering a large solid angle with -ray detectors. These issues have been 
solved somehow with the construction of a large-acceptance germanium (Ge) detector array 

dedicated to hypernuclear -ray spectroscopy called Hyperball. There exist still, however, several 

weak points in hypernuclear -ray spectroscopy. A number of single-particle  orbits are bound in  

heavy  hypernuclei with a potential depth of around 30 MeV. However, the energy levels of many 
single-particle orbits are above the nucleon (neutron and proton) emission thresholds (see left side 

of Fig. 4). Thus, the observation of  rays is limited to the low excitation region, maybe up to the  

p orbit. Another weak point is the fact that -ray transition only measures the energy difference 
between two states. Therefore, single energy information is not enough to fully identify the two 

levels; the measurement of two -rays in coincidence might help to resolve it. 
 

The right side of Fig. 4 shows as an exemple the  transitions and the level schemes of 
16

O  

identified and determined recently by -ray spectroscopy experiments at BNL. The -ray spectrum 

of 
16

O  have been measured using the (K
-
,

-
) reaction. The observed twin peaks demonstrate the 

hypernuclear fine structure for 
16

O  1 1 ,0  transitions. The small spacing in twin peaks is 

caused by the spin dependent N interactions. 
 

IIc-. Weak decay of -hypernuclei 
 

The main decay mode of a  particle in free space is the so-called mesonic weak decay mode 
 

N , pN ~100MeV                                                                                                   

(12)                                                                                                       
 

where a  particle decays 64% of the times into a proton and a 
-
, and 36% into a neutron and a 

0
. This mode is strongly suppressed by the Pauli principle when the hyperon is bound in the 

nucleus, because the momentum of the out-going nucleon (around 100 MeV/c) is smaller than the 
typical Fermi momentum in nuclei (~270 MeV/c). The so-called non-mesonic decay mode, 

according to which the  interacts with one (or more) of the surrounding nucleons  
 

N N N, pN ~ 420MeV

N N N N N, pN ~ 340MeV
                                                                                     (13)                                                                                 



 
becomes therefore the dominant decay mode in hypernuclei, specially in medium and heavy 
hypernuclei.  
 

                                                         
 
Figure 5.  Weak decay rates as a function of the total number of particles. The figure has been 
adapted from Ref. [76]. 
 
 
Fig 5. shows the weak decay rates as a function of the total number of particles. The lines are 

theoretical estimations. The upper dashed line stands for the total decay rate, T, the decreasing 

solid line represents the mesonic decay mode M, while the increasing solid line represents the 

total non-mesonic decay rate NM, which corresponds to the sum of the one-nucleon (dot-dashed), 

1, and the two-nucleon induced mode (lower dashed line) 2. Experimental values of the total and 
non-mesonic decay rates are given by the squares and circle marks respectively. As can be seen 
in the figure, the analysis of hypernuclear lifetimes as a function of the mass number, A, shows 
that the mesonic decay mode gets blocked as A increases, while the non-mesonic decay 

increases up to a saturation value of the order of the free  decay, reflecting the short-range 

nature of the weak S=1 baryon-baryon interaction. The interested reader is referred to Refs. [76] 
and [77] and references therein for a detail discussion.  
 
 
III – THE HYPERON-NUCLEON INTERACTION 
 
Quantum chromodynamics (QCD) is commonly recognized as the fundamental theory of the 
strong interaction, and therefore, in principle, the baryon-baryon interaction can be completely 
determined by the underlying quark-gluon dynamics in QCD. Nevertheless, due to the 
mathematical problems raised by the non-perturbative character of QCD at low and intermediate 
energies (at this range of energies the coupling constants become too large for perturbative 
approaches), one is still far from a quantitative undertanding of the baryon-baryon interaction from 
the QCD point of view. This problem is, however, usually circumvented by introducing a simplified 
model in which only hadronic degrees of freedom are assumed to be relevant. Quarks are 
confined inside the hadrons by the strong interaction and the baryon-baryon force arises from 
meson exchange [78,79]. Such an effective description is presently the most quantitative 
representation of the fundamental theory in the energy regime of nuclear physics, although a big 
effort  is being invested recently in understanding the baryon-baryon interaction from an Effective 
Field Theory perspective [80]. Quark degrees of freedom are expected to be important only at very 
short distances and high energies. Short-range parts of the interaction are treated, in all meson 
exchange model and effective field theory approaches, by including form factors which take into 
account, in an effective way, the extended structure of hadrons. In the next we briefly present the 
meson exchange and chiral effective field theory approaches of the hyperon-nucleon interaction. 



The final part of this section will be devoted to the recent development of the low-momentum 
hyperon-nucleon interaction. 
 
 
IIIa – Meson exchange model for the hyperon-nucleon interaction 
 
The three relevant meson field types that mediate the interaction among the different baryons are: 

the scalar (s) field: , ; the pseudoscalar (ps): ,K, , ’; and the vector (v) fields: ,K*, . Guided by 
symmetry principles, simplicity and physical intuition the most commonly employed interaction 
Lagrangians that couple these meson fields to the baryon ones are 
 

Ls gs

(s)
                                                                                                                                               

(14) 
 

Lps gps i 5 (ps)
                                                                                                                                     (15) 

 

Lv gv

(v) gt

(v ) (v)
                                                                                         (16) 

 
for scalar, pseudoscalar and vector coupling, respectively. Alternatively, for the pseudoscalar field 
there is also the so-called pseudovector (pv) or gradient coupling, which is suggested as an 
effective coupling by chiral symmetry [81,82] 
 

Lpv gpv

5 (ps)
                                                                                                                              

(17)  
 

In the above expressions  denotes the baryon fields for spin ½ baryons, 
(s)

, 
(ps) 

and 
(v)

 are the 
corresponding scalar, pseudoscalar and vector fields, and the g’s are the corresponding coupling 
constants that must be constrained by e.g. scattering data. Note that the above Lagrangians are 

for isoscalar mesons, however, for isovector mesons, the fields  trivially modify to  with being 
the familiar isospin Pauli matrices. 
 
Employing the above Lagrangians, it is possible to construct a one-boson-exchange (OBE) 
potential model. A typical contribution to the baryon-baryon scattering amplitude arising from the 

exchange of a certain meson  is given by 
 

 p 1 p 2 V p1p2
u (p 1)g 1

(1)P u(p1)u (p 2)g 2

(2)P u(p2)

p1 p 1

2
m2

                                                                 

(18) 
 

where m  is the mass of the exchanged meson, P /((p1-p1’)
2
-m

2
) represents the meson 

propagator,  u and u  are the familiar Dirac spinor and its adjoint ( u u 1, u u 0
), g 1, g 2 are 

the coupling constants at the vertices, and the ’s denote the corresponding Dirac structures of 
the vertices 
 

s

(i) 1, ps

( i) i 5, v

( i) , t

(i) , pv

(i) 5 .                                                    (19) 

 
Expanding the free Dirac spinor in terms of 1/M (M is the mass of the relevant baryon) to lowest 
order leads to the familiar non-relativistic expressions for the baryon-baryon potentials, which 
through Fourier transformation give the configuration space version of the interaction. The general 
expression for the local approximation of the baryon-baryon interaction in configuration space is 
 



V (r) Vo(r) Vs(r) 1 2 Vt (r)S12 Vls(r) L S Vals(r) L S                                               (20) 

 
where V0 is the central interaction, Vs the spin-spin part, Vt the familiar tensor term and Vls and Vals 
the symmetric and antisymmetric spin-orbit pieces. Finally, one has to remember that in the meson 
exchange theory all meson-baryon vertices must be necessarily modified by the introduction of the 
so-called form factors. Each vertex is multiplied by a form factor of the type 
 

F (k 2)
2 m2

2 k 2

n

                                                                                                (21) 

 
or by 

F (k 2) e

k 2

2 2

.                                                                                                         (22)        

 

In Eq. (21) the quantity n  is usually taken equal to 1 (monopole form factor) or 2 (dipole form 

factor). The vector k  denotes the 3-momentum transfer, whereas  is the so-called cut-off mass, 
typically of the order 1.2 - 2 GeV. Originally the form factors were introduced for purely 
mathematical reasons, namely, to avoid divergences in the scattering equation. Nevertheless, our 
present knowledge of the (quark) substructure of baryons and mesons provides a physical reason 
for their presence. Obviously, it does not make sense to take the meson exchange picture 
seriously in a region in which modifications due to the extended structure of hadrons come into 
play.  
 
Until now all that we have said is general and nothing has been commented yet about the specific 
hyperon-nucleon interaction. Presently there are in the market two different meson exchange 
models for the hyperon-nucleon interaction: the Jülich models [83,84]  and the Nijmegen [85-88] 
ones. The main features of these two models are briefly presented in the following and the 
interested reader if referred to the original works for detailed information. 
 
The Jülich hyperon-nucleon interaction is constructed in complete analogy to the Bonn nucleon-
nucleon force [79]. It is defined in momentum space and contains the full energy-dependence and 
non-locality structure. Besides single-meson exchange processes, it includes higher-order 

processes involving - and -exchange processes (correlated 2 -exchange are conveniently 

parametrized in terms of an effective -exchange) and, in adition, KK, KK* and K*K* processes 

with N, , ,  and *(1385) intermediate states. Therefore, the model not only includes the 

couplings between the N and N channels, but also couplings to the ,  and N * ones. The 

exchange of pseudoscalar mesons  and ’ is not considered. Parameters (coupling constants 

and cut-off masses) at NN and N  vertices are taken from the Bonn model. Coupling constants at 
the vertices involving strange particles are fixed by relating them, under the assumption of SU(6) 

symmetry, to the NN and N  values. Thus, the only free parameters are the cutt-off masses at the 
strange vertices which are adjusted to the existing hyperon-nucleon data. The form factors at the 
vertices are parametrized in the conventional monopole form or dipole form when the vertex 
involves both a spin-3/2 baryon and a vector meson. 
 
The Nijmegen hyperon-nucleon interaction is obtained by a straightforward extension of the 
Nijmegen nucleon-nucleon model [89], through the application of SU(3) symmetry. It is defined 
both in momentum space and in configuration space. The model is generated by the exchange of 
nonets of pseudoscalar and vector mesons, and scalar mesons. Assuming SU(3) symmetry all the 
coupling constants at the vertices with strange particles are related to the NN ones. Gaussian form 
factors are taken at the vertices to guarantee a soft behaviour of the potentials in configuration 
space at small distances.   
 



IIIb –Chiral Effective Field Theory for hyperon-nucleon interaction 
 
Althought the meson-exchange picture provides a practical and systematic approach to the 
description of hadronic reactions in the low- and medium-energy regime, in the last decade chiral 

effective field theory ( EFT) has emerged as a new powerful tool. The derivation of the nuclear 

force from EFT has been extensively discussed in the literature since the pioneering work of 
Weinberg [90]. The main advantage  of this scheme is that there is an  underlying  power  
counting   

                                    
 

Figure 6. p total cross section as a function of the momentum in the lab frame. The figure has 
bee  adapted from Ref. [96]. 
 
 
that allows to improve calculations systematically by going to higher orders in a perturbative 
expansion. In addition it is possible to derive two- and corresponding three-body forces as well as 
external current operators in a consistent way. The interested reader is referred to Refs. [91-93]. 
 

Recently the NN interaction has been described to high precision using EFT [94,95]. In those 
works, the power counting is applied to the NN potential, which consists of pion exchanges and a 
series of contact interactions with an increasing number of derivatives to parametrize the shorter 
part of the NN force. A regularized Lipmann-Schwinger equation is solved to calculate observable 
quantities.  
 

Contrary to the NN case, there are very few investigations of the YN interaction using EFT. A 
recent application of the scheme used in Ref. [95] to the YN interaction has been performed by the 
Bonn-Jülich group [96]. A brief description of the procedure followed by the authors of Ref. [96] 
and of their results is shown in the following lines. 
 
Analogous to the NN potential, at leading order (LO) in the power counting, the YN potential 
consist of pseudoscalar-meson exchanges and of four-baryon contact terms, where each of these 
two contributions is constrained via SU(3)f symmetry. The Lagrangian densities of the contact 
terms read 
 

L1 Ci

1 B aB b iB b iB a
,                                                                                                                        (23) 

 

L2 Ci

2 B a iB a
B b iB b

,                                                                                                                       

(24) 
                                          
and 
 



L3 Ci

3 B a iB a
B b iB b

.                                                                                                                    

(25) 
 

Here, the labels a and b are the Dirac indices of the particles, i denotes the five elements of the 

Clifford algebra, 1=1, 2= , 3= , 4=
5
, 5=

5
 and B is the usual irreducible baryon octet 

representation of SU(3)f. The Clifford algebra are here actually diagonal 3x3 matrices in the flavor 
space. The brackets denote taking the trace in flavor space.  In LO the Lagrangians give rise to six 
independent low-energy coefficients (LEC’s): CS

1
, CT

1
, CS

2
, CT

2
, CS

3 
and CT

3
, where S and T refer 

to the central and spin-spin parts of the potential respectively. The contribution of the one-
pseudoscalar exchanges is constructed following the procedure described in the previous section. 
The YN potential contructed in this way is then inserted in the Lipmann-Schwinger equation which 
is regularized with a cut-off regulator function of the type 
 

F(p, p') e

( p 4 p'4 )
4

,                                                                                                                                     (26) 

 
in order to remove high-energy components of the baryon and pseudoscalar meson fields. 
 

Fig. 6 shows the p total cross section as a function of the mometum in the lab frame. The 

shaded band  represents the results of the EFT for values of the cut-off parameter  ranging 
from 550 to 700 MeV. For comparison also the results for the Jülich’04 [84] and the Nijmegen 

NSC97f [87] meson-exchange models are shown. A good description of the low-energy p 

scattering data is obtained with both the EFT approach and the meson-exchange model as can 

be seen in the figure. The p cross sections show a clear cusp at the 
+
n threshold. This cusp is 

very pronounced for the EFT model but also in the case of NSC97f one. This effect is hard to see 

in the experimental data, since it occurs over a very narrow energy range. Note that  EFT 

predicts p cross sections that are too large are higher energies. This is related to the problem 
that some LO phase shift are too large at higher energies. In a next to leading order (NLO) 
calculation this problem will eventually vanish.  
 

The YN interaction based on EFT yields also a correctly bound hypertriton and predicts 

reasonable  separation energies for 
4
H  (see Ref. [96] for details).  

 

In conclusion, the results obtained by the Bonn-Jülich group strongly suggest that the EFT 
scheme applied originally to the NN interaction, also works well for the YN one.  
 
IIIc – Low-momentum hyperon-nucleon interaction 
 
Following the same idea that in the nucleon-nucleon case made possible to calculate an 
“universal” effective low-momentum potential Vlow k by using Renormalization Group techniques, 
recently, Schaefer et al.  [97] have generalized this method to the hyperon-nucleon sector. 
 
The effective low-momentum potential Vlow k is obtained by integrating out the high-momentum 

components of a realistic YN interaction. This is achieved by introducing a cutoff  for the 
intermediate momenta in the Lipmann-Schwinger equation such that the physical low-energy 
quantities are cutoff independent. This results in a modified Lipmann-Schwinger equation with a 
cutoff-dependent effective potential Vlow k 

 

T k',k;k2 Vlowk k',k
2

P dqq2
Vlowk k',q T q,k;k2

k2 q2
0

.                                                                    (27) 

 



By demanding dT(k’,k;k
2
)/d =0, an exact Renormalization Group flow equation for Vlow k can be 

obtained 
 

dVlowk k',k

d

2 Vlowk k', T ,k; 2

1 k 2 / 2
.                                                                                                    

(28) 
 
Integrating this flow equation one can obtain a phase-shift, energy independent, soft (i.e., without 
hard core) and hermitian low-momentum potential Vlow k. Unfortunatelly, as it has already been 
said, contrary to the NN case there exist only few YN scattering data and hence the YN interaction 
is not well constrained.  
 
 

     
 

Figure 7. Left panels: 
1
S0 phase shift and matrix elements for the isospin I=3/2 channel N N 

Right panels: 
1
S0 phase shift and matrix elements for the isospin I=1/2 channel N N. Results 

adapted from Ref. [97]. 
 
 
The left panels Fig. 7 show the 

1
S0  phase shifts and matrix elements for the isospin I=3/2 channel 

N N for several bare potentials and the corresponding Vlow k for a cutoff =500 MeV as a 
function of the momentum in the lab frame. By construction the phase shifts are preserved. In the 

isospin I=1/2 channel the coupling N , which has no counterpart in the NN case, has to be 
taken into account when generalizing the Vlow k approach to the YN case. The  right panels of the 

figure show the corresponding results for the N N 
1
S0 partial wave where the N  

coupling has been taken into account. In this case, although, the phase shifts approximately obey 
the same shape they have different heights, and the diagonal matrix elements, although they 
collapse for momenta near the cutoff they differ for lower momenta. However, in conclusion, one 
can still say that in general the results seem to indicate a similar convergence to an “universal” 
softer low-momentum YN interaction as for the NN case. 
 
 
IV- HYPERONIC MATTER AND NEUTRON STAR PROPERTIES 

 
Neutron stars offer an interesting interplay between nuclear processes and astrophysical 
observables. Conditions of matter inside such objects are very different from those one can find on 
Earth, so a good knowledge of the Equation of State of dense matter is required to understand the 

properties of neutron stars. At densities near to the nuclear saturation density ( 0=0.16 fm
-3
), 

matter is mainly composed of neutron, protons and leptons (electrons and muons) in -equilibrium. 
As density increases, new hadronic degrees of freedom may appear in addition to neutrons and 
protons. One such degree of freedom is hyperons. Contrary to terrestial conditions, where 
hyperons are unstable and decay into nucleons through the weak interaction, the equilibrium 
conditions in neutron stars can make the inverse process happen, so the formation of hyperons 
becomes energetically favorable. In this section we will discuss the implications of hyperons on the 
Equation of State  and structure of neutron stars. 



 
IVa-. Basic properties and structure of neutron stars 
 

A neutron star is the remnant of an ordinary star with a mass greater than ~ 5 M

, where M

 ~ 2 

x 10
33 g is the solar mass, after it has undergone a supernova explosion. A supernova explosion 

will occur when the star has exhausted its posibilities for energy production by nuclear fusion. The 
pressure gradient provided by radiation will then not be sufficient to balance the gravitational 
attraction, and the star becomes unstable. Eventually, it collapses. The inner dense regions of the 
star collapse first, and gravitational energy is released and transferred to the outer layers of the 
star, blowing them away. After the supernova explosion only a fraction of the star is left, and this 
final product might be a white dwarf, a neutron star or a black hole, depending on the inicial mass 
of the star. 
 

                                     
 

Figure 8.  A schematic cross section of a neutron star illustrating the various regions discussed in 
the text. 
 
 
Neutron stars are supported against gravitational collapse mainly by the neutron degeneracy 
pressure and may have typically masses of the order (1-2) M


 and radii  ~ 10 km. Such masses 

and radii yield an averaged density for neutron stars of order 10
14

-10
15

 g/cm
3
 . However, the 

expected densities in neutron stars span a rather wide range and in fact the internal structure of a 
neutron star can be described by an “onion” model. In Fig. 8 a schematic cross section of a 
neutron star is shown. The outer crust, with densities ranging from 10

6
 g/cm

3 to  4 x 10
11

 g/cm
3
, is 

a solid region where heavy nuclei, mainly around the iron mass number, in a Coulomb lattice 

coexist in -equilibrium with an electron gas. When the density increases, the electron chemical 
potencial goes up and then, the electronic capture process 
 

p e n
e
,                                                                                                                                         

(29) 
 
opens, the nuclei becoming more and more neutron rich. The only available levels for neutrons at 
~ 4.3 x 10

11
 g/cm

3 
are in the continuum, and thus they start to “drip out” of the nuclei. We have 

then reached the inner crust, consisting of a Coulomb lattice of very neutron-rich nuclei together 
with a superfluid neutron gas and an electron gas with densities going from 4 x 10

11
 g/cm

3 to  2 x 
10

14
 g/cm

3
. At density ~ 10

14
 g/cm

3
, nuclei start to dissolve and one enters the quantum fluid 

interior. In this region matter is mainly componed of superfluid neutrons with a smaller 
concentration of superconducting protons and normal electrons and muons [98]. In the core of the 
star, the density is of the order of 10

15
 g/cm

3
. The composition of this region is not well known, and 

thus is subject to much speculation. Suggestions range from a mixed phase of quark and hadronic 



matter [99,100], kaon or pion condensates [101-103], and hyperonic matter [54,55,99], which is 
the subject of this section. 
 
A neutron star is one of the densest objects in the universe, therefore Einstein’s General Relativity 
Theory is needed in order to determine its structure. Einstein’s equations for a spherical static star 
take the form of the familiar Tolman-Oppenheimer-Volkoff (hereafter TOV) equations [104,105] 
 

dp(r)

dr

GM(r) (r)

r2
1

p(r)

(r)c2
1
4 r3p(r)

M(r)c2
1
2GM(r)

rc2

1

                                                           (30) 

 
dM(r)

dr
4 r2 (r).                                                                                                                                       

(31) 
 

                                    
 

Figure 9.  Chemical potentials in -stable matter as a function of the total baryonic density. Left 
panel: free hyperons. Right panel: interacting hyperons. 
 
 
The interpretation of the TOV equations is quite instructive. Think of a shell of matter in the star of 
radius r and thickness dr. Eq. (31) gives the mass-energy in this shell. The pressure of matter 
exterior to the shell is p(r) and interior to it p(r)+dp(r). The left side of Eq. (30) is the net force 
acting outward on the surface of the shell by the pressure difference dp(r) and the first factor on 
the right side is the attractive Newtonian force of gravity acting on the shell by the mass interior to 
it. The remaining factors are the exact corrections for General Relativity. So the TOV equations 
express the balance at each r between the internal pressure as it supports the overlying material 
against the gravitational attraction of the mass-energy interior to r. They are just the equations of 
hydrostatic equilibrium in General Relativity. 
 

The Equation of State (EoS) p=p( ) is the manner in which matter enters the equations of stellar 
structure. For a given EoS, the TOV equations can be integrated from the origin with the initial 

conditions that M(0)=0 (since near r=0 we may  write M(r)~4 r
3

(0)/3), and an arbitrary value for 

the central energy density (0), until the pressure becomes zero. Zero pressure can support no 
overlying material against the gravitational attraction exerted on it from the mass within and so 
marks the edge of the star. The point R where the pressure vanishes defines the radius of the star 
and M(R) its gravitational mass,  
 

MG M(R) 4 r2 (r)dr
o

R

                                                                                                                       (32) 



 
Neutron stars are, however, rotating objects. Rotation is expected to flatten the star more or less 
depending on its angular velocity. Spherical symmetry is thereby broken, although the star 
maintains its axial symmetry. This symmetry breaking makes the equations of structure much 
more  
complicated. In addition to Eqs. (30) and (31) new complicated equations need to be solved. The 
interested reader is refered to Ref. [106] for explicit details of the equations. 
 
Vb-. Neutron stars as “giant hypernuclei”  
 
In a conservative and oversimplified picture the core of a neutron star is modeled as an uniform 

fluid of neutron rich nuclear matter in equilibrium with respect to weak interactions ( -stable 
nuclear matter). The presence of hyperons in neutron stars was first proposed in 1960 by 
Ambartsumyan and Saakyan [107], and since then it has been investigated by many authors. The 
reason why hyperons are expected in the high dense core of a neutron star is very simple, and its 
mainly a consequence  of  the fermionic nature of nucleons, which makes the nucleon  chemical 
potential  a  

                                                 
 
Figure 10. The internal composition of a neutron star with a hyperonic matter core. RY is the radius 
of the hyperonic core. The nuclear matter layer extends between RY and RH and has about 2 km. 
The stellar crust extends between RH and R and is about 1 km thick. The figure has been adapted 
from Ref. [108]. 
 
 
very rapidly increasing function of density. As soon as the chemical potential of neutrons becomes 
sufficiently large (see Fig. 9), the most energetic neutrons (i.e., those on the Fermi surface) can 

decay via the weak interactions into  hyperons and form a Fermi sea of this new hadronic 

species with = n. The 
-
 can be produced via the weak process  

 

e n e,                                                                                                                                         (33) 

 

when the 
-
 chemical potential fullfill the condition -= n+ e (Note that except from the very initial 

stage soon after neutron star birth, neutrinos freely escape the star and thus the neutrino chemical 
potential has not to be considered in the chemical equilibrium equations). As it  can be seen from 
the results depicted in Fig. 9, hyperons appear at a relatively moderate density of about 2 times 

the normal saturation density of nuclear matter. Notice that the 
- 
hyperon appears at a lower 

density than the , even though the 
- 
is more massive than the . This is due to the contribution 

of the electron chemical potential e to the threshold condition for the 
-
 (i.e., M -= n+ e for free 

hyperons) and to the fact that e in dense matter is large and can compensate for the mass 

difference M - M = 81.76 MeV. 
 



In Fig. 10, it is shown the profile of such an hyperon star [108]. As it can be seen the hyperonic 
matter inner core of the star extends for about 8 km. This radius has to be compared with the total 
stellar core radius R ~ 11 km, and with the thickness of the nuclear matter layer (outer core) which 
is about 2 km. Thus one can conclude that neutron stars are “giant hypernuclei” [48] under the 
influence of gravity and strong interactions. 
 
IVc-. Influence of hyperons on neutron star properties 
 
The influence of hyperons on neutron star properties has been investigated using different 
approaches to determine the EoS of hyperonic matter. One of the most popular approaches, to 
solve this problem, is the relativistic mean field model [48]. Some of the parametrizations of the 
Lagrangian theory have tried to reconcile measured values of neutron star masses with the 

binding energy of the  particle in hypernuclei [109]. A different approach is based on the use of 
local effective potentials to describe the in-medium baryon-baryon interaction [49]. This  method  
mimics     
 

  
 
 
 

       
 
Figure 11. Left panels: Equation of State of hadronic matter with and without hyperons. Right 
panels: Mass-radius and mass-central density relations for different Equations of State with and 
without hyperons. See Refs. [55] and [110] for details. 
 
 
and generalizes to the case of hyperonic matter the one based on the Skyrme nuclear interaction 
in the case of nuclear matter. A third approach, based on an extension of the Brueckner-Bethe-
Goldstone (BBG) theory to include hyperonic degrees of freedom, starts from the basic baryon-
baryon interaction and  solve the many-body problem to get the EoS for hyperonic matter [54,55]. 
 

In the left panels of Fig. 11, it is shown the EoS for -stable matter obtained obtained the 
Brueckner-Hartree-Fock (BHF) approximation of the extended BBG theory [55]. As expected, the 
presence of hyperons makes the EoS much softer with respect to the pure nucleonic case. This 
softening is essentially due to a decrease of the kinetic energy because the hyperons can be 
accommodated in lower momentum states. The softening of the EoS casused by the presence of 
hyperons has important consequences on many macroscopic properties of the star.  
 
The main consequence of the presence of hyperons in the interior of a neutron star is a 

substantial reduction of the maximum stellar mass ( Mmax ~ 0.5-0.8 M

) and the corresponding 

increase of the central density. In addition, hyperon stars are more compact (i.e., they have a 
smaller radius) with respect to pure nucleonic stars. This seems to be an inevitable feature of any 
approach taking into account the presence of hyperons, caused simply by the availability of 
additional degrees of freedom of the matter at high density, as it is illustrated on the right panels of 



Fig. 11. The figure shows the mass-radius and mass-central density relations for different EoS 
with and without hyperonic degrees of freedom obtained within the BHF approximation (see Ref. 
[110] for  details). Curves labelled APR, V18+GLMM and V18+UIX correspond to pure nucleonic 
EoS´s. Note that in this case the resulting maximum masses are relatively large, ranging from 
about 1.8 to 2.4 solar masses. Note also that the presence of hyperons induces a strong reduction 
of the variation of the result with the nucleonic component of the EoS. The maximum masses 
obtained with the three EoS lie within a range of 0.15 M


, compared to a range of  0.5 M


 in the 

case without hyperons. This clearly emphasizes the important and well-known role of the hyperons 
as equalizing the effects of different nucleonic interactions: a stiffer nucleonic EoS causes an 
earlier onset and larger cocentration of hyperons and therefore a stronger softening of the total 
EoS. The resulting maximum mass is surprisingly quite insensitive to the purely nucleonic EoS and 
even to the details of the YN and YY interactions. There remain, however, characteristic 
differences between the mass-radius relations that would eventually allow one to determine the 
EoS from a combined M,R measurement, which is much awaited since a long time. 
 
It is importat to notice that a realiable microscopic EoS of high-density baryonic matter based on 
realistic NN, YN and YY forces leads to low masses of neutron stars, even below the current 
observational limit of 1.44 M


. This feature is largely independent of the nucleonic part of the EoS 

due to a strong compensation mechanism caused by the appearance of hyperons. Clearly, one 
should try to trace the origin of this problem back to the underlying YN and YY two body 
interactions or to the possible repulsive three-body forces involving one or more hyperons. 
Presently this is a subject of very active research in this field. Therefore, the use of microscopic 
EoS’s of hyperonic matter in the context of neutron star physics is of fundamental importance for 
our understanding of strong interactions involving hyperons, and to learn how these interactions 
behave in dense many-body systems. 
 
 
V- SUMMARY  
 
The purpose of  this lecture has been to present several topics of hypernuclear physics. After an 
introduction and an historical overview of the field, we have discussed in the first part of the lecture  

different production mechanism of single-  and double-  hypernuclei, as well as several aspects 

of -ray hypernuclear spectroscopy and weak decay modes of hypernuclei. During the second part 
of the lecture we have presented several approaches to build the hyperon-nucleon. In particular 
we have discussed models for the hyperon-nucleon interaction based on meson-exchange theory, 
chiral effective field theory and the recent Vlow k approach. Finally, in the last part of the lecture we 
have examined the role of hyperons on the Equation of State and and structure properties of 
neutron stars. 
 
 
Acknowledgements 
 
I would like to thank the organizers of the school F. Azaiez, L. Berthier, G. Chanfray, T. Hennino, 
D. Lacroix, D. Lhuillier, J. Margueron, M.-G. Porquet, O. Sorlin and J.-M. Sparenberg for inviting 
me to participate.   
 
 
REFERENCES 
 
[1] M. Danysz and J. Pniewsli, Phil. Mag. 44, 348 (1953). 
 
[2] M. Juric et al., Nucl. Phys. B 52, 1 (1973). 
 



[3] D. H. Davis, Proc. Of the LAMPF Workshop on ( ,K) Physics, AIP Conf. Proc. 224, ed.  by B. 
F. Gibson, W. R. Gibbs and M. B. Johnson, p. 38 (AIP, New York, 1991).  
 
[4] M. Danysz et al., Phys. Rev. Lett, 11, 29 (1963). 
 
[5] D.J. Prowse, Phys. Rev. Lett. 17, 782 (1966); M. Danysz et al., Nucl. Phys. 49, 121 (1963)                                 
reanalized in R. H. Dalitz, Proc. Roy. Soc. London A 426, 1 (1989); S. Aoki et al., Prog. Theor. 
Phys. 85, 1287 (1991); G. B. Franklin, Nucl. Phys. A 585, 83c (1995). 
 
[6] Proceedings Summer Study Meeting on Nuclear and Hypernuclear Physics with Kaon beams, 
BNL report 18335, edited by H. Palevsky (1973). 
 
[7] W. Brückner et al., Phys. Lett. B 55, 107 (1975); Phys. Lett. B 62, 481 (1976). 
 
[8] R. Bertini et al., Phys. Lett. B 83, 306 (1979); Nucl. Phys. A 360, 315 (1981); Nucl. Phys. A 
368, 365 (1981). 
 
[9] R. E. Chrien et al., Phys. Lett. B 89, 31 (1979); B. Povh, Nucl. Phys. A 335, 233 (1980); M. May 
et al., Phys. Rev. Lett. 47, 1106 (1981). 
 
[10] E. V. Hungerford, Prog. Theor. Phys. Suppl. 117, 135 (1994). 
 
[11] C. Greiner et al., Phys. Rev. D 38, 2797 (1988). 
 
[12] C. B. Dover and A. Gal, Ann. Phys. (N.Y.) 146, 309 (1983). 
 
[13] C. B. Dover et al., Phys. Rev. C 44, 1905 (1991). 
 
[14] R. Engelmann et al., Phys. Lett. 21, 587 (1966). 
 
[15] G. Alexander et al., Phys. Rev. 173, 1452 (1968). 
 
[16] B. Sechi-Zorn et al., Phys. Rev. 175, 1735 (1968). 
 
[17] J. A. Kadyk et. Al., Nucl. Phys. B 27, 13 (1971). 
 
[18] J. Eisele et al., Phys. Lett. B 37, 204 (1971). 
 
[19] K. Migayawa and W. Glöckle, Phys. Rev. C 48, 2576 (1993). 
 
[20] K. Migayawa, H. Kamada, W. Glöcke and V. Stoks, Phys. Rev. C 51, 2905 (1995). 
 
[21] B. F. Gibson and D. R. Lehman, Phys. Rev. C 37, 679 (1988). 
 
[22] A. Bouyssy and J. Hüfner, Phys. Lett. 64B, 276 (1976); A. Bouyssy, Phys. Lett. 84B, 41 
(1979). 
 
[23] C. B. Dover, L. Ludeking and G. E. Walker, Phys. Rev. C 22, 2073 (1980). 
 
[24] T. Motoba, H. Bando, T. Fukuda and J. Zofka, Phys. Rev. C 38, 1322 (1988). 
 
[25] D. J. Millener, C. B. Dover and A. Gal, Phys. Rev. C 38, 2700 (1988). 
 
[26] Y. Yamamoto, H. Bando and J. Zofka, Prog. Theor. Phys. 80, 757 (1988). 



 
[27] F. Fernández, T. López-Arias and C. Prieto, Z. Phys. A 334, 349 (1989). 
 
[28] D. E. Lanskoy and Y. Yamamoto, Phys. Rev. C 55, 2330 (1997). 
 
[29] I. Vidaña, A. Polls, A. Ramos and H.-J. Schulze, Phys. Rev. C 64, 044301 (2001). 
 
[30] R. Brockmann and W. Weise, Nucl. Phys. A 355, 365 (1981). 
 
[31] M. Chiapparini, A. O. Gattone and B. K. Jennings, Nucl. Phys. A 529, 589 (1991). 
 
[32] J. Mares and J. Zofka, Z. Phys. A 33, 209 (1989). 
 
[33] N. K. Glendenning, D. Von-Eiff, M. Haft, H. Lenske and M. K. Weigel, Phys. Rev. C 48, 889 
(1993). 
 
[34] J. Mares and B. K. Jennings, Phys. Rev. C 49, 2472 (1994). 
 
[35] Y. Sugahara and H. Toki, Prog. Theor. Phys. 92, 803 (1994). 
 
[36] R. J. Lombard, S. Marcos and J. Mares, Phys. Rev. C 51, 1784 (1995). 
 
[37] Z. Ma, J. Speth, S. Krewald, B. Chen and A. Reuber, Nucl. Phys. A 608, 305 (1996). 
 
[38] F. Ineichenm D. Von-Eiff and M. K. Weigel, J. Phys. G 22, 1421 (1996). 
 
[39] K. Tsushima, K. Saito and A. W. Thomas, Phys. Lett. B 411, 9 (1997); K. Tsushima, K. Saito, 
J. Haidenbauer and A. W. Thomas, Nucl. Phys. A 630, 691 (1998). 
 
[40] Y. Yamamoto and H. Bando, Prog. Theor. Phys. Suppl. 81, 9 (1985). 
 
[41] Y. Yamamoto and H. Bando, Prog. Theor. Phys. 83, 254 (1990). 
 
[42] Y. Yamamoto, A. Reuber, H. Himeno, S, Nagata and T. Motoba, Czec. Jour. Phys. 42, 1249 
(1992). 
 
[43] Y. Yamamoto, A. Reuber, H. Himeno, S, Nagata and T. Motoba, Prog. Theor. Phys. Suppl. 
117, 361 (1994). 
 
[44] D. Halderson, Phys. Rev. C 48, 581 (1993). 
 
[45] J. Hao, T. T. S. Kuo, A. Reuber, K. Holinde, J. Speth and D. J. Millener, Phys. Rev. Lett 71, 
1498 (1993). 
 
[46] M. Hjorth-Jensen, A. Polls, A. Ramos and H. Müther, Nucl. Phys. A 605, 458 (1996). 
 
[47] I. Vidaña, A. Polls, A. Ramos and M. Hjorth-Jensen, Nucl. Phys. A 644, 201 (1998). 
 
[48] N. K. Glendenning, Astrophys. J. 293, 470 (1985). 
 
[49] S. Balberg and A. Gal, Nucl. Phys. A 625, 435 (1997). 
 
[50] S. Pal, M. Hanauske, I. Zakout, H. Stöker and W. Greiner, Phys. Rev. C 60, 015802 (1999). 
 
[51] R. Knorren, M. Prakash and P. J. Ellis, Phys. Rev. C 52, 3470 (1995). 



 
[52] J. Schaffner, C. B. Dover, A. Gal, D. J. Millener, C. Greiner and H. Stöker, Ann. Phys. (N.Y.) 
235, 35 (1994). 
 
[53] H. Huber, F. Weber, M. K. Weigel and C. Schaab, Int. J. Mod. Phy. E 7, 301 (1998). 
 
[54] M. Baldo, G. F. Burgio and H.-J. Schulze, Phys. Rev. C 61, 055801 (2000). 
 
[55] I. Vidaña, A. Polls, A. Ramos, L. Engvik and M. Hjorth-Jensen, Phys. Rev. C 62, 035801 
(2000). 
 
[56] N. K. Glendenning, “Compact Stars: Nuclear Physics, Particle Physics and General 
Relativity”, Springer-Verlarg, New York, 1997. 
 
[57] M. Prakash, I. Bombaci, M. Prakash, P.J. Ellis, J. M. Lattimer and R. Knorren, Phys. Rep. 
280, 1 (1997). 
 
[58] S. L. Shapiro and S. A. Teukolsky, “Black holes, White dwarfs and Neutron stars”, John Willey 
& Sons, New York, 1983. 
 
[59] A. B. Migdal, “Theory of Fermi Systems and Applications to Atomic Nuclei”, Wiley 
Interscience, New York, 1967. 
 
[60] D. Gogny, Nucl. Phys. A 237, 399 (1975). 
 
[61] T. H. R. Skyrme, Phylos. Mag. 1, 1043 (1956); Nucl. Phys. A 9, 615 (1959). 
 
[62] D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972). 
 
[63] J. W. Negele and D. Vautherin, Phys. Rev. C 5, 1472 (1972). 
 
[64] S. Balberg, I. Lichtenstadt and G. B. Cook, Ap. J. Suppl. 121, 515 (1999). 
 
[65] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986). 
 
[66] B. D. Serot and J. D. Walecka, Int. J. Mod. Phys. E 6, 515 (1997). 
 
[67] N. K. Glendenning, Phys. Lett. B 114, 392 (1982). 
 
[68] N. K. Glendenning, Z. Phys. A 326, 57 (1987). 
 
[69] M. Agnello et al., Phys. Lett. B 622, 35 (2005). 
 
[70] T. Hasegawa et al., Phys. Rev. C 53, 1210 (1996). 
 

[71] V. Rodrigues, “Spectroscopic study of -hypernuclei beyond the p-shell region: The HKS 
eperiment at JLAB”, Ph. D Thesis, University of Houston, Houston, Texas (2006). 
 
[72] E. V. Hungerford, in “Topics in Strangeness Nuclear Physics”, Lecture Notes in Physics 274, 
Springer-Verlag, 2007. 
 
[73] J. LeRose et al., Nucl. Phys. A 804, 116 (2008). 
 
[74] O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57, 564 (2006). 



 
[75] M. Ukai et al., Phys. Rev. C 77, 054315 (2008).  
 
[76] W. M. Alberico A. De Pace, G. Garbarino and A. Ramos, Phys. Rev. C 61, 044314 (2000). 
 
[77] A Parreño, in “Topics in Strangeness Nuclear Physics”, Lecture Notes in Physics 274, 
Springer-Verlag, 2007. 
 
[78] M. M. Nagels, Th. A. Rijken and J. J. de Swart, Phys. Rev. Lett. 31, 569 (1973). 
 
[79] R. Machleidt, K. Holinde and Ch. Elster, Phys. Rep. 149, 1 (1987). 
 
[80] U. van Kolck, Prog. Part. Nucl. Phys. 43, 337 (1999). 
 
[81] S. Weinberg, Phys. Rev. Lett. 18, 188 (1967). 
 
[82] G. E. Brown, in “Mesons in Nuclei” (M. Rho and D. H. Wilkinson, eds.), Vol I, p. 330, North-
Holland, Amsterdam (1979). 
 
[83] B. Holzenkamp, K. Holinde and J. Speth, Nucl. Phys. A 500, 485 (1989). 
 

[84] J. Haidenbauer and U. G. Mei ner, Phys. Rev. C 72, 044005 (2005). 
 
[85] P. M. M. Maessen, Th. A. Rijken and J. J. de Swart, Phys. Rev. C 40, 2226 (1989). 
 
[86] Th. A. Rijken, V. G. J. Stoks and Y. Yamamoto, Phys. Rev. C 59, 21 (1999). 
 
[87] V. G. J. Stoks and Th. A. Rijken, Phys. Rev. C 59, 3009 (1999). 
 
[88] Th. A. Rijken and Y. Yamamoto, Phys. Rev. C 73, 044008 (2006). 
 
[89] M. M. Nagels, Th. A. Rijken and J. J. de Swart, Phys. Rev. D 17, 768 (1978). 
 
[90] S. Weinberg, Phys. Lett. B 251, 288 (1991); Nucl. Phys. B 363, 3 (1991). 
 
[91] P. F. Bedaque and U. van Kolck, Annu. Rev. Nucl. Part. Sci. 52, 339 (2002). 
 
[92] D. Kaplan, Lectures delivered at the 17

th
 National Nuclear Physics Summer School 2005, 

Berkeley, CA, June 6-17, 2005; nucl-th/0510023. 
 
[93] E. Epelbaum, Prog. Nucl. Part. Phys. 57, 654 (2006). 
 
[94] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003). 
 

[95] E. Epelbaum, W. Glöcke and U.-G. Mei ner, Nucl. Phys. A 747, 362 (2005). 
 

[96] H. Polinder, J. Haidenbauer and U.-G. Mei ner, Nucl. Phys. A 779, 244 (2006). 
 
[97] B.-J. Schaefer, M. Wagner, J. Wambach, T. T. S. Kuo and G. E. Brown, Phys. Rev. C 73, 
011001 (2006). 
 
[98] O. Elgaroy, L. Engvik, M. Hjorth-Jensen and E. Osnes, Phys. Rev. Lett. 77, 1421 (1996). 
 
[99] N. K. Glendenning, Phys. Rev. D 46, 1274 (1992). 



 
[100] H. Heiselberg, C. J. Pethick and E. F. Staubo, Phys. Rev. Lett. 70, 1355 (1993); Nucl. Phys. 
A 566, 577c (1994). 
 
[101] D. B. Kaplan and A. E. Nelson, Phys. Lett. B 291, 57 (1986). 
 
[102] Y. Akaishi and T. Yamazaki, Prog. Nucl Phys. 39, 565 (1997). 
 
[103] A. Akmal, V. R. Pandharipande, Phys. Rev. C 56, 2261 (1997). 
 
[104] R. C. Tolman, Phys. Rev. 55, 364 (1939). 
 
[105] J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. C 55, 374 (1939). 
 
[106] J. B. Hartle, Ap. J. 150, 1005 (1967).  
 
[107] V. A. Ambartsumyan and G. S. Saakyan, Sov. Astron. 4, 187 (1960). 
 
[108] I. Vidaña, I. Bombaci, A. Polls, A. Ramos, Astron. Astrophys. 399, 687 (2003). 
 
[109] N. K. Glendenning and S. Moszkowski, Phys. Rev. Lett. 67, 2414 (1991). 
 
[110] H.-J. Schulze, A. Polls, A. Ramos and I. Vidaña, Phys. Rev. C 73, 058801 (2006). 


