DESIR workshop, May 2010

High efficiency ³He neutron detector TETRA for DESIR.

Yuri Penionzhkevich Joint Institute for Nuclear Research, Dubna

Beta Decay of Exotic Nuclei: Goal to study

Neutron emission from unstable nuclei far from stability can provide with valuable insight into nuclear shell structure and nuclear deformation changes toward the drip line.

Precise beta-decay half-lives, end point energies, probability of neutron emission are crucial input parameters for calculations of the astrophysical rapid neutron capture process.

Also investigation of 2,3 and 4 neutron emission, as well as correlations between the emitted neutron will allow obtaining information on the possibility of existence of multi-neutron clusters and the size of the zone from which they are emitted (interference experiments).

The selective method of beta decay, in combination with spectroscopic measurements of gamma-rays and neutrons, will open new opportunities to study exotic nuclei

Known B-delayed multiple neutron emitters

Nuclides	T _{1/2} ,ms	xn	P _{xn} ,%	
¹¹ Li	8.5	2n	4.1(4)	
		3n	1.9(2)	
¹⁴ Be	14.5	2n	0.80(8)	1
		3n	0.2(2)	
¹⁵ B	10.4	2n	0.4(2)	1
¹⁷ B	5.1	2n	11(7)	1
		3n	3.5(7)	
		4n	0.4(3)	
³⁰ Na	48	2n	1.17(16)	1
³² Na	13.5	2n	8(2)	
³⁴ Na	5.5	2n	~ 50	
⁹⁸ Rb	110	2n	0.38(6)	
¹⁰⁰ Rb	51	2n	2.7(7)	

• P.Moller, J.Nix, K.-L.Kratz, Atomic Data & Nucl.Data Tabl., 66, 131 (1997)

Predicted β -2*n*-emitters in fission fragments

• Yu.Lyutostansky and I.Panov, Z.Phys.A, 313,235 (1983)

Nuclides	T _{1/2} , S	\mathbf{Q}_{β} - \mathbf{B}_{2n} , MeV	P _{2n} ,%	Y, 1/f	
⁸⁶ As	0.90	1.33	0.02	4.0 10 ⁻⁴	
⁹⁴ Br	0.07	3.78	3.12	1.3 10 ⁻⁵	
¹¹² Nb	(0.10)	3.79	1.28	6.1 10 ⁻¹⁰	
¹³⁴ In	0.1	5.54	99	2.7 10 ⁻⁷	
¹³⁶ Sb	0.8	2.25	10.6	3.3 10 ⁻⁴	
			0.28		
¹⁴² J	0.2	2.28	0.76	5.3 10 -5	
¹⁵⁰ Cs	(0.15)	2.97	1.48	1.3 10 ⁻⁸	

beta-delayed neutron emission from fission products in the ¹³²Sn region

To measure the β -delayed neutron emission probability along the chains of very neutron-rich isotopes.

<u>The effects to be</u> <u>detected</u>: possible irregularities in the A-dependence of the Ptotal-values after crossing the major neutron shell of N=82.

CHA1 AR

The blue areas indicate the nuclei which could potentially be produced and accelerated into beams by SPIRAL2 SPIRAL2 **ALTO** 184 162 132Sn N/Z = 1,64Doubly magic Nuclei reachable by 82 fission 20 **78Ni** N/Z=1.79 50 28 20N ----> **SPIRAL**

This will enable us to provide a full theoretical support to the proposed experimental measurements of the:

- Properties of the spherical and deformed ground and isomeric states of nuclides in the vicinity of exotic shell closures;
- Neutron number dependence of the magnetic moments of the odd-A neutron rich nuclides in the vicinity of Z=28, N=40 and Z=50,N=82 shells.
- Neutron emission from fission products, nameley the total β-decay half-lives (T_{1/2}) and delayed neutron emission probabilities (P_n, P_{2n}...) for the nuclei near the

closed Z=28, N=50 and Z=50, N=82 shells.

References: S.A.Fayans et al.Nucl.Phys.676, p.49 (2000)
 I.N.Borzov,Phys.Rev. C71,065801 (2005)

JINR-GANIL and JINR-RIKEN βn-experiments

39P T1/2=2 498 m - Sp=11320.# ©	31P Ti/2=stable 2n=12311.9 4	32P Th2=14.262.6 %P=308 OB=1719.66.2 Sh#7935.65.4	33P T1/2=25.3441 % P=109 OB=248.511 Sn=70103.711	34P T1/2=12.43 \$8 %%==80 08-=5574 \$ %%=6251 \$	35P 71/2=47.3 \$ 7 968.=300 05:=3966.8 19 Sn=9371 5	36P 71/2=3.6 \$ 3 %&-=100 0B.=20413 13 Sh#3463 13	37P T1/2n2 31 s H %B=109 0B7900 40 2n=6923 40	38P TLQ=0.64 ± 14 %B=100 %B:N<10 OB=12390 140 Sn=3540 140	39P 71/2=0.16 s +3 %B=100 %B-N=41 24 0B=16510 160 Sn=6150 208	40 P T1/2=260 ms 1 %B-100 %B-N=30 10 0B=14500 300 Sn=3769 250	41P T1/2=120 ms 2 %B=100 %B:N=30 10 OB=13801 500 Sn=4600 500	42P 71/2=110 ms 3 %E-=100 %E-N=50 20 0B==17300 SY Sn=3300 SY	43P T1/2=33 ms 3 %8-=100 %8-N=100 03-=15600 SY Sh=S100 SY	44P 0B-=20104 SY Sh=1000 SY	45P 08-=18900 5Y Sh=3239 5Y	,
29Si T1/3=ndbi Su=1473.3i3	30Si 11/2=4494 3n=10009,193	31 Si T1/2=151.3 m. MD-=106 OB-=1492.03 1 Ex=6587.48 S	32 Si Th/2=172 v 4 %B=100 OB-=224 5 22 Sh=5203-2 22	33Si 71/2=6.18 ± 18 %B-=366 0B-=3645 16 \$n=4493 16	34 Si T1/2=2.37 + 28 %B==100 0E==460: 15 Sh=7596 23	355i T1/2=0.78 \$ 12 %6=100 88=3050040 \$h=217040	36 Si 71/2=0.45 ± 6 %B-=1(0 %B-N<0 0B-=7850.100 Sn=6110.110	37 Si 08 =12480 124 Si=2190 180 <i>SiB-N=8</i> 4	38Si 02=19900 20(3n=5700 30) <i>96B-N=15</i> 1	39Si GB=14900 SV S0=2200 SV <i>SCB-N=31</i> 8	40Si 08=13703SY Sn=4600SY <i>96D-N=28</i> 6	41Si ob-=16700 s¥ 3h=1600 5¥ <i>96B-N=54</i> 30	42 Si 08-=14900 SY 30=4900 SY	29	30	
28A1 T1/2=2.2414 m 0=6.355 M %B:=100 %B:=100 Sh=100 Sh=1725.05.0	29A1 F1:2=6.56m.6 WB.=100 3B.=3379.5 [2] Sh=9456.3 [2]	30 AJ TJQ=3.60 s 6 %B=108 OB=8561 14 Syr=5728 14	34A1 Th/3=644 ms 2 %B=100 GB=7995 20 Sn=7153 35	32AI T1/2=28 pps 4 5/8-=100 08-=13820 90 Sn=4189 90	33Ai 05-=11996 70 5n=5516 116	34.Al T1/2=60 ms 18 %B-:100 %B-:127 5 OB-:17090 90 Sn=2130 110	35Al T1/2=150 ms 5 %B-=100 %B-R=65 35 0B-=14300 150 Sn=327) 170	36A1 08=18900 290 Sn=2100 380 %B-N=29 5	37A1 09-=16100 50(5x=4+08 636 <i>MB-N=29</i> 5	39A1 (19:=1990) SY Sx=1990 SV <i>Sx</i> =1990 SV <i>Sx</i> =1990 SV <i>12</i>	39AJ 08=58303 SY Su=3486 SY <i>Su=3486 SY</i> <i>Su=3486 SY</i> <i>14</i>		28			
27Mg T1/2=9.438 m %E=100 0E=2610.33 1 Su=6442.354	28Mg F1/2=20.91h3 35==100 32=-1321.8 29 3a=9503.4 20	29 Mg T1/2=1.30 s 12 %8=108 08=7559 20 Sp=3710 30	30Mg T1/2=335 ms 1 %B=100 OR=6999 70 Sn=6298 70	31Mg T1/2=250 ms 2 %B-=160 %B-N=1.7 3 0B=11740 89 Sn=2400 100	32 Mg T1/2=120 ms 2 %B=100 %B-N=2.4 5 OE=10270 130 Sn=5650 120	33Mg T1/2=90 ms 20 %B-=100 %B-N=17 5 OB==13710 160 Sn=2070 170	34Mg T1/2=20 ms 10 SB-=100 SB-M= 30 & 0B=11200 stt Sn=4800 300	35Mg 08=16408 3Y Stor208 3Y <i>XH-N=27</i> 6	36Mg OB=15000 5Y Du=300 5Y <i>MET-N=25</i> 6	37 My 0B-=19300 SY Se=-106 SY	26					
26Na T1/2=1.052 : 9 0=-0.08 5 %B=108 0B=93.12 :4 Sn=5616 14	27Na 11/2=301 and 6 0==0.05 5 %B==100 0B==5020 40 Ba=56718 40	28Na T1/2=30.3 mr + 0==0.02 + %B.=198 02==139%0 %B \$re=3520.98	29N a T152=44.9 ms 1 0=+6.03 5 %B:=100 CB:=13280 P0 \$n=4428 120	30N a 71/2=43 mc 1 %B==100 0B==13430 130 2m=2340 130	31Na T1/2=17.8 ms (%B=300 %B-N=37.5 %B-2N=0.9.2 OE=15880 380	32Na T1/2=13.2 ms * %B=100 %B-N=24.7 %B-2N=8.3.21 OB=19100.566	33Na T1/2=8.2 ms 4 %B-=1(8 %B-N=52.20 %B-2N=12.5 0B=2(808.15)	34Na T10=3.5 ms X %B=106 %B-2N=? OB=24100 SY \$n=1100 SY	35Na T1/2=1.5 mr 5 %B=100 %B-14=? 0B=24900 SY Sn=-600 SY	25						
25Ne T1/2=d02 ms 8 %B==100 OE==7300 40 Sw==180 5%	26Ne F1/2=197 ms 1 %B-100 %B-N=0.13 3 DE-=7530 60 Sn=5580 70	27Ne TM2=32 ms 2 %B-=100 %B-N=2.0.5 OB-=12670 100 Sp=1410 110	28Ne T1/2=17 m: 4 %B:=100 %E:N=22 3 OB:=12310 147 Sn=3890 140	29Ne 71/2=0.2 ; 1 %8-=100 08-=13400 300 \$n=1300 300 \$68-N= 27	30Ne 0E=1360 300 Sn=3900 300 %B-N=9	31Ne 08-=19200 SY Sp=-388 SY	32Ne 88-=18900 SY Sn=1909 SY	23	24							N.
24F T1/2-0.34 ; 8 %E-108 OE-144P0 70 St=1660 R0	25F F1/2=39 ans 40 %B-H=15 10 0B=18330 93 Sn=4330 100	26F 08-17400 140 Su=1050 150 <i>MB-N=11</i>	27.F OB:=28000 490 Str=1500 400 %B-N= 90 + 30	28F 9B23990 S¥ 9810\$ SY	29 F 0E-22360 \$¥ Sx=1066 \$¥	21	22	r, '								
230 71/2=82 ms 37 %B-=100 %B-N=31 1 0B-=11290 131 Sn=2740 130	240 11/2=61 ms 26 %B-=100 %B-N=38 12 %B-N=10	250 0815930 SY Ste-100 SY	260 08-=16908 SV Sh=100 SY		20											10000000

The β-delayed neutrons from light nuclei

	Previcus.y known data	GANIL experiment	
28Me		$11 \pm 8\%$	
29]\$e		27±9%	
30]Ne		B.: %	
24()	24±8 58±12	18±6%	
25F	15±10	14±5%	
26F		$11 \pm 4\%$.	
27F		90:: *6	

	Previously known data	RIKEN	
		"Be standard	"B standard
ыŊа	38±5	43±12 %	82±42
52Na	40±11	31±8%	59±17
33Na	77±30	72±28 %	136 ± 34
2Mg	2.4 ± 0.5	3±0.5%	6±4
3Mg	17±5	26±6%	50±18
4Mg		30±6%	58±12
5Mg		27±6%	52±11
бMg		25±6%	48 ± 12
4AI	12.5±2.5	16±2%	30 ± 6
5AI	26±4	23±3%	43±9
6A]		29±5%	55±11
7AI		29±5%	55 ± 11
8A]		44±12%	84±19
9AI		51±14%	97±22
7Si		1 244%	152.8
8Si		15544%	之S主子
39Si	ľ.	31±8%	60±13
40Si	<u>i</u>	1 28±6% 1	53±12
41 Si		54±30%	103±48
41P	30±10	37±12%	71±21
42P	1 50±20	30±12%	57±13
43P	100±50	44±30%	84 ± 47

G.N.Flerov Laboratory, JiNR

Production of heavy elements in the r-process

STATISTICS.

A weak r-process component to produce correlated isotopic anomalies in the Ca-Ti... -Zn region ?

Short half-lives of ⁴⁴S₂₈ and ⁴⁵Cl₂₈: reduce the production of ⁴⁶S and ⁴⁶Cl genitors of ⁴⁶Ca (O. Sorlin et al. PRC 47 (1993) 2941)

Measurements of 48,49 Ar half-lives, genitors of 48Ca. (S. Grévy, L. Weissmann)

Rôle of the shell closure N=28 in neutron-capture rates: leakage to ${}^{46}Ca$ depends on ${}^{46}Ar(n,\gamma){}^{47}Ar$

☆ To measure the two-neutron emission probability along the chains of very neutron-rich isotopes in Z≈50,N>82 region.

The effects to be detected: the possible odd-even effects in the P_{2n} -values

To measure the β -delayed neutron emission probability along the chains of very neutron-rich isotopes.

The effects to be detected: possible irregularities in the A-dependence of the P_{total} -values after crossing the major neutron shell of N=82.

Comparison of Detectors

	³ He- detector	"Large" scintillator	"Small" scintillator
Neutron energy	?	Yes	Yes
Threshold		High(~300 keV)	Low(~30 keV)
Cross talk	0	Yes	Yes
Efficiency	30-60%	30-60%	~10%
Multiplicity	Yes	?	?
Angle correlation	Yes (<20º)	?	?
Time scale	10 µs	ns	ns

25

Neutron Capture Time, calibration for SF neutrons of ²³⁸U, November 2009

Efficiency in the center of the detector (consists of 60 counters placed in moderator) for single neutrons measured (62±4)%

Life time of a neutron in the detector measured 25 µs

The detector is used at low background laboratory (LSM, Modane) to detect neutron flashes of high multiplicity.

Angle correlations

Nucl. Instr.& Meth. in Phys. Research A, v.400, 1997, p.96-100

Uses of ³He detectors in different setups

β -Neutron coincidence

ALTO

Neutron-Fragments coincidence

Fobos

Neutron-Neutron coincidence

First beta-neutron-gamma coincidence detection trial at ALTO, setup

Neutron detector setup at ALTO

Gamma-β-neutron coincidence:: preliminary results ¹³⁶Te

ALTO Neutron Detector Setup: prototype for DESIR

Spiral 2 50 52

TETRA Detector

close to $4-\pi$ geometry

Total number of counters: Geometry:

Moderator:

Efficiency:

ife time:

cm.

Ø 3 cm, ³He at 7 atm length 50 cm

90

Ø 3 cm, 3He at 7 atm length 25 cm

342

polyethylene, distance between parallel faces - 5

30-60% (depends on geometry)

15-30 µs (depends on geometry)

Neutron Detector TETRA for DESIR : cost estimates (2010- 2013)

Investment:	
Array of neutron counters	280 000€
Control system	50 000€
Manpower cost:	
Stuff 2 per/year	60 000€
Travel and indirect coast:	50 000€
TOTAL	440000€

Technical specifications

A detector prototype with 90 counters (gas pressure 7 atm, length 50 cm, diameter 3.2 cm) is for experiments at ALTO in Orsay starting from 2009.

To get better angular resolution with high and constant

efficiency in a wide neutron energy range, it is necessary to change the counters to shorter ones (20-25 cm in length) and increase the total numbers of counters up to 300 - 350.

Neutron Detector Setup for DESIR: schedule

ETAPE 1 ETAPE 2

ETAPE 3

ETAPE 4

 2010
 2011
 2012
 2013
 2014

Tests of a detector prototype at ALTO, 2009 - 2010. Construction and manufacturing of the neutron detector for DESIR: 1 man year, 2011.

Tests of the DESIR neutron detectors at ALTO: 0.5 man year, 2011- 2012

Installation of TETRA detectors in the DESIR hall: 0.5 man year, 2013- 2014.

Neutron Detector Setup for DESIR

Risks of the project

Neutron detectors of this type have been used at GANIL and will be tested at ALTO. We have prepared the last detector of this type for the low background measurements of spontaneous fission in LSM (Modane, France) in 2004. The detector for DESIR will be constructed and manufactured with this experience.

Beam requirements

Beam intensities: To perform the experiments described above, beam intensities of the RNB of interest of about 10^{5 -} 10⁷ pps will be optimum.

Specific requirements

- Required floor space: 2x3 m²
- Weight: total with shielding 2000 kg

- We will need a spontaneous fission source for calibrations (²⁴⁸Cm or ²⁵²Cf) with an intensity of about 20-100 spontaneous fissions per second)

Neutron Collaboration at ALTO

UUÜÜÜÜÜÜÜÜÜÜ IÜÜÜÜÜÜ

S. Ancelin, D. Guillemaud-Mueller, F. Ibrahim, M.Niikura, Yu.Penionzhkevich, V. Smirnov, E. Sokol, B. Tastet, D. Testov, D. Verney

FLNR (Dubna) GANIL (Caen) IPN (Orsay) Katholieke Universiteit (Leuven) Cyclotron Laboratorie (Jyvaskyla) NPI of ASCR, Czech Republic

YerPhl, Armenia

INRNE (Sofia)

At the verge of discoveries...

