Beta-decay spectroscopy with spin-polarized radioactive nuclei

T. Shimoda Department of Physics, Osaka University

β-delayed decay spectroscopy

very effective method to assign spin-parity of daughter states

β-decay from a spin-polarized nucleus

free from instrumental asymmetry

P can be evaluated from **AP** value for a transition to the known spin state.

where to perform the experiment?

$$\frac{\Delta(AP)}{AP} = \frac{\sqrt{1 - (AP)^2}}{AP\sqrt{Y_{\beta\gamma}}} \qquad \qquad Y_{\beta\gamma}$$
Large polarization is important

TRIUMF ISAC in Canada

first beam in 2000

polarized radioactive beam line

very high polarization

unexpectedly low polarization

energy (Doppler) broadening of the neutralized beam

multiple collisions with Na atoms in the neutralizer

broadening the laser line width

deceleration bias (Na vapor cell) tuning to adjust ion beam velocity so as to meet the Doppler shift beta-decay asymmetry

Achieved polarization

Phil Levy @TRIUMF

⁸Li: 80%, ⁹Li: 56%, ¹¹LI: 55%,

²⁰Na: 57%, ²¹Na: 56%, ²⁶Na: 55%, ²⁷Na: 51%, ²⁸Na: 45%,

Corrected for spin-relaxation K. Minamisonno et al., Nucl. Phys. A746(2004)673c

²⁸Na: 28%, ²⁹Na: 36%

Uncorrected for spin-relaxation Preset work

Pumping for ¹¹Be⁺ beam is in progress.

system check with polarized ²⁸Na beam and search for something new

800 particles per sec

²⁸Mg

- test of the experimental methods
- confirm I^{π} assignments
- high E_x levels

9 HPGe detectors + plastic scintillator telescopes

^{28,29,30,31,32}Na decay at TRIUMF

Ge

total efficiency 1.7% @1333keV

28Na and 29Na in Nov. 2007

 β energy threshold: eliminates Al contaminants from trigger β energy : assigns β -decay branch

β -ray energy spectrum

Revised Decay Scheme of ²⁸Na and New Levels in ²⁸Mg

²⁹Na decay spin-parity assignments of ²⁹Mg levels

200 particles per sec

²⁹Na β-decay (NNDC 1998)

essentially no spin-parity assignments

Revised Decay Scheme of ²⁹Na and Spin-Parity Assignments of ²⁹Mg Levels

Revised Decay Scheme of ²⁹Na and Spin-Parity Assignments of ²⁹Mg Levels

 $3/2^{+}$ 0.0 44.9 ms ^{29}Na $Q_{\beta} = 13.28 (9) \text{ MeV}$ 3985 [0.76 (18)] These two levels are associated with large log ft [1.1 (3)] (13)[0.11 (4)] values. 5)] 3.985 1.1(3)→ 5.8 (1) 0.76 (18) (5/2)+9 < 0.1] [2.0 3673 [6.0 2.9 (5/2)+3173 → 5.8 (1) 3.674 1.1(3)2133 3227 3169 2129 Shell model calculations with 794 1586 3223 (5/2)+3.227 **≯**^{5.5 (1)} 4.9 (1) 2.5 (5) sd shell configurations do not [2.0 (5)] 2614 [2.0 (5)] 2560 [34 (6)] 11(2)3/2+ 3.224 predict no more levels around 1.0 - 1.5 MeV region. 2.614 → 4.5 (1) 36 (6) 1/2+1583 [0.26 (10)] 638 [5.8 (13)] [0.20 (5)] [1.8 (4)] 336 1.638 >>6.1 < 1.5 0.10 (5) 7.3 (2) 1.430 (3/2-, 7/2-) 1040 >>6.5 < 0.65 1.095 (3/2-, 7/2-) negative parity states € 55 0.055 (1/2)+ $3/2^+$ 5.4 (3) 14 (8) ^{29}Mg I^{π} Ιβ log ft Ex [MeV]

Comparison with Shell Model Calculation 2 (Monte Carlo Shell Model by Utsuno et al.)

exp

MCSM by Y.Utsuno

Systematics of negative parity levels (Exp.)

prediction by AMD calculations (Kimura)

¹¹Li decay; establishing decay scheme and spin-parity assignments of ¹¹Be levels

200 particles per sec

F. Ajzenberg-Selove, Nucl. Phys. A506 (1990) 1.

neutron TOF spectrum and coincident β-decay asymmetry

$$^{1}\text{Li}_{gs} \implies ^{11}\text{Be}^{*}+\beta$$

 $^{10}\text{Be}^{*}+n$

high energy neutrons

Asymmetry parameter is helpful to decompose the overlapping peaks.

Y. Hirayama *et al.*, Phys. Lett. B611 (2005) 239

New Level and Decay Schemes of ¹¹Be

determined

• *E*_x, *μ*

log ft ¹¹Ii \rightarrow ¹¹Be

decay path

spectroscopic factor

 $^{11}\text{Be} \rightarrow ^{10}\text{Be} + n$

Y. Hirayama *et al.*, Phys. Lett. B611 (2005) 239

Summary

- Beta-decay asymmetry is very sensitive to spin value of the daughter state. The asymmetry is also helpful to clarify the decay scheme.
- The-beta-decay asymmetry can be a powerful tool in betadelayed decay spectroscopy. Possibility to install a spin polarized at DSIER should be discussed.
- Higher polarization is essential to apply this method to fewer nucleus.
- New methods to polarize nuclear species other than alkaline atom nucleus are strongly requested.

polarizer

Osaka beam line: ${}^{11}Li \rightarrow {}^{11}Be^* \rightarrow {}^{10}Be^* + n$

2002 - 2004

Osaka beam line: ${}^{28,29,30,31,32}Na \rightarrow {}^{28,29,30,31,32}Mg^* + \gamma$

Nov. 2007 -

TRIUMF Experiment S1114

K. Tajiri, T. Shimoda, K. Kura, M. Kazato, M. Suga, A. Takashima, T. Masue, T. Hori, T. Suzuki, T. Fukuchi, A. Odahara, Y. Hirayama^A, N. Imai^A, H. Miyatake^A, C.D.P. Levy^B, M. Pearson^B, K.P. Jackson^B

Osaka Univ., KEK^A,TRIUMF^B

Dec. 2007 @TRIUMF