

Peter G. Thirolf, LMU Munich

using MLLTRAP at DESIR

Measuring Masses with Z≈104

Outline:

- Motivation of (S)HE mass measurements
- Environment for studies with MLLTRAP at S³/DESIR
- Status of MLLTRAP system
- Status of transuranium mass measurements: SHIPTRAP results
- Identification of candidates for MLLTRAP
- Feasibility considerations
- Conclusion

- so far: (S)HE masses from α decay chains to known masses
- odd nuclides: decay often to excited daughter levels
- direct mass measurements: unambiguous data independent of nuclear level schemes

 \rightarrow high precision Penning trap mass measurements

Peter G. Thirolf, LMU München

exploit synergies of S³ and DESIR:

- high intensity stable primary beams
- highly efficient S³ separator for fusion products
- experimental infrastructure at DESIR: mass measurements

Status of MLLTRAP

- 7T trap magnet, identical to SHIPTRAP, JYFLTRAP

Status:

- operational with ∆m/m~5·10⁻⁸
 (without systematic errors)
- systematic effects on B field studied

Peter G. Thirolf, LMU München

LMU Temperature and Pressure Stabilization

Temperature stabilization:

- blow warm air into magnet bore
- PID stabilization: goal ≈ ± 10 mK

Pressure stabilization:

- stabilize He reservoir pressure
 via controlled valve in helium
 exhaust line
- goal: ± 0.2 mbar

(work in progress)

diploma work: K. Krug (2010) DESIR Workshop, Leuven, May 26-28, 2010

Peter G. Thirolf, LMU München

<u>Quadrupole beam deflector</u>

- electrostatic 4-way beam bender in injection line
- enables use of multiple ion sources

LMU

MLL

Multi-Passage Spectrometer (MPS)

SIMION studies (C. Weber):

- fast cycling magnet: 0 1.2 T in 50 ms (laminated yoke: 0.5 mm, SigmaPhi)
 round pole tip (diam. 250 mm)
 - DESIR Workshop, Leuven, May 26-28, 2010

Peter G. Thirolf, LMU München

IMU ²⁵²⁻²⁵⁴No Mass Measurements Spiral₂ MLL **@ SHIPTRAP** > ²⁰⁶⁻²⁰⁸Pb(⁴⁸Ca,2n) ²⁵²⁻²⁵⁴No (Z=102): 90 $- E_{beam} = 4.55 \text{ MeV/u}$ $- E^* = 22 MeV$ Mean time of flight (µs) - I_{beam}= 6.1012 pps isotope $T_{1/2}(gs)$ $T_{1/2}$ (isomer) σ 75 ²⁵⁴No 2.44(4) s **1.8** μb 110(10) ms ²⁵³No | 1.62(15) min. 715(30) μs | 253No2-1.0 µb -2 ²⁵²No 51(10) s 266(2) ms 400 nb Excitation frequency - 850,012 (Hz) accuracy: \rightarrow production: ~ 1 atom/sec. $\Delta m/m \sim 5.10^{-8} - 10^{-7}$ - ε (Shiptrap) ~ 1-2% $(\Delta m \sim 13-30 \text{ keV})$ \rightarrow ca. 1 ion/min. detected behind trap M. Block et al., Nature 463 (2010) 785 > present limit: M. Dworschak et al., subm. to PRC ²⁵⁵Lr: ²⁰⁹Bi(⁴⁸Ca,2n) at 4.55 MeV/u: σ ~ 200 nb \rightarrow 0.3 ions/s detected in front of SHIPTRAP

 \rightarrow ~ 10 ion/hour detected behind trap (May 2010)

Peter G. Thirolf, LMU München

Updated Mass Evaluation

- before: No masses indirectly via \textbf{Q}_{α} values from decay spectroscopy
- new Nobelium masses: 'primary' nuclides in mass evaluation
- including new SHIPTRAP results:

Rf masses: ~ factor 2 less accurate than No

M. Dworschak et al., PRC in print

Peter G. Thirolf, LMU München

≥ ²⁵⁷Rf:

reaction: ${}^{50}\text{Ti} + {}^{208}\text{Pb}$ (40 nb)

- S³ transmission : 50-60%
- target: PbS (for high beam intensity)
- gas cell efficiency: ~ 10%-30%
- drawback : ⁵⁰Ti beam needs development (expected: 1-10 μ A)

≥ ²⁵⁹Rf:

reaction : ${}^{26}Mg + {}^{238}U$ (1.5 nb)

- S³ transmission: ~ 15%
- target: UO_2 (will be tested)
- ²⁶Mg: high intensity (>10 p μ A), available in 2013

 \rightarrow clear preference for ²⁵⁷Rf (via ⁵⁰Ti reaction)

Example: (from: P. Greenlees et al., S³ LoI 2009)

target: ²³⁸U, 0.25mg/cm² S³ transmission: 30% primary beam intensity: 10 pµA α decay events detected at focal plane (ϵ =0.55): 10 nb \rightarrow 23460 events/week detected $\rightarrow \sim 43000$ events/week at focal plane ²⁵⁷Rf: - S³ transmission: $\epsilon \sim 0.5$ - gas cell stopping: $\epsilon \sim 0.3$ - 40 nb: ~ 84000 /week after gas cell \rightarrow assume transport/bunching efficiency $\sim 15\%$ $\rightarrow 10000$ /week at trap : ~ 1 /min. at trap

transport efficiency to MLLTRAP to be studied

Peter G. Thirolf, LMU München

- coupling between S³ and DESIR can be exploited for program on precise nuclear mass measurements of heavy elements
- high primary beam intensities, large separator efficiency: isotopes with Z≈104 within reach for Penning trap studies using MLLTRAP@DESIR
- > candidate: 257 Rf (σ_{max} ~ 40 nb)
- > staged approach:
 - day-1: commissioning with known Nobelium isotopes: ²⁰⁶⁻²⁰⁸Pb(⁴⁸Ca,2n)²⁵²⁻²⁵⁴No: 0.4-1.8 μb
 - beam development: ⁵⁰Ti
 - day-2: ²⁰⁸Pb(⁵⁰Ti,1n)²⁵⁷Rf : ~ 40 nb

LMU	Eva Gartzke	Dieter Habs
	Veli Kolhinen	Kevin Krug
	Andreas Malecki	Robert Meißner
	Jurek Szerypo	Christine Weber
MLL	Walter Carli	
	Timo Dickel	Christian Jesch
GIESSEN	Martin Petrick	Wolfgang Plaß

Peter G. Thirolf, LMU München