

New neutron long-counter on the Lohengrin spectrometer

L. Mathieu^a, O. Serot^a, T. Materna^b, C. Jouanne^c, O. Litaize^a, S. Panebianco^c, H. Faust^b, U. Koester^b, G. Simpson^d, A. Bail^{a,e}

^a CEA-Cadarache, DEN/DER/SPRC/LEPh
^b Institut Laue-Langevin à Grenoble
^c CEA-Saclay, DSM/IRFU/SPHN/MNM
^d Laboratoire de Physique Subatomique et de Cosmologie à Grenoble
^e CEA-Bruyère le Chatel, DAM/DPTA/SPN/LDNE

Presentation

Requierement: $Q_{\beta} > S_{n}$

 S_n low and Q_β high for neutron-rich nuclei

P_n value increases far from stability

DESIR Workshop

DESIR Workshop

Ludovic MATHIEU

DESIR Workshop

II- Method and detectors

ε_n

Not known:

determined

P_n values

ß

specific design of detectors

Usual design

Example of the Kratz's long-counter

Picture of the Kratz's long counter

Several rings: - maximum efficiency - information on neutron energy (via ring ratio calculations)

very effective background reduction against slow and fast neutrons

Ludovic MATHIEU

New detector design

Simulations with MCNP code

Ludovic MATHIEU

Experiment on the Lohengrin spectrometer

III- Results

First Results: a strong emitter ${}^{94}Rb: T_{1/2} = 2,7s, P_n = 10,5(5)\%$

Ring counting rate:

- τ 3 inner tubes > τ 15 outer tubes
 - 3 tubes is not that small

Background too high for this low counting rate Only high strong emitters (high P_n.Y_i) can be measured

Ludovic MATHIEU

DESIR Workshop

First Results: a weak emitter

¹³⁶Te : $T_{1/2}$ = 17,7s, P_n = 1,31% (0% in JEFF)

Additionnal issue:

Mass separator: possible contaminant emitting neutron

A=85 go through Lohengrin with A=136 136 Sb (T $_{1/2}$ = 0,92s) hidden by strong 85 As (T $_{1/2}$ = 2,0s)

Comparisons

Pn	Database	⁹⁴ Rb	⁹⁹ Y	¹³⁶ Te	
	compilation from Rudstam (1993)	(10,01 ± 0,23)%	(1,9 ± 0,4)%	(1,30 ± 0,06)%	
	Table of Isotopes books (1998)	(10,4 ± 0,4)%	(1,03 ± 0,04)%	(1,1 ± 0,6)%	
	compilation from Pfeiffer (2002)	(9,1 ± 1,1)%	(2,2 ± 0,5)%	(1,26 ± 0,2)%	
	compilation from Audi (2003)	(10,01 ± 0,23)%	(1,9 ± 0,4)%	(1,31 ± 0,05)%	
	JEFF3.1 database (2005)	(10,1 ± 0,2)%	1,7 %	0%	
	chart of nuclide from NNDC	(10,5 ± 0,4)%	(1,9 ± 0,4)%	(1,31 <u>+</u> 0,05)%	
	Our results (préliminairy)	(10,99 ± 0,29)%	(1,73 ± 0,18)%	(1,28 ± 0,13)%	

Quite precise measurements for ${}^{94}Rb$ and ${}^{99}YP_n$ values (a little bit high for ${}^{94}Rb$?)

No amelioration of the 136 Te P_n value accuracy (but we confirm the JEFF's mistake)

Calibration check

with a gamma source

Ludovic MATHIEU

Conclusion

Conclusion

P_n values are not very well known there are a lot of discrepancies between databases even for nuclei crucial for nuclear energy

New neutron long-counter

based on a constant efficiency up to 1 MeV first experiment shows good results but a too high background

Improvements:

new shielding in progress beta chamber with **constant efficiency** planed

→ precise measurements of P_n values use of this detector on other facilities

Ludovic MATHIEU

Conclusion

Nuclei of interest (for DESIR?) from the nuclear technology point of view

Nucleus	% of all DN	$\Delta P_n / P_n$	
¹³⁷ I	13 to 40%	8%	
98m Y	5 to 16%	30%	
⁹⁴ Rb	7 to 12%	5%	
¹³⁵ Sb	0.3 to 3%	30%	
99 y	2 to 4%	10%	
⁹¹ Br	0.5 to 2%	15%	
¹³⁷ Te	0.2 to 1.5%	10%	
⁸⁶ As	0.2 to 1%	60%	

Ludovic MATHIEU

Presentation

Energy spectrum of the delayed neutrons

Ludovic MATHIEU

DESIR Workshop

Integral measurements

VS summation calculation:

$$Nd_{tot} = \sum_{i} Y_i^c \cdot P_{ni}$$

Nuclei	²³³ U	²³⁵ U	²³⁹ Pu	²⁴¹ Pu	^{242m} Am	²⁴³ Cm	²⁴⁵ Cm
summation calculation (pcm)	297	604	253	509	241	93	217
integral measurements (pcm)	271	652	261	644	261	121	257
discrepancy	+10%	-7%	-3%	-21%	-8%	-23%	-16%

There is something wrong

Needs of new measurements:

- isotopic yields Y_i (for each target nucleus)
- probabilities $P_{n,i}$ (only one time and for all)

Improvements on neutron detector

More effective neutron shielding:

IV-Future

Improvements on beta detectors

« beta chamber » detector :

- beta detection efficiency not constant (because of aluminum)

Ludovic MATHIEU

Other facilities

It can be used in **other facilities** than Lohengrin!

Efficiency must be simulated to check the effect of new surrounding material

Ludovic MATHIEU