Fundamental interactions experiments with polarized trapped nuclei

1. searches for exotic weak currents (non V-A)

- tensor currents
- scalar currents

2. symmetry tests

- parity
- time reversal / CP violation

3. determine V_{ud} and test CVC

distribution in

- electron and neutrino directions and in
- electron energy

from **polarized nuclei** :

Correlation measurements

¹¹⁴In and ⁶⁰Co beta asymmetry parameter, A

Wauters et al.

in 13 T external polarizing field;

used GEANT4 code to account for :

- detection geometry
- magnetic field effects
- scattering

Si p-l-n diode (500 μ m, Ø = 9 mm) operating at 10 K

Leuven ³He - ⁴He dilution refrigerator setup

Polarizing atoms/ions in a particle trap:

- Paul trap : (LPC-GANIL)
- optical pumping of ion cloud in magnetic holding field

- Penning trap : collinear polarization by optical pumping (WITCH-ISOLDE, DESIR) in beam line before trap

- MOT trap : optical pumping of ion cloud (TRIUMF, Berkeley, KVI) in magnetic holding field

Alternative : stop ions in superfluid He and polarize by optical pumping (cf. talk by T. Shimoda)

Example of polarized atoms in MOT: neutrino asymmetry parameter for ³⁷K

TRINAT MOT trap @ TRIUMF

³⁷K – D. Melconian, J.A. Behr et al., Phys. Lett. B 649 (2007) 370

Polarization by optical pumping and determination of nuclear polarization via photoionization in a MOT

³⁷K
$$\langle P_{\sigma^+} \rangle = (+97.7 \pm 0.4^{+0.2}_{-0.5})\%$$

 $\langle P_{\sigma^-} \rangle = (-95.8 \pm 1.0^{-0.4}_{+1.3})\%$
⁸⁰Rb $P = 0.53 \pm 0.03$

D. Melconian, J.A. Behr et al., Phys. Lett. B 649 (2007) 370

J.R.A. Pitcairn, J.A. Behr et al., Phys. Rev. C79 (2009) 015501

Longitudinal polarization of positrons emitted by polarized nuclei

experimental quantity

$$R \equiv P^{-} / P^{+} = R_{SM} [1 + k \Delta]$$
$$\Delta = (\delta + \zeta)^{2}$$

with : $P^-(P^+)$ is β particle longitudinal polarization for β 's emitted opposite to (in the direction of) the polarized nuclear spin vector (P^0 for unpolarized nuclei)

- 1) N. Severijns et al., PRL 70 (1993) 4047, 73 (1994) 611
- 2) M. Allet et al., Phys. Lett. B363 (1996) 139
- 3) E. Thomas et al., Nucl. Phys. A694 (2001) 559
- 4) N. Severijns et al., Nucl. Phys. A629 (1998) 423c

N. Severijns, DESIR Workshop - Leuven - May 26-28, 2010

3. Relative positron polarization measurements with polarized nuclei

(for P = 0.80, and a 1% precision on R/R_0)

5/31/2010

T = 1/2 superallowed mirror transitions

${\mathcal F}$	$t^{\rm mirror} \equiv f_V t$	t(1 + c)	$\delta_{R}^{\prime})(1+\delta_{\rm NS}^{V}-\delta_{C}^{V}) = \frac{2\mathcal{F}t^{0^{+}\to0^{+}}}{\left(1+\frac{f_{A}}{f_{V}}\rho^{2}\right)} \text{with } \rho = \frac{C_{A}M_{GT}}{C_{V}M_{F}}$
Parent nucleus	<i>Ft</i> (s)	δ <i>Ft</i> (%)	
³ H	1135.3 ± 1.5	0.13	
¹¹ C	3933 ± 16	0.41	
^{13}N	4682.0 ± 4.9	0.10	$\mathbf{E}_{\mathbf{A}} = \left(\mathbf{E}_{\mathbf{A}} \text{mirror} \right) \left[1 + \int_{A} \left(2 \right) \right] = 2 \mathbf{E}_{\mathbf{A}} 0^{+} \rightarrow 0^{+}$
¹⁵ O	4402 ± 11	0.25	$F l_0 = (F l) 1 + \frac{1}{2} \rho = 2F l$
¹⁷ F	2300.4 ± 6.2	0.27	f_{ν}
¹⁹ Ne	1718.4 ± 3.2	0.19	
²¹ Na	4085 ± 12	0.29	
²³ Mg	4725 ± 17	0.36	
²⁵ Al	3721.1 ± 7.0	0.19	$G^2(V^2)(1+\Lambda^V)$
²⁷ Si	4160 ± 20	0.48	$\mathbf{O}_F \mathbf{v}_{ud} 1 + \mathbf{\Delta}_R \mathbf{j}$
²⁹ P	4809 ± 19	0.40	
³¹ S	4828 ± 33	0.68	
³³ Cl	5618 ± 13	0.23	
³⁵ Ar	5688.6 ± 7.2	0.13	

accuracy of 0.1 % to 0.4 % for most cases \leftarrow

[NS, I.S. Towner et al., Phys. Rev. 78 (2008) 0555501]

N. Severijns, DESIR Workshop - Leuven - May 26-28, 2010

³⁷K

³⁹Ca

⁴¹Sc

⁴³Ti

45V

 4562 ± 28

 4315 ± 16

 2849 ± 11

 3701 ± 56

 4382 ± 99

0.61

0.37

0.39

1.51

2.26

- extract mixing ratio $\rho = C_A M_{GT} / C_V M_F$ from correlation measurements:

- there are 35 candidates between 3 H and 83 Mo, near the N = Z line (best are the ones with A < 45 about)
- correlation measurements have been carried out for:

¹⁷F, ¹⁹Ne, ²¹Na, ²⁹P, ³⁵Ar and ³⁷K

Is the strength of the vector coupling the same in all T=1/2 transitions ?

[O. Naviliat-Cuncic & N.S., Phys. Rev. Lett. 102 (2009) 142302

- sensitivity of a and A for mirror nuclei, best cases :

	βv correlation	n: ∆ <i>a</i> = 0.5 %	β asymmetry parameter ΔA = 0.5 %		
lsotope	∆V _{ud} (present Ft-value)	۵ <mark>۷_{ud} (no error from Ft)</mark>	۵۷ _{ud} (present Ft-value)	۵۷ _{ud} (no error from Ft)	
³ Н	0.0011	0.0010	0.0011	0.0009	× .
¹³ N	0.0017	0.0017	-	-	requires δ(Ft)~ 5 x 10 ^{-/}
¹⁵ 0	I 0.0020	0.0016	-	0.0020	i.e.
¹⁷ F	0.0018	0.0014	-	-	better
¹⁹ Ne	0.0014	0.0010	0.0014	0.0011	
²⁵ AI	0.0020	0.0018	-	-	
²⁹ P	-	0.0018	0.0024	0.0014	
³³ Cl	0.0021	0.0018	0.0013	0.0006	
³⁵ Ar	0.0019	0.0018	0.0007	0.0004	

Note: $-\Delta V_{ud}$ from $a_{\beta\nu}$ for all mirror transitions up to ³⁹Ca \leq 0.0018 if no error from Ft - $|V_{ud}|$ (0⁺ \rightarrow 0⁺) = 0.97425 \pm 0.00022 and $|V_{ud}|$ (mirror) = 0.9719 \pm 0.0017

5/31/2010

N.

Complimentarity of beta decay RHC results and collider results, in general LRS models

