β-Strength Measurements of Exotic Nuclei with Total Absorption Gamma-Ray Spectroscopy

A. Algora, B. Rubio and J.L. Tain

- Reminder of the TAGS technique
- Something about possible spectrometers
- Some physics cases

Jose L. Tain @ IFIC-Valencia

DESIR Meeting, Leuven, 26-28 May, 2010

TAGS uses large 4π scintillation detectors, aiming to detect the full γ -ray cascade rather than individual γ -rays

An ideal TAS would give directly the β -intensity I_{β}

Deconvolution with spectrometer response to decay

 $\mathbf{f} = \mathbf{R}^{-1} \cdot \mathbf{d}^{"}$ $\mathbf{R}_{\mathbf{j}} = \sum_{k=0}^{j-1} b_{jk} \mathbf{g}_{\mathbf{jk}} \otimes \mathbf{R}_{\mathbf{k}}$

Response from MC simulations and nuclear statistical model

Clean sources & minimum of statistics

New segmented BaF₂ TAS (Surrey-Valencia)

First measurement at IGISOL-JYFLTRAP (November 2009)

- Isotopically pure beams: 86,87,88Br, 91,92,93,94Rb
- First measurement with a segmented
 TAS
- Quality of the reconstruction of the software sum
- Use of multiplicity information to reduce analysis systematic errors
- "Conventional" electronics (V785, V775, V792) being substituted by
 "digital" electronics (SIS3302)

A Total Absorption Spectrometer for DESPEC

Design choices

16 + 1 modules: 15×15×25 cm³ **Nal(Tl)** + 5" PMT (50% light col.) V= 95 L, M= 351 kg

128 + 4 modules: 5.5×5.5×11 cm³ LaBr₃:Ce + 2" PMT (60% light col.) V= 44 L, M= 223 kg

> ΔE/E ~ 2%? (@1.3MeV) Δt ≤1 ns τ ~ 26/160ns

Status of DESPEC-TAS prototype

A LaBr3 prototype with the required characteristics has been purchased:

- lateral wall thicknesses reduced from 2.5 mm to 0.5 mm
- transversal section increased from 50mm×50mm to 55mm×55mm (necessary to accommodate 2" PMT in a compact configuration)
 Resolution-linearity tests with high QE 2" PMT, square 2"×2" PMT and Si Geiger-PD

R = 3.6 %

R = 2.9 %

- Nal prototype module will be ordered
- In-beam tests at the FRS to verify backgrounds and response
- Under discussion:
 - LaBr3 cluster prototype (2×2 or 3×3) with reduced reflector + damper thickness (now 2.25mm)
 - Nal functional prototype to prove TAS experiments with high-energy beams

Motivation:

- One of the few regions where the GT+ resonance $(\pi g_{9/2} \rightarrow \nu g_{7/2})$ lies within the Q_{EC} window
- Allows the study of the quenching of the GT strength

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

When looking to neutron rich nuclei one must consider the betadelayed neutron emission:

which "removes" strength from TAS observation

• which introduces contamination from final nucleus γ -rays and from neutron interactions

β-strength calculations of Z<50 nuclei close to N=82</pre>

Borzov et al., NP A814 (2008) 159

The ¹³⁰Cd decay case:

Present experimental information: Dillmann et al. PRL 91 (2003) 162503

+ 7 additional high lying levels with 3.5% intensity

Total I_{β} = 90 % (including high lying 3.5%, P_n =3.6% and I_{gs} =5% from theory)

Statistical model has been used to simulate realistic cascades:

• Known levels: up to 2.12 MeV (ignore other $J\pi$)

- MC levels 2.12-5.03 MeV:
- 1+: 15 lev., Total (J<10) 425 lev.
- 70% intensity to the 2.12 MeV 1+
- 30% intensity to the 15 higher 1+ levels (intensity decrease with Fermi function, Porter-Thomas fluctuations)
- E1, M1 and E2 strength from RIPL-2 global parameterization

10⁵ decays

10⁴ decays

10⁵ decays

LaBr3

10⁴ decays

Motivation

- GT- resonance is close to Q_{β} window
- Complementary to earlier studies using high resolution (Leuven group)

I. Borzov, PR C71 (2005) 065801

The reason for the behavior of P_n as a function of N is the appearance of low lying FF transition

- Direct check with 4π neutron counter
- Measurement of $\beta\text{-strength}$ bellow S_n

Test of the CVC hypothesis and unitarity of CKM matrix Super-allowed 0⁺ (g.s) \rightarrow 0⁺ (g.s) β -decay

Hardy et al., PRC79 (2009) 055502

$$ft = \frac{T_{1/2} \cdot f(Q_{EC})}{(I_{\beta})}$$
$$Ft = ft(1 + \delta_R')(1 - \delta_C + \delta_{NS})$$
$$= \frac{K}{g_V^2(1 + \Delta_R)(M_F)^2}$$

Determine as accurately as possible I_{β} to the ground state.

			First 1 ⁺ state			
Parent nucleus	Q_{EC} (MeV)	Shell model	Expt. (MeV)	Theo. (MeV)	No. of 1 ⁺ states ^c	Total GT branching (%) ^c
⁴⁶ V	7.051	FPMI3	3.73	4.18	7	0.027
		KB3		2.34	10	0.020
⁵⁰ Mn	7.632	FPMI3	3.63	3.91	16	0.013
		KB3		3.54	35	0.019
⁵⁴ Co	8.243	FPMI3	$(3.84)^{a}$	4.20	23	0.006
		KB3		4.17	75	0.024
⁶² Ga	9.171	MSDI	$(3.16)^{a}$	2.48	110	0.28
⁶⁶ As	9.57 ^b	MSDI	$(3.24)^{a}$	2.27	255	0.67
⁷⁰ Br	9.97 ^b	MSDI	$(3.14)^{a}$	2.71	325	1.59
⁷⁴ Rb	10.418	MSDI	$(3.2)^{b}$	2.69	180	0.72
		MSDI/		2.76	>400	0.92

Hardy & Towner PRL88 (2001) 252501

Problem for the heavier N=Z odd-odd nuclei: ⁶²Ga, ⁶⁶As, ⁷⁰Br, ..., ⁹⁴Ag

Use of TAS to detect high lying weak GT branches

Weak high-lying strength Pandemonium effect

Precision < 10⁻³ !

Finlay et al, PR C78 (2008) 025502 Bey et al., EPJ A36 (2008) 121

 $I_{\beta}^{\text{seen}} = 0.1338\%$, $I_{\beta}^{\text{unseen}} = 0.0082\%$

10⁸ decays

Statistical model has been used to simulate realistic cascades:

- All known levels up to 2.803 MeV
- MC levels 2.9-9.18 MeV
- 1+ levels below 5.25 MeV from Finlay et al included
- 117 1+ levels, total (J<10) 1777 levels.
- Intensity to the 6 1+ levels below 5.25
 MeV according to Finlay
- the rest (404 ppm) to the higher lying levels (intensity decrease with Fermi function, Porter-Thomas fluctuations)
- E1, M1 and E2 strength from RIPL-2 global parameterization

Sensitivity to high lying strength:

1784 ppm to the high lying states

Penetration + Bremsstrahlung must be reduced !

IMPLANTATION DETECTOR

energy [MeV]

10⁻¹

Simple solution: beta detector backed by a low-Z absorber

Try: segmented β-detector to veto corresponding crystal signal

Conclusions:

- 1. Measurements on the regions of 78Ni, 100Sn, 132Sn, heavy super-allowed (?) and neutronrich mid shells (Z: 28-50, 50-82) are amenable to TAS measurements
- 2. Purest beams (Penning-trap, laser-ionization, HRS,...) would guarantee the accuracy of the results
- 3. Intensities of ~10 pps (1 pps?) are sufficient for accurate results (not higher than ~10⁴)

THE END