Ra atoms and ions: production and spectroscopy Testing the Standard Model in Heavy Nuclei

H.W. Wilschut TRIµP group

$$\label{eq:relation} \begin{split} \text{TRI} \mu \text{P} = & \text{Trapped Radioactive Isotopes}, \ \mu \text{-laboratories for fundamental Physics} \\ & \text{KVI} - \text{University of Groningen} - \text{The Netherlands} \end{split}$$

"Violating" Moments

• Atomic parity violation: • Electric dipole moment: P odd Podd and Todd $\hat{K}|\hat{\vec{D}}|M H_{PT}|K$ $APV \propto \left\langle p_{1/2} | \hat{h}_W | s_{1/2} \right\rangle \propto R(Z) Z^2 Q_W$ $\vec{d} =$ \overline{E}_M BSM Z and deformation qor V enhancements Degeneracy enhancement <u>he</u> mirror mirror Isotope range $+(1-4 \sin^2\theta_w)Z +$ rad. corr.)+ "new physics" time Atomic spectroscopy time

Ra ion for APV

The Bouchiat & Bouchiat (1974) "faster than Z³-law" says: $\langle nS_{1/2}|H_w|nP_{1/2}\rangle \propto K_r Z^3$ where K_r is a relativistic factor

E1_{APV} effect in Ra⁺ is 20 times larger than for Ba⁺, and 50 times larger than for Cs (Wiemann)

- Ra⁺ is a superior APV candidate:
- → In 1 day, a 5-fold improvement over Cs appears feasible!

Ra for EDM

Electron EDM enhanced > 10⁴ V. A. Dzuba et al. Phys. Rev. A, 61, 062509 (2000)

Nucleon EDM enhanced $\approx 10^2$

J. Engel et al. Phys. Rev. C, 68, 025501 (2003)

Radioactive radium: because of their special properties

The relevant isotopes of radium

			Lifetime	Spin		
		209	4.6(2) s	5/2		
Recently produced on-line for Spectroscopy		211	13(2) s	5/2		
		212	13.0(2) s			
	•	213	2.74(6) m	1/2	←	
		214	2.46(3) s			
		221	28.2 s	5/2		∆N ≈ 10!
		223	11.43(5) d	3/2		
Available off-line (EDM)		224	3.6319(23) d			
	•	225	14.9(2) d	1/2		
		226	1600 y			
		227	42.2(5) m	3/2		
		229	4.0(2) m	5/2		

Thermal Ionizer

Alpha Spectrum after Thermal Ionizer

213Ra: 650/s/(pnA 206Pb) P. Shidling et al., NIM A 606 (2009) 305

Thermal Ionizer Efficiency

Element	Temperature [K]	TI efficiency (%)	T _{1/2} (s)
²¹² Ra	2100 - 2600	9 %	13
²¹³ Ra	2100 - 2600	9 %	164.4
²¹⁴ Ra	2100 - 2600	2 %	2.46
²¹ Na	2370 - 2780	55 %	22.49
²⁰ Na	2380 - 2750	16 %	0.447
⁸⁰ Rb	2400 - 2550	35 %	33.0

Measured diffusion efficiency two ways:

1) DC throughput

2) Dynamic time dependence

P.D. Shidling et al. Equilibrium/dynamic method To be published in NIMA

$$\alpha = \frac{D}{a^2\lambda}$$

Ra EDM

step one collect them as a cold small sample

S. De, U. Dammalapati, K. Jungmann, and L. Willmann, PRA 79 (2009) 041402 and Eur. Phys. J. D 53 (2009) 1

Steps towards APV of single Ra ions spectroscopy in Paul trap (atomic theory)

Radiofrequency Quadrupole (RFQ)

First spectroscopy of Ra ions in Paul trap

Range of Ra isotopes available
Radium ions – trapped – gas cooled

- ALLEL E ALLEL
- New spectroscopy
- Next: single ion laser cooled
- \rightarrow APV measurement

Conclusions TRIµP@KVI-DESIR-elsewhere

Home program

- Focus on very specific elements and isotopes
- TRIµP: alkalides and earth-alkalides (Na,Rb,Ra)
- Long-term program and developments (frequent access to beam)
- ENSAR approved: can service outside users

"Out-of-house" program

- Limited by manpower and funds
- Elsewhere only when
 - Availability superior:
 - If limited in dynamic range of lsotopes of an element
 - If intensity limits final statistics
 - Access chances
 - AGOR funding horizon is 2013