Status of collinear resonance ionization developments: Ion optics and beam transport simulations for the CRIS beam line at ISOLDE

> Wannes Vanderheijden, K.U. Leuven Kieran Flanagan, Univ. Manchester Gerda Neyens, K.U. Leuven

Motivation

32	32		58 G e	59 G e	60 G e	61Ge	62 G e	63 G e	64Ge	65 Ge	66 G e	67Ge	68 G e	69 G e	70Ge	71Ge	72Ge	73Ge	74Ge	75Ge	76Ge	77 G e	78Ge	79Ge	80 G e	81Ge	82 G e	83 G e	84Ge
		56 G a	57 G a	58Ga	59Ga	60 G a	61Ga	62 G a	63Ga	64Ga	65 G a	66 G a	67Ga	68Ga	69Ga	70 G a	71Ga	72 G a	73Ga	74Ga	75Ga	76Ga	77 G a	78Ga	79Ga	80 G a	81Ga	82Ga	83Ga
30	54Zn	55 Zn	56 Zn	57Zn	58Zn	59Zn	60Zn	61Zn	62 Z n	63Zn	64Zn	65 Z n	66 Z n	67 Z n	68Zn	69Zn	70Zn	71Zn	72Zn	73Zn	74Zn	75Zn	76 Z n	77 Zn	78Zn	79Zn	80Zn	81Zn	82 Z n
	53Cu	54Cu	55Cu	56Cu	57Cu	58Cu	59Cu	60Cu	61Cu	62Cu	63Cu	64Cu	65Cu	66Cu	67Cu	68Cu	69Cu	70Cu	71Cu	72Cu	73Cu	74Cu	75Cu	76Cu	77Cu	78Cu	79Cu	80Cu	
28	52Ni	53Ni	54Ni	55Ni	56Ni	57Ni	58Ni	59Ni	60Ni	61Ni	62Ni	63Ni	64Ni	65Ni	66Ni	67Ni	68Ni	69Ni	70Ni	71Ni	72Ni	73Ni	74Ni	75Ni	76Ni	77Ni	78Ni		
	5100	52Co	53Co	54Co	55Co	56Co	57Co	58Co	59Co	60Co	61Co	62Co	63Co	64Co	65Co	66Co	67Co	68Co	69Co	70Co	71Co	72Co	73Co	74Co	75Co				
26	50Fe	51Fe	52Fe	53Fe	54Fe	55Fe	56Fe	57Fe	58Fe	59Fe	60Fe	61Fe	62Fe	63Fe	64Fe	65Fe	66Fe	67Fe	68Fe	69Fe	70Fe	71Fe	72Fe						
	24		26		28		30		32		34		36		38		40		42		44		46		48		50		N

- Research nuclear properties far from valley of stability
- Measure dipole and quadrupole moments of exotic nuclei by using hyperfine interactions
- Production yields drop orders of magnitude

Motivation

Copper isotopes yields at ISOLDE for different targets

→Current limit with bunched-beam collinear spectrosocopy

→ Need a more sensitive collinear laser method to study the most exotic cases (< 58Cu, > 75Cu) with high resolution

Collinear Laser Spectroscopy

- Overlap the atom beam with a laser beam
- Scan the laser frequency
- Resonantly excite hyperfine levels

Detection of HFS signal

Fluorescent decay

Resonant re-ionisation and ion detection

ISOLDE

Collinear Resonant Ionisation laser Spectroscopy

- Neutralize pulsed ion beam in charge exchange cell

- resonantly excite and re-ionize with overlapping pulse-amplified CW laser beam (laser pulses synchronized to ion pulses \rightarrow high efficiency)
- deflect the ions towards a detection station \rightarrow background free signal detection !

Simulations for ion optics and beam transport

Start from the original design
Minimize the loss of ions
Pumping apertures are bottlenecks
Keep the ion beam small and aligned

CRIS @ ISOLDE

Top view of the beamline

Ion-bend for overlap with laser

Bend for overlap with laser

Deflection over de bend angle of $34^{\circ} \rightarrow$ beam not aligned with laser beam

Bend for overlap with laser

Deflection to arrive at beam center \rightarrow beam deflected too much, no overlap

Bend for overlap with laser

ADD additional deflection plates \rightarrow beam aligned with laser beam

Beam divergence after deflection

Add a Quadrupole doublet

- Ion beam diverges and ions are lost
- Need for extra focussing just after bend
- Quadrupole doublet designed to fit in the beam line

Transmission

Bend towards detection

Voltages needed to bend the beam

Summary of the simulations

- With extra bending plates the beam was aligned
- Quadrupole doublet keeps the beam small enough so there are almost no losses in the beam line
- Voltages on electrodes determined

Conclusions

- Ion optic simulations proved to be necessary
- Extra bending plates and quadrupole doublet were added for correction
- Offline tests this month with stable ions
 First online experiment in November