A fast-timing setup for excited-state half life measurements at DESIR

A conversion-electron setup for transition multipolarity determination at DESIR

Gary Simpson LPSC Grenoble On behalf of the fast-timing collaboration

Laboratoire de Physique Subatomique et de Cosmologie

The Advanced Time Delayed $\beta\gamma\gamma(t)$ method

HPGe: BRANCH SELECTION High energy resolution Poor time response Plastic β scintillator: TIMINGFast responseEfficient start detector

LaBr₃(Ce): TIMING

Fast response γ-detectors Poor energy resolution Stop detectors

¹⁴⁰Ba and ¹⁴⁰La decay

Good E resolution (~2 keV) Moderate T resolution (few ns) Moderate E resolution (3 %) Good T resolution (~140 ps)

The Advanced Time Delayed $\beta\gamma\gamma(t)$ method

Also get β -HPGe-HPGe: coincidences, level scheme

Туре	Total Number	
1.5"x1.5" 1"x1" 2"x2"	10 2 2	

Conical crystals expected to give ~30% improvement, but only ~10-20 ps so far. Doping is important.

Physics accessible

Transition rates

→Collectivity –Quadrupole or Octupole modes –sensitive tests of model predictions

→ Multipolarity

Complementary to Coulex experiments

- -access to magnetic transitions
- -conversion electrons influence lifetime
- -access to non-yrast states

Technique useful for exotic nuclei -lifetimes determined with low statistics

PHYSICAL REVIEW C 77, 014309 (2008)

Lifetime measurements of the negative-parity 7⁻ and 8⁻ states in ¹²²Cd

D. L. Smith,^{1,*} H. Mach,^{2,3,†} H. Penttilä,⁴ H. Bradley,^{3,5} J. Äystö,⁴ V.-V. Elomaa,⁴ T. Eronen,⁴ D. G. Ghiţă,⁶ J. Hakala,⁴ M. Hauth,⁷ A. Jokinen,⁴ P. Karvonen,⁴ T. Kessler,⁴ W. Kurcewicz,⁸ H. Lehmann,⁷ I. D. Moore,⁴ J. Nyberg,³ S. Rahaman,⁴ J. Rissanen,⁴ J. Ronkainen,⁴ P. Ronkanen,⁴ A. Saastamoinen,⁴ T. Sonoda,^{4,9} O. Steczkiewicz,^{8,10} and C. Weber⁴

¹³²Sn region

⁷⁸Ni region

Onset of collectivity in n-rich Ga, Ge nuclei

Beams from S³

¹⁰⁰Sn region V. heavy nuclei

PHYSICAL REVIEW C 78, 024308 (2008)

Structure of even-even A = 138 isobars and the yrast spectra of semi-magic Sn isotopes above the ¹³²Sn core

S. Sarkar Department of Physics, Bengal Engineering and Science University, Shibpur, Howrah 711103, India

M. Saha Sarkar^{*} Nuclear and Atomic Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India (Received 5 December 2007; revised manuscript received 8 July 2008; published 14 August 2008)

Onset of collectivity in neutron-rich Ga nuclei

Conversion-Electron setup -to determine Multipolarities

How do we determine multipolarities of transitions following β decay

<u>Low Statistics</u> -strong direct population -decay pattern

High Statistics -gate on feeding transition and look at X-γ coincidences -lifetimes -angular correlations

No 2

PROGRESS IN TRAP ASSISTED β DECAY SPECTROSCOPY OF ¹¹⁵Ru^{*}

J. Kurpeta^a, J. Rissanen^b, V.-V. Elomaa^b, T. Eronen^b
J. Hakala^b, A. Jokinen^b, P. Karvonen^b, I.D. Moore^b
H. Penttilä^b, A. Płochocki^a, S. Rahaman^b, S. Rinta-Antila^b
J. Ronkainen^b, A. Saastamoinen^b, T. Sonoda^b, J. Szerypo^c
W. Urban^a, Ch. Weber^b, J. Äystö^b

Can work with low statistics and get good results

Energy (keV)

Conclusions

- Fast-timing and conversion-electron measurements can help us determine transition multipolarities at DESIR for weakly produced nuclei allowing a better understanding of nuclear structure
- We look forward to using these techniques soon