

SPIRAL II HIGH INTENSITY RADIO FREQUENCY COOLER

a.k.a. SHIRaC

STATUS REPORT

SHIRAC COLLABORATION

- CSNSM D. LUNNEY
- MC Gill Univ. B. MOORE
- GANIL M. LEWITOWICZ, M. DI GIACOMO
- · LPC CAEN

<u>R BOUSSAID</u>, G BAN, F BOUMARD, JF CAM, F. DUVAL Y MERRER, JM GAUTIER[†], P. DESRUES, R. BUISSON, J. BREGEAULT, C. VANDAMME, D. ETASSE

OUTLINE

- DESIR@SII
- Why/how cooling ?
- Status and recent results
- 2010
- Conclusion

DESIR@SII

Why & How Cooling the beam?

COOLER and HRS are « part » of SPIRALII Phase II and included in the production building

• The new challenge: Cooling of high intensity beams (μA) with high transmission

Beam emittance and resolving power

Calculation by T. Kurtukian Nieto (With OLD HRS configuration)

STATUS

Work achieved in 2009-2010

- Last tests on the modified prototype I (transmission & emittance measurements)
- Manufacturing of New Cooler
- Improved RF system
- Slow control
- New Cooler set up at LPC

•Since SII week set up at LPC, new design for breakdowns, simulations for coupling with HRS

• simulations show that the transmission is limited by the acceptance (r_0)

DESIR WORKSHOP MAY 2010

RF: 1800 Vpp @5MHz He : 0. 5Pa <u>HT = 2900V</u>

I = 25 nA

 \mathcal{E} =2 pi mm mrad @ 60 keV $\Delta \mathcal{E}$ = 0.145 eV Transmission = 25%

Last Tests with SHIRAC I (PhD Thesis F. Duval 2009)

New cooler manufacturing and assembling (end 2009)

Simulated with SC & Microscopic approach

→ <u>Requirements:</u> 700 mm long R₀=5 mm 10 MHz RF 10 kV_{ptp}

RF system layout

- Resonance Frequency tunable via adjustable capacitor
- No ferrite cores for the inductive coupling with amplifier
- DC potentials for the segments guided inside the coils (no HV filters)
- Asymmetries compensated mechanically by translation of middle point

High Voltage RF Developments

RF performances and limitations

5 loops

• 9 MHz 5.8 KV 2 loops secondary

• 6.5 MHz 8 KV 5 loops secondary

• Highly Harmonic

2 loops

Present limitations:

 \rightarrow INSULATOR Breakdown at ~8 kV...

Investigations underway \rightarrow improved design and new materials needed (PEEK)

Insulator burning VRF~8 kV

New design larger gap/frame for higher HV Open frame for better RF coupling Very few data in this range of RF voltage Other material PEEK (Poly Ether Ether Kepone) will be tested

Slow Control (vacuum system, RF, DC, gas...)

LPC SET UP in 2010

- To be done... Completed in July 2010 Test with high intensity beams soon

From Drawings to reality...

other studies

Because of gas flow Extraction and Injection region are critical Simulations show that under 10⁻⁴ mbar T>65% Additional pumping and by passes added in these regions to decrease gas diffusion

For 5 10^{-2} mbar in the cooler injection and extraction ~5 10^{-5} mbar

Coupling with HRS Simulations of EINZEL lens located at 1 m from the extraction Different designs give parralell or focused beam 1 m away

Work underway...

Nuclear environment

Cooler should be the most irradiating part in the yellow zone

Mechanical design for confinement → double valve OK → anti sismic frame OK

Maintenance : minimize part failure, internal electronics simplification Segmented rod \rightarrow one single resistive rod ?

Gas : recycling Helium ?

Two identical coolers ?

Overview and outlook Work on a 1st prototype Emittance within requirements Transmission (25%) limited by acceptance • RF system ~ OK, higher HV and RF requires new design and new materials Construction of SHIRaC, mechanics, slow control, vacuum system, safety, RF system... •Setup completed in JULY 2010 Couplings with HRS underway

- Cooling of μA beams For HRS requirements to be confirmed in 2010-2011
- Nuclear environment

THANK YOU FOR YOUR ATTENTION