Progress towards

a Low-Energy Neutron Array for DESIR

- Physics
- Current detectors
- Strategies
- Development status, timeline
- Day 1 experiment

Franck Delaunay, for the LPC Nuclear Structure Group <u>M. Sénoville</u>, L. Achouri, J. Gibelin, M. Marqués, N. Orr, M. Parlog, G. Randisi

β-decay of exotic nuclei

β-decay of exotic nuclei important for

- Nuclear structure: level schemes, spins, parities...
- Nuclear astrophysics: r-process (successive n captures and β -decays)
- Nuclear technologies: decay heat, particle emission of nuclear fuels

β-decay of neutron-rich nuclei

- Large Q_{β} and low S_n
- \rightarrow Unbound daughter states \rightarrow delayed neutron emission
- \rightarrow Detect neutrons to build complete decay schemes

β-delayed neutron detection requirements

- Low energy neutrons (~0 to ~10 MeV)
- > Energy from TOF: coupling to β detector ("start")
- Good energy resolution (intermediate mass nuclei)
- High efficiency (weak transitions and/or low intensity beams)
- Multiple neutron detection capability
 - \rightarrow nn correlations, sequential vs direct emission
- \succ Coupling to γ detectors (β and β -n bound daughter states)
- > Tape system (collection and evacuation of activity)

Current β-delayed neutron detectors @ GANIL

TONNERRE array (LPC Caen, IFIN-Bucharest)

- 32 bars, 160 x 20 x 4 cm³
- BC400 plastic
- Up to 45 % of 4π
- Intrinsic $\varepsilon_n \sim 45$ % at 1 MeV
- E_n from TOF (d=1.2 m)
- δE_n/E_n ~ 10 %
- Threshold : E_n ~ 300 keV

TONNERRE: limitations

- No n- γ discrimination: random γ background
- $\delta E_n / E_n$ limited by thickness & d_{flight}
- Asymmetric lineshapes
- Relatively high threshold

Strategies for an improved neutron-TOF array

Reduce background

 \succ n- γ discrimination: liquid scintillators

Improve energy resolution, reduce lineshape asymmetry

- thin, small volume detectors
- increase flight distance (~ 5 m or higher)

Lower threshold

- thin, small volume detectors
- digital electronics
- > good n- γ discrimination at low energy

Multiple neutron detection

- background reduction
- cross-talk reduction: modular array, high granularity

Envisaged array

- Modular array with up to 100 modules
- Module design: similar to EDEN^{*} module (IPNO, KVI)
 - \Rightarrow 5 cm thick, 20 cm diameter
 - \Rightarrow Liquid scintillator with n- γ discrimination capability (BC501A)
- Digital DAQ DSP

Collaboration with D. Cano-Ott et al. (CIEMAT, Madrid) (JYFL, FAIR/DESPEC)

- Common proposal for DESIR TDR (Jan 2009)
- Common module concept
- Compatible support structures, DAQ...

Development status

"Proof of principle" tests with EDEN modules and VME DAQ

- 2010: tests with sources
- 2011: test experiment @ GANIL/LISE
 - ~40 modules + VME + ¹⁵B (P_{1n}~94 %) and/or ¹¹Li (P_{2n}~5 %)
 - + modules with digital DAQ

Demonstrate

- viability of liquid scintillators for β -n
- β-2n capability
- improved energy resolution
- reduction of lineshape asymmetry

Masters project student: M. Sénoville (PhD thesis from Oct 2010)

Development status

Digital DAQ development @ LPC: FASTER project (D. Etasse et al.)

- 2005 2008: development of single-channel ADC, QDC, TDC functions
- 2009 ...: developing multi-channel capability

(2010: 10 channels, 2011: 30 channels, 2013: 100 channels)

DEMON + Digital QDC + AmBe source

- 2010: tests with sources
- 2011: test expt @ GANIL/LISE + test of digital DAQ
- 2011 2013: assemble stepwise 100 channel digital DAQ
- 2013: expts with digital DAQ + EDEN + CIEMAT (SPIRAL1, LISE, ISOLDE, JYFL)
- 2013: begin stepwise acquisition of new modules (~6 k€ / module)
- 2014(?) ...: expts with digital DAQ + new dets + CIEMAT @ DESIR

Day 1 experiment: β -decay of n-rich Kr isotopes (A≥94)

 \Rightarrow Evolution of deformation around Z~40 and N~60 \Rightarrow Heavy Kr isotopes expected to be waiting points in the r-process

Decay schemes measured up to ⁹³Kr
T_{1/2} and P_n measured up to ⁹⁹Kr *

Intensities expected at SPIRAL2 (from FF yields after post-acceleration, Jan 2010): 95 Kr: 5.10⁸ pps / 10 = 5.10⁷ pps 99 Kr: 1000 pps / 10 = 100 pps 100 Kr: 150 pps / 10 = 15 pps 101 Kr, 102 Kr, ...: < 1 pps ? \Rightarrow T_{1/2}, P_n ?

* Bergmann et al., NPA 714 (2003) 21