

Future exploitation of optical pumping in manganese

Frances Charlwood DESIR workshop

May 2010

Introduction

Laser spectroscopy at JYFL

History of the N=28 shell closure

Manganese isotope shifts and charge radii

Future experiments at JYFL, ISOLDE and DESIR

Copper Sextupole Ion Guide (SPIG)

Refractory Mn can only be produced at separators such as the IGISOL, JYFL (and now ISOLDE!)

Radioactive isotopes with short half lives can also be studied

 Reaction products quickly extracted from the target region via a helium buffer gas

Ions formed into a beam and injected into the cooler-buncher

Fusion guide

Laser Spectroscopy at JYFL

Overlapping of an ion beam with a counter propagating, fixed frequency, CW laser at 30kV to reduce the energy spread

Photon detection when resonantly excited ions decay to their ground states

lons through cooler-buncher on +30kV platform

 Gating decreases background by factor 10⁴

CW laser

Hyperfine structure –
 interaction of nuclear charge
 distribution and EM field at the
 nucleus produced by electrons.

F = I + J

Nuclear Spin / Magnetic Dipole Moment μ_l Electric Quadrupole Moment Q_s Hyperfine Anomaly

µeV splitting

IS measurements yield information on:

 $\delta < r^2 > AA'$ Size $\delta < \beta_2^2 >$ Shape δσ

Diffuseness

Isotope shift measurements

Arises due to the finite size and mass of the nucleus

Causes a shift in centroid of the hyperfine multiplet along an isotope chain

Divided into the mass shift and field shift:-

Mass shift – the relative centre of mass changes between isotopes

Field shift – Orbital electron experiences an electrostatic potential due to the nuclear charge and distribution of that charge. This changes between isotopes.

 $\delta
u^{A,A'} = M_i rac{A'-A}{AA'} + F_i \delta \langle r^2 \rangle^{A,A'}$

Mass shift

Field shift

Improvement in efficiency from 1 in 250,000 to 1 in 4,000 after bunching ions in cooler

★ Near perfect agreement in δ <r²> and S_{2n} measurements at *N*=50 and *N*=60

 ^{53}Mn 'allegedly' has a dominant single particle character associated with the $\rm f_{7/2}$ shell.

The other odd isotopes in this region have more complicated neutron and proton configurations with *I*=5/2 ground states, also seen in the odd proton isotones.

$$\delta\nu^{A,A'} = M_i \frac{A'-A}{AA'} + F_i \delta \langle r^2 \rangle^{A,A'}$$

New atomic calculations based on MCDF method: Manganese F = -572(86)MHz fm⁻² and M = 852(45)GHz.u

Charge radii follow trends in Υ-ray spectroscopic studies, not S_{2n}

Very different to perfect agreement in two sets of measurements at Z~40.

Known moments of ⁵⁵Mn used to calibrate magnetic and quadrupole moments of ^{50m,53,54,56}Mn.

Not collective nor single particle states. GXPF1A shell model calculations suggest a highly mixed g.s

New Lab at JYFL!

New mini cyclotron dedicated to
 IGISOL experiments

IGISOL and laser line move from suummer 2010.

Future work at JYFL

- # (d,2p) reaction on ^{57,58}Fe target
- Cross section ~100mb

	Ni55	Ni56	Ni57	Ni58	Ni59	Ni60	Ni61	Ni62	Ni63	Ni64	
	7/2-	0+	3/2-	0+	3/2-	0+	3/2-	0+	1/2-	0+	
	EC	EC		68.077	EC	26.223	1.140	3.634	β-	0.926	β
	Co54	Co55	Co56	Co57	Co58	Co59	Co60	Co61	Co62	Co63	
*	0+	7/2-	4+	7/2-	2+	2-	5+	7/2-	2+	(7/2)-	
	EC	EC	EC	EC	EC	1 0		β-	β-	β-	β
	Fe53	Fe54	Fe55	Fe56	Fe57	F 58	Fe59	Fe60	Fe61	Fe62	
	7/2-	0+	3/2-	0+	1/4-	i to	44.505 d 3/2-	0+	3/2-,5/2-	05 5	
*	EC *	5.8	EC	91.72	2.2	0 18	β-	β-	β-	β-	β
	Mn52	Mn53	Mn54	Mn55	Mn56	M 57	Mn58	Mn59	Mn60	Mn61	
	5,591 a 6+	5./4E+0 y 7/2-	3+ 3+	5/2-	2.5765 ff 3+	5.2-	0+	3/2-,5/2-	0+	(5/2-)	
	EC *	EC	EC,β-	100	β-	β-	β-	β-	β-	β-	β
	Cr51	Cr52	Cr53	Cr54	Cr55	9-6	Cr57	Cr58	Cr59	Cr60	
y	7/2-	0+	3/2-	0+	3/2-	0+	3/2-,5/2-,7/2-	0+	0.745	0.57 5	
	EC	83.789	9.501	2.365	β-	β-	β-	β-	β-	β-	
	V50	V51	V52	V53	V54	V55	V56	V57	V58	V59	
	1.4E+17 y 6+	7/2-	3.745 m 3+	1.01 m 7/2-	49.8 s 3+	0.54 s (7/2-)					
_	EC,β- 0.250	99.750	β-	β-	β-	β-					
	Ti49	Ti50	Ti51 5.76 m	Ti52	Ti53	Ti54	Ti55	Ti56	Ti57	Ti58	

Easter 2010

~ 400/s

~ 650,000/s background

Improve vacuum by factor of 10 (d,2p) applicable for other Z=20-30 nuclei

Future work at ISOLDE

- ✤ Isotope production possible from ⁴⁸⁻⁶⁹Mn with Nb foil or UCx target
- **#** RILIS scheme
- Optical pumping in the cooler yet to be established
- New ISOLTRAP Mn mass measurements across N=40

PSB U C

SC ZrO

SC Nb

SC Ta

Future work at DESIR

Ni55 212.1 ms	Ni56 6.077 d	Ni57 35.60 h	Ni58	Ni59 7.6E+4 y	Ni60	Ni61	Ni62	Ni63 100.1 y	Ni64	Ni65 2.5172 h	Ni66 54,61	NBC5 21 s	N108 19 s	Ni69 11.4 s	N170	Ni71	Ni72 2.1 s	Ni73 0.90 s
7/2-	0+	3/2-	0+	3/2-	0+	3/2-	0+	1/2-	0+	5/2-	0+	(1/2-)	0+		0+		4	
EC	EC		68.077	EC	26.223	1.140	3.634	ß	0.926	ß	β-	ß	₿⁄	β [,]		ß	ß	a
Co54 193.23 ms	Co55 17.53 h	Co56 77.27 d	Co57 271.79 d	Co58 70.82.4	Co59	Co60 5.2714 v	Co61 1.650 h	Co62	Co63	Co64	Co65	Co66 0.23 s	Co67 0425	Co68 0.18 s	Co69 0.27 s	Co70	Co71	0.72
0+	7/2-	4+	7/2-	2+	7/2-	5+	7/2-	2+	(7/2)	1+	(7/2)-	(3+)	(7/2-)					
EC *	EC	EC	EC	EC	100	*	B	ß	6·	β-	β-	β-	₿	₿ [,]	β-			
Fe53	Fe54	Fe55	Fe56	Fe57	Fe58	Fe59	Fe60	Fe61	62	Fe63	Fe64	Fe65	Fe66	Fe67	Fe68	Fe69		
8.51 m 7/2-	0+	2.73 y 3/2-	0+	1/2-	0+	44.503 d 3/2-	1.5E+6 y 0+	5.98 m 3/2-5/2-		6.1 s (5/2)-	2.0 s	0.4 s	0+		0.10 s 0+		1 4 4	
EC *	5.8	EC	91.72	2.2	0.28	β-	B-	ß-	6-	β-	β-	β-			8-		TT	
Mn52	Mn53	Mn54	Mn55	Mn56	Mn57	Mn58	Mn59	Mn60	Mn61	Mn62	Mn63	Mn64	Mn65	Mn66	Mn67		,	
5.591 d	3.74E+6 y	312.3 d	5/2-	2.5785 h	85.4 s	3.0 s	4.6 8	51 s	0.71 s	0.88 s	0.25 s							
*	TC .	TC &	100	8-	8-	a. *		*	8.		a.							
Cr51	Cr52	Cr53	Cr54	Cr55	Cr56	Cr57	-58	Cr59	Cr60	C r61	Cost	Cr63	Cr64	Cr65				
27.702 d	0102	0100	0104	3.497 m	5.94 m	21.1 s	7.5	0.74 s	0.57 s		CIUL	CIUS	CIU	Cros	10		· · · · · ·	
7/2-	0+	3/2-	0+	3/2-	0+	3/2-,5/2-,7/2	0+		0+		0+		0+		42			
EC	83.789	9.501	2.365	β-	β-	β-	β·		β [.]									
V50	V51	V52	V53	V54	V55	V56	Y 57	V.22	V59	V60	V61	V62	V63					\
6+	7/2-	3+	7/2-	3+	(7/2-)													
EC.8- 0250	99.750	βr	ß	β-	β-													
Ti49	Ti50	Ti51	Ti52	Ti53	Ti54	Ti55	Ti56	Ti57	Ti58	Ti59	Ti60	Ti61		-				
		5.76 m	1.7 m	32.7 s														

- Problems at ISOLDE
- ♣ Reactions such as ⁴⁸Ca on ^{13,14}C at S3
- ISOL facility required for production of Cr, Fe, Ni at reasonable beam intensity.

Summary

- # $\delta < r^2 >$ extracted for Mn isotope chain from ⁵⁰Mn ⁵⁶Mn
- First observation of differing mass and charge radii measurements
- Quadrupole moment at the shell closure and moments for ⁵⁰Mn^m
- Charge radii and quadrupole moments correspond
- ✤ Future experiments towards the n-rich ⁵⁸Mn utilising (d,2p) in JYFL new lab
- 48-69Mn beams available at ISOLDE
- ***** Beam production at DESIR provides the possibility to study n-rich dripline nuclei in the Z = 20-30 region.

The University of Mancheste **University of Manchester**

J Billowes, P Campbell, B Cheal, F. Charlwood and D. Johnson

University of Birmingham

G Tungate, D H Forest and R Powis

<u>University of Jyvaskyla, Finland</u> J Äystö, T Eronen, A Jokinen, ID Moore, H Pentillä, M. Reponen and A. Saastamoinen

University of Oulu, Finland

S. Fritzsche

University of Aizu, Japan

M. Honma

