## Beta-delayed neutron measurements for nuclear technologies



D. Cano Ott Nuclear Innovation – Nuclear Fission Division Dept. of Energy

**CIEMAT-IFIC-UPC** collaboration







$$B^{i}_{GT} = K \frac{I^{i}_{\beta}}{f^{i}(Z, Q_{\beta})T_{1/2}} = K \frac{1}{ft^{i}_{1/2}}$$





Beta decay knowledge (on neutron rich nuclei) is needed as input for nucleosynthesis calculations, and in particular for the r-process to explain the cosmological abundance of the elements.



Main reactions in a nuclear reactor (or transmutation device)

- n- induced fission (energy + waste)
- neutron capture (activation + breeding)
- elastic and inelastic neutron scattering
- radioactive decay
- (n,xn), (n, charged particle), ...



### The delayed neutrons and the reactor control





Table 1 Typical precursor coefficients.



For the values in table 1,  $\beta = \sum_{i=1}^{6} \beta_i = 0.0065$ . So the delayed precursors only account for 0.65% s

The delayed neutron energy spectra (left) have a mean energy of 500 keV (below the 2 MeV for the the fission spectrum)



Delayed neutrons have a much lower probability of causing fast fissions than prompt neutrons because their average energy is less than the minimum required for fast fission to occur.

Delayed neutrons have a lower probability of leaking out of the core while they are at fast energies, because they are born at lower energies and subsequently travel a shorter distance as fast neutrons. Larger probability of being absorbed!

## Nuclear Reactor Kinetics (without delayed neutrons)

•Average generation time"  $\Lambda \equiv$  average time between the birth of two fission neutrons in successive generations •N(t) = neutron population at time *t*.

$$N(t+\Lambda) = k_{eff} N(t)$$

If we identify  $\Lambda$  as  $\Delta t$ , or as dt in the limit, we can write

$$\frac{N(t+\Lambda)-N(t)}{\Lambda} = \frac{k_{eff}N(t)-N(t)}{\Lambda} = \frac{k_{eff}-1}{\Lambda}N(t)$$
$$\frac{dN(t)}{dt} = \frac{k_{eff}-1}{\Lambda}N(t) \implies N(t) = N(0)\exp\left(\frac{k_{eff}-1}{\Lambda}t\right)$$



D. Cano-Ott, DESIR workshop Leuven, 26<sup>th</sup> -28<sup>th</sup> of May 2010 **Ciemat** Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

## Prompt critical reactor

 $k_{eff}$  = 1.001 (i.e., a reactivity  $\cong$  1 mk) and  $\Lambda$  = 1 ms = 10<sup>-3</sup> s,

$$N(t) = N(0) \exp\left(\frac{1.001 - 1}{0.001 s}t\right) = N(0) \exp(t)$$

Thus, the neutron population (and also the power) would multiply:

by a factor exp(1) = 2.718 in 1 s by a factor exp(2) = 2.718<sup>2</sup> = 7.389 in 2 s by a factor exp(3) = 2.718<sup>3</sup> = 20.1 in 3 s!

This is a <u>very</u> fast rate of increase in the fission power, and **it is impossible to control such a fast power increase** with mechanical shutdown systems.

GOBIERNO DE ESPAÑA E INNOVACIÓN



## Critical reactor with delayed neutrons

For 99.4% of neutrons, take average generation time =  $10^{-3}$  s. For the other 0.6% (the delayed neutrons) take  $10^{-3}$  s + (say) the half-life of the precursor group (this requires a 6-term)

Using again  $k_{eff}$  =1.001, we now find in the exponential equation

$$N(t) = N(0) \exp\left(\frac{1.001 - 1}{0.1s}t\right) = N(0) \exp(0.01t)$$

Thus, the neutron population (and also the power) would multiply by a factor  $exp(0.01) \cong 1.01$  in 1 s by a factor  $exp(0.02) \cong 1.02$  in 2 s by a factor  $exp(0.03) \cong 1.03$  in 3 s!

The delayed neutrons have reduced the rate of increase of fission power dramatically. It is now very achievable to control the power transient with mechanical shutdown systems.





#### Individual precursors are responsible for a large number of the $\ensuremath{v_d}$

| lodine model    |                 |                   |              | Bromine model   |                 |
|-----------------|-----------------|-------------------|--------------|-----------------|-----------------|
| N <sub>gr</sub> | Group period, s | Precursor         | Half-life, s | N <sub>gr</sub> | Group period, s |
| 1               | 55.69           | <sup>87</sup> Br  | 55.69        | 1               | 55.69           |
| 2               | 24.50           | 137               | 24.50        | 2               | 24.50           |
| 3               | 16.30           | <sup>88</sup> Br  | 16.30        | 3               | 16.30           |
| 4               | 6.46            | 138               | 6.46         | 4               | 6.37            |
|                 |                 | <sup>93</sup> Rb  | 5.93         |                 |                 |
| 5               | 4.67            | <sup>89</sup> Br  | 4.38         | 5               | 4.38            |
| 6               | 2.76            | <sup>94</sup> Rb  | 2.76         | 6               | 2.76            |
| 7               | 2.30            | 139               | 2.30         |                 |                 |
| 8               | 2.056           | <sup>85</sup> As  | 2.08         | 7               | 2.09            |
|                 |                 | <sup>98m</sup> Y  | 2.00         | ]               |                 |
| 9               | 1.119           | <sup>93</sup> Kr  | 1.289        | 8               | 1.289           |
|                 |                 | <sup>144</sup> Cs | 1.002        | 9               | 0.942           |
| 10              | 0.860           | 140               | 0.860        |                 |                 |
| 11              | 0.443           | <sup>91</sup> Br  | 0.542        | 10              | 0.542           |
|                 |                 | <sup>95</sup> Rb  | 0.384        | 11              | 0.384           |
| 12              | 0.195           | <sup>96</sup> Rb  | 0.203        | 12              | 0.195           |
|                 |                 | <sup>97</sup> Rb  | 0.170        |                 |                 |





## Status of the delayed neutron data

The delayed neutron precursor groups seem to work reasonably well for a wide set of calculations. There are however significant discrepancies between the "evaluated/experimental results" and the results from summation calculations starting from microscopic data.







D. Cano-Ott, DESIR workshop Leuven, 26<sup>th</sup> -28<sup>th</sup> of May 2010 **Ciemat** Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas The amount and energy of the delayed neutrons depends on the fissioning system

| Fissioning             | Fractional                                             | Decay Constant                      | <b>Direct Delayed</b>     |  |
|------------------------|--------------------------------------------------------|-------------------------------------|---------------------------|--|
| Nuclide                | Group Yield                                            | λ <b>(</b> S <sup>-1</sup> <b>)</b> | Neutron Yield             |  |
|                        |                                                        |                                     | $(v_d)$                   |  |
|                        |                                                        |                                     | and Fraction ( $\beta$ )  |  |
| 235U                   | 0.0380                                                 | 0.0133                              | $v_{d}$ = 0.0166 ±        |  |
|                        | 0.1918                                                 | 0.0325                              | <b>3%</b>                 |  |
| Thermal                | 0.1638                                                 | 0.1219                              |                           |  |
|                        | 0.3431                                                 | 0.3169                              | $\beta = 0.00682 \pm 3\%$ |  |
| FISSION                | 0.1744                                                 | 0.9886                              |                           |  |
|                        | 0.0890                                                 | 2.9544                              | 570                       |  |
| 238U                   | 0.0139                                                 | 0.0136                              | $v_{d}$ = 0.0450 ±        |  |
|                        | 0.1128                                                 | 0.0313                              | <b>4.4%</b>               |  |
|                        | 0.1310                                                 | 0.1233                              |                           |  |
| Fast Fission           | 0.3851                                                 | 0.3237                              | β <b>= 0.01584</b> ±      |  |
|                        | 0.2540                                                 | 0.9060                              | 4.4%                      |  |
|                        | 0.1031                                                 | 3.0487                              |                           |  |
| DE ESPAÑA E INNOVACIÓN | Leuven, 26 <sup>th</sup> -28 <sup>th</sup> of May 2010 |                                     | y Tecnológicas            |  |



#### New nuclear data are necessary for the innovative nuclear technologies

Nuclear data are also necessary for the design of nuclear systems. Hot topics in the field are:

#### -Higher burnup

-New critical reactors (Gen IV): liquid metal Nacooled reactor, Pb-cooled reactor and gas cooled reactor.

-Accelerator Driven Systems (ADS) for the transmutation of the nuclear waste (MYRRHA project)

An ADS is a subcritical nuclear system  $(K_{eff} = 0.95-0.98)$  whose power is sustained by a external high intensity neutron source. Usually the neutrons are produced by spallation in heavy nuclides (Pb) by high energy neutrons (~1 GeV). It is designed for burning Minor Actinides.



![](_page_15_Picture_7.jpeg)

#### I. Fast Na-cooled critical reactor

Core: 300 fuel elements of MOX: 14% - 16% <sup>239</sup>Pu + depleted U (0.25% <sup>235</sup>U) Blanquet: a) depleted U + 10-20% Minor Actinides for waste transmutation, b) MOX

$$\beta_{eff}$$
=4.5·10<sup>-3</sup> vs  $\beta_{eff}$ =6.8·10<sup>-3</sup> for a <sup>235</sup>U LWR

For the licensing of a critical reactor, it is important to determine with a good accuracy (a few hundred pcms) the design parameters. Otherwise, the control mechanisms will have to be over dimensioned (i.e. install more control rods)!

#### II. Accelerator Driven System

The ADS is intrinsically subcritical, even though a value close to criticality is desired for holding a sustained transmutation. For its licensing, however, one has to guarantee that the criticality will be never reached

$$\delta k_{eff} = \delta k_{prompt} + \delta k_{delayed} + \delta k_{void} + \dots$$

![](_page_16_Picture_7.jpeg)

![](_page_16_Picture_9.jpeg)

## How to measure microscopic data on delayed neutrons?

 $P_n$  values ->  $4\pi$  detector (talks by Yu. Penionzhkevich - TETRA and B. Gómez – BELEN detector)

 $P_n$  values (depending on the threshold and energy spectrum) and energy spectrum -> ToF spectrometers (this talk and F. Delaunay)

![](_page_17_Picture_3.jpeg)

![](_page_17_Picture_5.jpeg)

![](_page_18_Figure_0.jpeg)

## The power of digital electronics

![](_page_19_Figure_1.jpeg)

True pulse shape from averaged signals (neutron and gamma). Fitting one param (amplitude) to both signals, calculating the  $\chi^2$  Guerrero et al. NIMA 597(2008)212

![](_page_19_Figure_3.jpeg)

Data taking with digital electronics is limited only by the scientist's imagination.

A 12 bit (14 bit) flash ADC with 1 Gsample/s is a nearly universal digitiser:

Fast and high resolution pulse sampling.

Large dynamic range.

Mounted on an FPGA  $\propto$  on board pulse shape analysis  $\propto$  data reduction.

![](_page_19_Picture_9.jpeg)

![](_page_19_Picture_11.jpeg)

## CIEMAT's high performance flash ADC

Resolution: 12 bits @ 1 Gsample/s or 14 bits @ 800 Msamples/s (1 GHz bandwith) and 2 V p2p ADCs FPGA for trigger decision and preprocessing. DSP for pulse shape analysis. 2 Gbytes DDR2 for waveform storage.

Trigger in/out, external clock synchronisation, various input ranges (500 mV-1-2-5 V)

![](_page_20_Picture_3.jpeg)

Ciemat

y Tecnológicas

![](_page_21_Figure_0.jpeg)

## **Summary and conclusions**

Conclusions of the NEA WPEC Subgroup 6 on delayed neutron data: there is a need for a continuing effort on delayed neutron data [...] mainly directed at satisfying new requirements emerging from current trends in reactor technology, such as:

-the use of high burn-up fuel
-the burning of plutonium stocks
-fuel recycling strategies
-actinide burners (ADS)

Possible (?) day 1 experiments: the main Rb, I, Br, As, Ge, Y, Sb... delayed neutron precursors should be measured with better accuracy.  $P_n$  values and neutron energy spectra.

# DESIR is an excellent place for measuring several of these isotopes due to its high yields and combined instrumentation: $4\pi$ detector and ToF spectrometer.

The construction of a large ToF spectrometer with sufficient efficiency implies a significalnt financial effort that very likely will have to be shared between various partners .

E INNOVACIÓN