Ultra sensitive laser spectroscopy of pure beams

MANCHESTER

Outline of talk

- Sources of photon background (fluorescence detection, bunching technique)
- The need for pure beams (and how to obtain them...)
- Photon-lon coincidence detection (and its resurrection)

Aanchest

Bunching for laser spectroscopy

Photon background dominated by continuous laser scatter

But complications arise...

MANCHESTER

lons also cause background

Optical spectrum projected

Gate applied

(eg. 10µs of 100ms cycle)

Accelerating voltage (ie. frequency)

Isobaric contaminants have same TOF (m/q dep.) → Bunching doesn't help here → Need Z-selectivity to separate

Optical pumping in the cooler

Why in the cooler? (efficiency)

MANCHESTER

- Focal point of slowly travelling ions -> efficient
- Can use broadband/pulsed lasers \rightarrow large λ range

Ionise 1+ ions to 2+ state

Simplest test cases first, eg:-

Pure beam of single A and Z
No contaminant will have m/q selected by magnet and m/(2q) selected by TOF (or other device)

Photon background suppression

- Background from laser → bunching ✓
- Background from ions → pure beams ✓

Immediately applicable...

...but can we improve upon bunching technique? (gates $> 5\mu$ s)

The University of Mancheste

Single photon-ion coincidence

Events with ~20ns timing resolution

So why do we bunch instead?

coincidence

Isobaric contamination causes "false" coincidences

Cooled beams \rightarrow ~5 ns resolution \rightarrow few atoms/s

Summary

- In-cooler ion resonance ionisation can be used to produce a pure beam of single (A,Z) ... isomeric purity?
- Pure beams reduce the photon background, increasing the sensitivity of HR laser fluorescence spectroscopy
- In the absence of isobaric contamination, single photon-ion coincidence will provide greatest sensitivity
- Propose tests in JYFL and ISOLDE.

The University of Manchestei

Acknowledgements

The University of Manchester, UK

- J. Billowes
- P. Campbell
- F. Charlwood
- B. Cheal
- K. Flanagan
- D. Johnson
- T. Procter

Others...

Data from:-Birmingham/Jyväskylä/Manchester (optical pumping) IS457 Collaboration (gallium)

The University of Mancheste

New laboratory at JYFL

Sub-ms, refractory elements...

Bunching for laser spectroscopy

Accelerating voltage